高聚物结构
- 格式:pptx
- 大小:2.62 MB
- 文档页数:147
二、填空1、高聚物结构包括 高分子的链结构 和高分子的聚集态结构,高分子的聚集态结构又包括 晶态结构 、 非晶态结构 、 取向态结构 和 液晶态结构以及织态结构 。
2、高分子链结构单元的化学组成有 碳链高分子 、 杂链高分子 、元素高分子和 梯形和双螺旋型高分子,元素高分子有 有机元素高分子 和 无机元素高分子 。
3、高分子的结晶形态有 折叠链片晶 、 串晶 、 伸直链片晶 和 纤维状晶 。
4、高聚物的晶态结构模型主要有 缨状胶束模型(或两相模型)、 折叠链结构模型 、 隧道-折叠链模型 、 插线板模型 ;高聚物的非晶态结构模型主要有 无规线团模型 和 折叠链缨状胶束粒子模型(或两相球粒模型) 。
5、测定分子量的方法有 端基分析法 、 气相渗透法 、 膜渗透法 、 光散射法 、 粘度法 和 凝胶色谱法 。
6、提高高分子材料耐热性的途径主要有 增加链刚性 、增加分子间作用力 、 结晶。
7、线性高聚物在溶液中通常为 无规线团 构象,在晶区通常为 伸直链 或 折叠链 现象。
8、高聚物稀溶液冷却结晶易生成 单晶 ,熔体冷却结晶通常生成 球晶 。
熔体在应力作用下冷却结晶常常形成 串晶 。
9、测定高聚物M n 、M w 、M η的方法分别有 膜渗透法 、 光散射法 、和 粘度法 。
测定高聚物相对分子质量分布的方法有 沉淀分级法 和 GPC ;其基本原理分别为 溶解度 和 体积排除 。
10、高聚物的熔体一般属于 假塑性 流体,其特性是 粘度随剪切速率增加而减小 。
高聚物悬浮体系、高填充体系、PVC 糊属于 胀塑性 流体,其特征是 粘度随剪切速率增加而增加 。
11、对于聚乙烯自由旋转链,均方末端距与链长的关系是 222nl h 。
12、当温度T= θ 时,第二维里系数A 2= 0 ,此时高分子溶液符合理想溶液性质。
13、测定PS 重均相对分子质量采用的方法可以是 光散射法 。
14、均相成核生长成为三维球晶时,A vranmi 指数n 为 4 。
高聚物的结构简式高聚物,也称为聚合物,是由许多重复单元通过共价键连接起来形成的大分子化合物。
在高聚物中,聚合单元通过共享电子对来形成化学键,从而形成聚合链。
高聚物在自然界中广泛存在,可以是有机物,也可以是无机物。
高聚物的结构可以分为线性、支化、交联和网络四种形式。
下面分别介绍这四种结构。
1.线性结构线性高聚物是最简单的结构形式。
各个聚合单元按照相同的方向依次连接起来,形成一条长链。
这种结构形式类似于一根绳子,没有分支。
线性高聚物通常具有高分子量,分子链长度较长。
例如,聚乙烯、聚丙烯等就是线性高聚物。
线性高聚物具有较高的延展性和柔韧性。
2.支化结构支化高聚物是在线性结构的基础上进一步分支扩展而成的。
分支通常从分子链的侧链上延伸出来,形成树枝状结构。
这种结构形式提高了高聚物的分子间吸附能力,增强了高聚物的溶解性和流动性。
例如,聚乙烯醇就是一种支化高聚物。
3.交联结构交联高聚物是指通过交联剂将聚合单元连接在一起形成三维结构的高聚物。
交联剂可以是有机物,也可以是无机物。
交联结构使高聚物具有较高的强度和硬度,同时增加了高聚物的热稳定性和耐化学性。
例如,聚氨酯、环氧树脂等就是交联高聚物。
4.网络结构网络高聚物是一种特殊的结构形式,其分子链通过共有的交联点连接在一起,形成三维网状结构。
网络结构具有非常高的强度和耐热性,同时还具有很好的抗变形能力。
例如,硅橡胶就是一种具有网络结构的高聚物。
总结起来,高聚物的结构可以是线性、支化、交联和网络四种形式。
每种结构形式都赋予了高聚物不同的性质和用途。
了解高聚物的结构对于研究和应用高分子材料具有重要意义。
高聚物的结构可以通过实验技术和理论计算等方法进行研究和表征,为高分子材料的设计和合成提供了基础。
第一章高聚物的结构高聚物的结构包括高分子链结构和聚集态结构,研究高聚物结构的根本目的,是了解高聚物结构与其物理性能之间的关系,以及高聚物分子运动的规律,为高聚物分子设计和材料设计建立科学基础,同时指导我们正确地选择和使用高聚物材料,更好地掌握高聚物的成型加工工艺条件,并通过各种途经,改变高聚物的结构,以达到改进性能。
高聚物结构有很多特点,高聚物是很多碳原子以共价键联结的大分子,分子链长,并具有多分散性,分子之间相互作用力大,机械强度高,高聚物在使用时还加入很多掺合物以达到提高性能、改进性能的目的。
1-1高分子高分子是由许多相同或不同的基本链节作为化学结构单元,通过共价键连接起来的大分子,又称高聚物、聚合物、大分子及高分子化合物。
1-2天然高分子像蛋白质、天然纤维和其他糖类等天然产物,具有特殊的结构特征,这些结构特征是分子长度均一,以及分子的化学结构完全相同,在这些化合物中,每一个分子具有不同单体单元构成完全相同的序列。
1-3合成高分子将一种或两种以上的单体,经人工合成的高分子化合物,是与天然高分子向对照而言的,如合成树脂、合成纤维、合成橡胶、合成皮革、合成涂料、合成胶粘剂等,都是以合成高分子为主的,合成高分子的分子量分布较天然高分子的多。
1-4碳链高分子高分子主链是由相同的碳原子,以共价键连结的长链分子,如聚乙烯CH2CH2n。
这类高聚物,工业产量最大,用途最广,除聚四氟乙烯外,可塑性好,容易成型加工,原料丰富,成本较低,但缺点是易老化,耐热性差。
1-5杂链高分子在高分子主链上,除碳原子外,还有氧(O)、氮(N)、硫(S)等元素组成,并以共价键连结。
如聚苯二甲酸乙二醇酯C C OOCH2CH2On聚酰胺NH(CH3)4NH CO(CH3)4COn这类高分子具有较高的耐热性和机械强度,比碳链高分子要高,但因主链上常有极性基团,容易水解,杂链高分子一般作为工程塑料用。
1-6元素有机高分子这种高分子主链上含有硅Si、磷P、钛Ti、砷As、锡Sn、锑Sb、锗Ge等元素和氧组成主链,但在侧基上还含有有机基团。
高聚物的结构简式摘要:1.高聚物的结构特点与分类2.单体的结构简式及命名规则3.合成高聚物的常见方法及其应用4.高聚物在实际生活中的重要作用正文:一、高聚物的结构特点与分类高聚物是由许多相同或相似的单体通过共价键连接而成的大分子化合物。
根据其结构特点,高聚物可分为以下几类:1.线性高聚物:链节主链上只有碳原子,不存在双键的高聚物,如聚乙烯、聚丙烯等。
2.支链高聚物:链节主链上含有碳原子和支链的高聚物,如聚苯乙烯、聚甲基丙烯酸甲酯等。
3.交联高聚物:由两个或多个高聚物链通过交联反应形成的三维网络结构高聚物,如聚氨酯、聚氯乙烯等。
二、单体的结构简式及命名规则单体是高聚物的基本组成单位,其结构简式和命名规则如下:1.单体结构简式:表示单体分子中碳原子的排列方式和化学键的连接方式。
2.单体命名:根据单体分子中碳原子的数量和化学键的类型进行命名,如烯烃、醇、酮、胺等。
三、合成高聚物的常见方法及其应用1.加聚反应:通过烯烃、二烯烃等单体的加成反应合成高聚物,如聚乙烯、聚丙烯等。
2.缩聚反应:通过醇、酮、胺等单体的缩合反应合成高聚物,如聚酯、聚氨酯等。
3.生物合成:通过生物体内酶催化合成的高聚物,如聚糖、聚氨基酸等。
高聚物在实际生活中的应用广泛,如塑料、橡胶、纤维、涂料等。
它们在建筑、交通、电子、医疗等领域发挥着重要作用。
四、高聚物在实际生活中的重要作用1.塑料:聚乙烯、聚丙烯等线性高聚物作为塑料,具有轻便、耐磨、防水等特点,广泛应用于包装、建筑、交通等领域。
2.橡胶:合成橡胶如聚异丁烯、聚氯乙烯等,具有优异的弹性和耐磨性,应用于轮胎、密封件等。
3.纤维:聚酯、聚酰胺等高聚物纤维具有良好的力学性能和化学稳定性,用于制作衣物、家纺等。
4.涂料:高聚物涂料如聚氨酯、丙烯酸等,具有优良的附着力、耐磨性和抗腐蚀性,应用于建筑、家具等领域。
总之,高聚物作为一类重要的化合物,其结构特点、合成方法和应用领域值得我们深入了解和探讨。
高聚物取向结构是指高分子材料中分子链的排列方式和空间结构。
在高聚物中,分子链可以以不同的方式排列和取向,这种排列方式和取向决定了高聚物的性质和应用范围。
在本文中,我将详细介绍高聚物取向结构及其对性能的影响。
高聚物的分子链可以分为线性、支化、交联和网状结构。
线性结构是指分子链呈直线状排列,没有支链或交联结构。
这种结构的高聚物通常具有较高的结晶度和熔点,因为分子链之间的相互作用较强。
线性高聚物还具有较高的拉伸强度和刚度,适用于制造高强度的纤维和薄膜材料。
支化结构是指分子链上存在支链的高聚物。
支链的引入可以增加分子链之间的空间隔离,减少分子链的交替堆积,从而降低高聚物的结晶度和熔点。
支化结构的高聚物通常具有较高的韧性、耐冲击性和耐裂纹扩展性,适用于制造塑料材料和弹性体。
交联结构是指高聚物分子链之间通过共价键连接形成三维网状结构的高聚物。
交联结构可以增加高聚物的强度、刚度和耐热性,使其具有较好的抗拉伸、抗压和抗变形能力。
交联高聚物广泛应用于制造橡胶制品、密封材料和复合材料等领域。
网状结构是指高聚物中存在大量交联点,形成复杂的网状结构。
网状结构的高聚物具有很高的弹性模量和耐磨性,因此在弹性体和涂料等领域得到广泛应用。
网状结构还可以增加高聚物的吸水性和渗透性,适用于制造水凝胶材料和过滤膜等。
除了以上几种基本取向结构外,高聚物还可以存在复杂的混合取向结构。
这种结构通常由不同类型的分子链组成,各自具有不同的取向方式和排列方式。
混合取向结构可以调节高聚物的性能,使其同时具有多种性质,例如强度、韧性、硬度和透明度等。
总之,高聚物的取向结构对其性质和应用具有重要影响。
不同的取向结构决定了高聚物的力学性能、热性能、透明度、吸水性等特性。
通过合理调控高聚物的取向结构,可以实现对高聚物性能的精确控制和优化,拓展高聚物在材料科学、化工工艺和生物医学等领域的应用潜力。
高聚物结构的主要特点高聚物是由大量相同或相似的单体通过化学键连接而成的大分子化合物。
其主要特点如下:1. 高分子量:高聚物通常具有较大的分子量,由于其由许多单体通过共价键连接形成,因此分子量较大。
高分子量不仅使高聚物具有较高的物理性质,如强度和硬度,还决定了高聚物的应用领域和性能。
2. 长链结构:高聚物具有长链结构,由于单体的连接,高聚物的分子链可以延伸到很长的距离。
这种长链结构使高聚物具有较高的柔韧性和可塑性,可以通过加热、拉伸等方式改变其形状和性质。
3. 分子间力:高聚物分子链之间通常存在各种分子间力,如范德华力、静电力和氢键等。
这些分子间力对高聚物的物理性质和化学性质都有重要影响。
例如,范德华力可以使高聚物分子紧密堆积,增加高聚物的密度和硬度;静电力可以使高聚物带有静电荷,影响高聚物的导电性和电磁性质。
4. 重复单元:高聚物由相同或相似的单体通过化学键连接而成,这些单体称为重复单元。
高聚物的结构和性质主要由重复单元的种类和排列方式决定。
不同的重复单元可以通过不同的化学键连接方式形成不同的高聚物结构,从而具有不同的性质和应用。
5. 无定形结构:高聚物通常具有无定形结构,即没有规则的晶体结构。
这是由于高聚物分子链的长度和连接方式的随机性,使得高聚物没有明确的晶体结构。
无定形结构使高聚物具有较高的玻璃化转变温度和热塑性,可以通过加热和冷却改变其形状和性质。
6. 多样性:高聚物具有较高的多样性,可以通过改变单体的种类、重复单元的排列方式和分子链的长度等方式来调控高聚物的结构和性质。
这种多样性使得高聚物具有广泛的应用领域,如塑料、橡胶、纤维等。
总的来说,高聚物结构的主要特点包括高分子量、长链结构、分子间力、重复单元、无定形结构和多样性。
这些特点决定了高聚物的物理性质、化学性质和应用领域,使其成为现代化学和材料科学的重要研究对象。
通过深入研究高聚物的结构和性质,可以开发出更多种类的高聚物材料,满足不同领域的需求,推动科学技术的发展和进步。
高聚物结构与性能的关系1.高聚物的结构根据研究单元的不同分类,聚合物的结构可分为两类:一类是聚合物的链结构,即分子内的结构,即研究分子链中原子或基团之间的几何排列;另一种是聚合物的分子聚集结构,即分子间结构,它研究每单位体积内许多分子链的几何排列。
对于高分子材料而言,链结构只是间接影响其性能,而分子聚集结构是直接影响其性能的因素。
1.1聚合物链结构高聚物的链结构包括近程结构和远程结构。
近程结构是指结构单元的化学组成、立体异构、连接顺序、以及支化、交联等;远程结构是指高分子链的构象、分子量等。
聚合物链结构是决定聚合物基本性能的主要因素。
由于不同的链结构,各种聚合物的性能完全不同。
例如,聚乙烯柔软易结晶,而聚苯乙烯坚硬易碎,不能结晶;等规聚丙烯在室温下为固态结晶,无规聚丙烯在室温下为粘性液体。
1.2高聚物的聚集态结构聚合物的分子聚集结构包括结晶态、非晶态、液晶态、取向态等;聚合物的分子聚集结构是在加工成型过程中形成的,是决定聚合物产品使用性能的主要因素。
即使具有相同链结构的同一聚合物具有不同的加工条件,其模制产品的使用性能也会非常不同。
例如,晶体取向度直接影响纤维和薄膜的机械性能;不同的晶体尺寸和形态会影响塑料制品的冲击强度、开裂性能和透明度。
因此对高聚物材料来说,链结构只是间接影响其性能,而分子聚集态结构才是直接影响其性能的因素。
研究高聚物分子聚集态结构的意义就在于了解高聚物分子聚集态结构的特征,形成条件及其与材料性能之间的关系,以便人为地控制加工成型条件得到具有预定结构和性能的材料,同时为高聚物材料的物理改性和材料设计建立科学基础。
2.高聚物结构与力学性能的关系2.1链结构与力学性能的关系不同的聚合物,具有不同的分子结构,必然会表现出不同的材料性质。
聚集乙烯、聚苯乙烯、聚甲基丙烯酸甲酯、聚对苯二甲酸乙二酯、聚碳酸酯、聚丙烯腈、环氧树脂和聚二甲基硅氧烷(硅橡胶)等等都是不同分子结构的高聚物,它们或是晶态高聚物,或是非晶态高聚物,或是橡胶,或是不溶不熔的热固性树脂,这些都是一般人都知道的常识。
高聚物的化学组成及分子结构高聚物是由许多重复单元通过共价键连接而成的大分子化合物。
它们的化学组成和分子结构对于高聚物的性质和用途起着至关重要的作用。
本文将探讨高聚物的化学组成和分子结构的一些基本概念和特点。
一、高聚物的化学组成高聚物的化学组成主要由单体决定。
单体是指能够通过共价键连接形成高聚物的小分子化合物。
单体可以是有机化合物,也可以是无机化合物。
有机高聚物的单体通常是含有碳元素的化合物,如乙烯、苯乙烯等。
而无机高聚物的单体可以是金属离子、硅酸盐等。
在高聚物的化学组成中,还有一个重要的概念是共聚物。
共聚物是由两种或更多种不同单体通过共价键连接而成的高聚物。
共聚物的化学组成可以使高聚物具有更加多样化的性质和应用。
二、高聚物的分子结构高聚物的分子结构是指高聚物分子中单体的排列方式和连接方式。
高聚物的分子结构对于高聚物的性质和应用起着决定性的影响。
高聚物的分子结构可以分为线性高聚物、支化高聚物和交联高聚物三种类型。
线性高聚物是指高聚物分子中单体以直链形式连接而成的结构。
线性高聚物的分子链较长,分子间的相互作用较弱,使得线性高聚物具有良好的可塑性和可拉伸性。
常见的线性高聚物有聚乙烯、聚丙烯等。
支化高聚物是指高聚物分子中单体以分支形式连接而成的结构。
支化高聚物的分子链中存在分支链,使得支化高聚物具有更多的端基和分子间的相互作用,从而增加了高聚物的力学强度和热稳定性。
常见的支化高聚物有聚乙烯醇、聚酯等。
交联高聚物是指高聚物分子中单体通过交联点连接而成的结构。
交联高聚物的分子链中存在交联点,使得交联高聚物具有更高的强度和刚性,同时也降低了高聚物的可塑性和可拉伸性。
常见的交联高聚物有聚氨酯、聚酰胺等。
除了线性、支化和交联结构之外,高聚物的分子结构还可以通过控制单体的比例和反应条件来调控。
例如,通过调节共聚物中不同单体的比例,可以获得具有不同性质的高聚物。
总结:高聚物的化学组成和分子结构对于高聚物的性质和应用起着至关重要的作用。
高聚物取向结构是指高分子材料中具有一定方向性和有序性的结构形态。
高聚物取向结构的形成与高分子链的排列方式、分子链的分布、晶体结构等因素密切相关。
一、高聚物取向结构的分类1. 晶体取向结构:高分子在晶体生长过程中,由于晶核的位置限制,使得分子链在特定方向上排列有序,形成晶体取向结构。
2. 向列取向结构:高分子链在拉伸过程中,由于外力作用,使得分子链沿着拉伸方向有序排列,形成向列取向结构。
3. 链轴向取向结构:高聚物在拉伸过程中,由于分子链的某些特殊部位(如侧基、支链等)方向性分布不均匀,导致分子链轴向有序排列,形成链轴向取向结构。
4. 布朗运动取向结构:高分子链由于热运动,在空间上呈无规则的扭曲状态,但由于链段间相互作用力的存在,使得分子链在局部区域上呈有序排列,形成布朗运动取向结构。
二、高聚物取向结构的特征1. 高聚物取向结构具有一定方向性和有序性,不同于无规则排列的高聚物链。
2. 高聚物取向结构具有较高的力学性能和稳定性,如拉伸强度、弹性模量、熔点等物理性质。
3. 高聚物取向结构影响着高聚物的加工性能和应用领域,如纤维素取向结构对纸张品质的影响。
三、高聚物取向结构的形成机理高聚物的取向结构形成与高分子链的排列方式、分子链的分布、晶体结构等因素密切相关。
以下是几种常见的高聚物取向结构的形成机理:1. 晶体取向结构:高分子在晶体生长过程中,由于晶核的位置限制,使得分子链在特定方向上排列有序,形成晶体取向结构。
2. 向列取向结构:高分子链在拉伸过程中,由于外力作用,使得分子链沿着拉伸方向有序排列,形成向列取向结构。
3. 链轴向取向结构:高聚物在拉伸过程中,由于分子链的某些特殊部位(如侧基、支链等)方向性分布不均匀,导致分子链轴向有序排列,形成链轴向取向结构。
4. 布朗运动取向结构:高分子链由于热运动,在空间上呈无规则的扭曲状态,但由于链段间相互作用力的存在,使得分子链在局部区域上呈有序排列,形成布朗运动取向结构。