2015-2016学年高中数学 第二章 推理与证明 2.1 综合法与分析法课件 新人教B版选修1-2
- 格式:ppt
- 大小:1018.50 KB
- 文档页数:24
2.2.1 综合法与分析法学习目标核心素养1.理解综合法、分析法的意义,掌握综合法、分析法的思维特点.(重点、易混点)2.会用综合法、分析法解决问题.(重点、难点)通过学习证明数学问题的两种重要方法,提升学生的逻辑推理素养.一、综合法1.直接证明(1)直接证明是从命题的条件或结论出发,根据已知的定义、公理、定理,直接推证结论的真实性.(2)常用的直接证明方法有综合法与分析法.2.综合法(1)定义:综合法是从原因推导到结果的思维方法,也就是从已知条件出发,经过逐步的推理,最后达到待证结论.(2)符号表示:P0(已知)⇒P1⇒P2⇒…⇒P n(结论).二、分析法1.定义:分析法是一种从结果追溯到产生这一结果的原因的思维方法.也就是从待证结论出发,一步一步寻求结论成立的充分条件,最后达到题设的已知条件或已被证明的事实.2.符号表示:B(结论)⇐B1⇐B2⇐…⇐B n⇐A(已知)1.判断(正确的打“√”,错误的打“×”)(1)综合法是执果索因的逆推证法.( )(2)分析法就是从结论推向已知.( )(3)综合法的推理过程实际上是寻找它的必要条件的过程.分析法的推理过程实际上是寻求结论成立的充分条件的过程.( )[答案](1)×(2)×(3)√2.已知a ,b ,c 为正实数,且a +b +c =1,求证:⎝ ⎛⎭⎪⎫1a-1⎝ ⎛⎭⎪⎫1b-1⎝ ⎛⎭⎪⎫1c-1≥8.证明过程如下:∵a ,b ,c 为正实数,且a +b +c =1,∴1a -1=b +c a >0,1b -1=a +c b >0,1c -1=a +b c>0,∴⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1=b +c a ·a +c b ·a +b c ≥2bc ·2ac ·2ab abc=8, 当且仅当a =b =c 时取等号,∴不等式成立. 这种证法是__________(填综合法、分析法).[解析] 本题从已知条件出发,不断地展开思考,去探索结论,这种证法是综合法. [答案] 综合法3.6-22与5-7的大小关系是________. [解析] 假设6-22>5-7,由分析法可得, 要证6-22>5-7,只需证6+7>5+22, 即证13+242>13+410,即42>210. 因为42>40,所以6-22>5-7成立. [答案] 6-22>5-7综合法的应用__________.(2)已知方程(x 2-mx +2)(x 2-nx +2)=0的四个根组成一个首项为12的等比数列,则|m -n |=__________.(3)下面的四个不等式:①a 2+b 2+3≥ab +3(a +b );②a (1-a )≤14;③b a +a b ≥2;④(a2+b 2)·(c 2+d 2)≥(ac +bd )2.其中恒成立的有__________.[解析] (1)∵cos A cos B >sin A sin B , ∴cos A cos B -sin A sin B >0,∴cos(A +B )>0,即cos(π-C )>0,∴cos C <0,又0<C <π,∴π2<C <π,所以△ABC 是钝角三角形.(2)设方程的四个根分别为x 1,x 2,x 3,x 4,则由题意可知,x 1=12,x 1x 4=x 2x 3=2,∴x 4=4.设公比为q ,则x 4=x 1q 3,∴4=12·q 3,∴q =2,∴x 2=1,x 3=2,由根与系数的关系可得,m =x 1+x 4=92,n =x 2+x 3=3,∴|m -n |=32.(3)①a 2+b 2+3=a 22+32+b 22+32+a 22+b 22≥2a 22×b 22+2a 22×32+2b 22×32=ab +3(a +b )(当且仅当a 2=b 2=3时,等号成立).②a (1-a )=-a 2+a =-⎝ ⎛⎭⎪⎫a -122+14≤14.③当a 与b 异号时,不成立.④∵a 2d 2+b 2c 2≥2abcd ,∴(ac +bd )2=a 2c 2+b 2d 2+2abcd ≤a 2c 2+a 2d 2+b 2c 2+b 2d 2=(a 2+b 2)(c 2+d 2),故不等式恒成立,所以①②④恒成立.[答案] (1)钝角三角形 (2)32(3)①②④1.综合法处理问题的三个步骤2.用综合法证明不等式时常用的结论(1)ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22(a ,b ∈R );(2)a +b ≥2ab (a ≥0,b ≥0).1.综合法是( ) A .执果索因的逆推证法 B .由因导果的顺推证法 C .因果分别互推的两头凑法 D .原命题的证明方法 [答案] B分析法的应用【例2】 设a ,b 为实数,求证:a 2+b 2≥22(a +b ). [思路探究] 待证不等式中含有根号,用平方法去根号是关键. [解] 当a +b ≤0时,∵a 2+b 2≥0, ∴a 2+b 2≥22(a +b )成立. 当a +b >0时,用分析法证明如下: 要证a 2+b 2≥22(a +b ), 只需证(a 2+b 2)2≥⎣⎢⎡⎦⎥⎤22(a +b )2,即证a 2+b 2≥12(a 2+b 2+2ab ),即证a 2+b 2≥2ab .∵a 2+b 2≥2ab 对一切实数恒成立, ∴a 2+b 2≥22(a +b )成立. 综上所述,不等式成立.1.当已知条件简单而证明的结论比较复杂时,一般采用分析法,在叙述过程中“要证”“只需证”“即要证”这些词语必不可少,否则会出现错误.2.逆向思考是用分析法证题的主题思想,通过反推,逐步寻找使结论成立的充分条件,正确把握转化方向,使问题顺利获解.2.已知a >0,1b -1a>1,求证:1+a >11-b. [证明] 由已知1b -1a>1及a >0可知0<b <1,要证1+a >11-b,只需证1+a ·1-b >1, 只需证1+a -b -ab >1, 只需证a -b -ab >0,即a -bab>1, 即1b -1a>1,这是已知条件,所以原不等式得证.综合法与分析法的综合应用1.综合法与分析法的推理过程是合情推理还是演绎推理?提示:综合法与分析法的推理过程是演绎推理,它们的每一步推理都是严密的逻辑推理,从而得到的每一个结论都是正确的,不同于合情推理中的“猜想”.2.综合法与分析法有什么区别?提示:综合法是从已知条件出发,逐步寻找的是必要条件,即由因导果;分析法是从待求结论出发,逐步寻找的是充分条件,即执果索因.【例3】 已知△ABC 的三个内角A ,B ,C 为等差数列,且a ,b ,c 分别为角A ,B ,C 的对边,求证:(a +b )-1+(b +c )-1=3(a +b +c )-1.[思路探究] 先求出角B ,然后利用余弦定理转化为边之间的关系解决. [解] 法一:(分析法)要证(a +b )-1+(b +c )-1=3(a +b +c )-1, 即证1a +b +1b +c =3a +b +c, 只需证a +b +c a +b +a +b +cb +c=3,化简,得ca +b +ab +c=1,即c (b +c )+(a +b )a =(a +b )(b +c ), 所以只需证c 2+a 2=b 2+ac .因为△ABC 的三个内角A ,B ,C 成等差数列, 所以B =60°,所以cos B =a 2+c 2-b 22ac =12,即a 2+c 2-b 2=ac 成立.∴(a +b )-1+(b +c )-1=3(a +b +c )-1成立. 法二:(综合法)因为△ABC 的三内角A ,B ,C 成等差数列, 所以B =60°. 由余弦定理,有b 2=c 2+a 2-2ac cos 60°. 所以c 2+a 2=ac +b 2, 两边加ab +bc ,得c (b +c )+a (a +b )=(a +b )(b +c ),两边同时除以(a +b )(b +c ),得ca +b +ab +c=1,所以⎝ ⎛⎭⎪⎫c a +b +1+⎝ ⎛⎭⎪⎫a b +c +1=3, 即1a +b +1b +c =3a +b +c, 所以(a +b )-1+(b +c )-1=3(a +b +c )-1.综合法由因导果,分析法执果索因,因此在实际解题时,常常把分析法和综合法结合起来使用,即先利用分析法寻找解题思路,再利用综合法有条理地表述解答过程.3.设x ≥1,y ≥1,证明:x +y +1xy ≤1x +1y+xy .[证明] 因为x ≥1,y ≥1,所以要证明x +y +1xy ≤1x +1y+xy ,只需证明xy (x +y )+1≤y +x +(xy )2. 将上式中的右式减左式,得 [y +x +(xy )2]-[xy (x +y )+1] =[(xy )2-1]-[xy (x +y )-(x +y )] =(xy +1)(xy -1)-(x +y )(xy -1) =(xy -1)(xy -x -y +1) =(xy -1)(x -1)(y -1). 因为x ≥1,y ≥1,所以(xy -1)(x -1)(y -1)≥0,从而可得不等式x +y +1xy ≤1x +1y+xy 成立.1.下面叙述正确的是( ) A .综合法、分析法是直接证明的方法 B .综合法是直接证法,分析法是间接证法 C .综合法、分析法所用语气都是肯定的 D .综合法、分析法所用语气都是假定的 [解析] 直接证明包括综合法和分析法. [答案] A2.欲证不等式3-5<6-8成立,只需证( ) A .(3-5)2<(6-8)2B .(3-6)2<(5-8)2C .(3+8)2<(6+5)2D .(3-5-6)2<(-8)2[解析] 要证3-5<6-8成立,只需证3+8<6+5成立,只需证(3+8)2<(6+5)2成立.[答案] C3.将下面用分析法证明a 2+b 22≥ab 的步骤补充完整:要证a 2+b 22≥ab ,只需证a 2+b 2≥2ab ,也就是证__________________,即证__________.由于__________显然成立,因此原不等式成立. [解析] 用分析法证明a 2+b 22≥ab 的步骤为:要证a 2+b 22≥ab 成立,只需证a 2+b 2≥2ab ,也就是证a 2+b 2-2ab ≥0,即证(a -b )2≥0.由于(a -b )2≥0显然成立,所以原不等式成立.[答案] a 2+b 2-2ab ≥0 (a -b )2≥0 (a -b )2≥04.设a >0,b >0,c >0,若a +b +c =1,则1a +1b +1c的最小值为________.[解析] 因为a +b +c =1,且a >0,b >0,c >0,所以1a +1b +1c =a +b +c a +a +b +c b +a +b +c c =3+b a +a b +c b +b c +a c +c a≥3+2b a ·ab+2c b ·b c +2c a ·ac=3+6=9. 当且仅当a =b =c 时等号成立. [答案] 95.已知a >0,b >0,求证:a b +ba≥a +b .(要求用两种方法证明) [证明] 法一:(综合法) 因为a >0,b >0,所以a b +b a -a -b =⎝ ⎛⎭⎪⎫a b -b +⎝ ⎛⎭⎪⎫b a -a =a -b b +b -a a=(a -b )⎝ ⎛⎭⎪⎫1b -1a =(a -b )2(a +b )ab ≥0,所以a b +b a≥a +b . 法二:(分析法) 要证a b +ba≥a +b ,只需证a a +b b ≥a b +b a ,即证(a -b )(a -b )≥0,因为a >0,b >0,所以a -b 与a -b 符号相同,不等式(a -b )(a -b )≥0成立,所以原不等式成立.。
高中数学 第二章 推理与证明 综合法与分析法课堂探究 新人教B版选修2-2探究一 综合法的应用1.用综合法证明问题的一般步骤:(1)分析条件,选择方向.仔细分析题目的已知条件(包括隐含条件),分析已知与结论之间的联系与区别,选择相关的公理、定理、公式、结论,确定恰当的解题方法.(2)转化条件,组织过程.把题目的已知条件,转化成解题所需要的语言,主要是文字、符号、图形三种语言之间的转化.组织过程时要有严密的逻辑,简洁的语言,清晰的思路.(3)适当调整,回顾反思.解题后回顾解题过程,可对部分步骤进行调整,并对一些语言进行适当的修饰,反思总结解题方法的选取.2.用综合法证明不等式时,要注意不等式性质,均值不等式等的应用,证明三角恒等式时要注意三角函数公式、正弦定理、余弦定理等的应用.【典型例题1】 已知a ,b ,c ∈(0,+∞)且a +b +c =3,求证:a 2+b 2+c 2≥3.思路分析:从已知和欲证的两个式子间的关系入手可考虑先将已知式两边平方,然后再运用均值不等式证明.证明:因为a +b +c =3,所以(a +b +c )2=9,即a 2+b 2+c 2+2(ab +bc +ca )=9.又因为a ,b ,c ∈(0,+∞),所以a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca ,于是2(ab +bc +ca )≤2(a 2+b 2+c 2),所以a 2+b 2+c 2+2(a 2+b 2+c 2)≥a 2+b 2+c 2+2(ab +bc +ca )=9,故a 2+b 2+c 2≥3. 【典型例题2】 在△ABC 中,A ,B ,C 对应的边为a ,b ,c ,证明:a 2-b 2c 2=sin A -B sin C. 思路分析:考虑到要证明的等式中含有边和角,可用正弦和余弦定理进行转化,再结合相关的三角公式证明.证明:由余弦定理知a 2=b 2+c 2-2bc cos A ,所以a 2-b 2=c 2-2bc cos A , 所以左边=a 2-b 2c 2=c 2-2bc cos A c 2=1-2b cos A c. 又由正弦定理知b c =sin B sin C,所以左边=1-2·sin B sin Ccos A =sin C -2sin B cos A sin C =sin A +B -2sin B cos A sin C =sin A cos B +cos A sin B -2sin B cos A sin C =sin A cos B -cos A sin B sin C =sin A -B sin C=右边, 故原等式成立.探究二 分析法的应用1.从要证明的结论出发,探求使结论成立的充分条件,最后找到恰恰都是已证的命题(定义、公理、定理、法则、公式等)或要证命题的已知条件时,命题得证.这正是分析法证明问题的一般思路.2.一般地,含有根号、绝对值的等式或不等式,若从正面不易推导时,可以考虑用分析法.3.用分析法证明数学命题时,一定要恰当地用好反推符号“⇐”或“要证明”“只需证明”“即证明”等词语.【典型例题3】 已知函数f (x )=x 2+3,若a >b >0,求证:f a +f b2>f ⎝ ⎛⎭⎪⎫a +b 2. 思路分析:由于已知条件和欲证结论之间的关系不明确,考虑用分析法证明.证明:要证明f a +f b2>f ⎝ ⎛⎭⎪⎫a +b 2, 即证12[(a 2+3)+(b 2+3)]>⎝ ⎛⎭⎪⎫a +b 22+3, 只需证a 2+b 2+6>a +b 22+6, 只需证a 2+b 2>a +b 22, 因此只需证2a 2+2b 2>a 2+2ab +b 2,即证a 2+b 2>2ab ,只需证(a -b )2>0,由于a >b >0,所以(a -b )2>0显然成立,故原不等式成立.【典型例题4】 已知α,β≠k π+π2(k ∈Z ),且4sin 2α-2sin 2β=1.求证:1-tan 2α1+tan 2α=1-tan 2β21+tan 2β. 思路分析:由于要证的等式较为复杂,而已知条件信息较少,所以可从要证的等式出发,利用分析法证明. 证明:要证1-tan 2α1+tan 2α=1-tan 2β21+tan 2β, 只需证1-sin 2αcos 2α1+sin 2αcos 2α=1-sin 2βcos 2β2⎝ ⎛⎭⎪⎫1+sin 2βcos 2β, 只需证cos 2α-sin 2αcos 2α+sin 2α=12·cos 2β-sin 2βcos 2β+sin 2β, 只需证cos 2α-sin 2α=12(cos 2β-sin 2β), 只需证1-2sin 2α=12(1-2sin 2β), 即证4sin 2α-2sin 2β=1.由于已知4sin 2α-2sin 2β=1成立,所以原等式成立.探究三 综合法与分析法的综合应用1.有些数学问题的证明,需要把综合法和分析法结合起来使用:根据条件的结构特点去转化结论,得到中间结论Q ;根据结论的结构特点去转化条件,得到中间结论P .若由P 可以推出Q 成立,就可以证明结论成立,这种边分析边综合的证明方法,称为分析综合法,或称“两头凑法”.2.在证明过程中,分析法能够发现证明的思路,综合法表述证明过程则显得简洁,因此在实际解题时,常常把分析法和综合法结合起来运用,先利用分析法寻求解题思路,再利用综合法有条理地表述解答过程.【典型例题5】 在某两个正数x ,y 之间插入一个数a ,使x ,a ,y 成等差数列,插入两数b ,c ,使x ,b ,c ,y 成等比数列,求证:(a +1)2≥(b +1)(c +1).思路分析:前半部分从已知出发采用综合法得到a ,b ,c 之间的关系式,后半部分用分析法反推,然后再与该关系式结合,找到使结论成立的充分条件即可.证明:由已知得⎩⎪⎨⎪⎧ 2a =x +y ,b 2=cx ,c 2=by ,∴x =b 2c ,y =c 2b, 即x +y =b 2c +c 2b ,从而2a =b 2c +c 2b. 要证(a +1)2≥(b +1)(c +1),只需证a +1≥b +1c +1,即证a +1≥b +1+c +12,也就是证2a ≥b +c .因为2a =b 2c +c 2b, 则只需证b 2c +c 2b≥b +c 成立即可, 即b 3+c 3=(b +c )(b 2-bc +c 2)≥(b +c )·bc ,即证b 2+c 2-bc ≥bc ,即证(b -c )2≥0成立.上式显然成立,∴(a +1)2≥(b +1)(c +1).点评 本题前半部分先用综合法得到一个由已知条件推出的结论,然后再用分析法证明最终结论,其中用到了前面推出的结论,这种处理方法在推理证明中也是常用的.。
2.2.1 综合法和分析法第1课时 综合法A 级 基础巩固一、选择题1.设0<x <1,则a =2x ,b =1+x ,c =11-x 中最大的一个是( ) A .aB .bC .cD .不能确定解析:∵0<x <1,∴b =1+x >2x >2x =a .又11-x -(1+x )=x 21-x >0,知11-x>1+x ∴c >b >a ,最大的数为c .答案:C2.已知函数f (x )=lg 1-x 1+x,若f (a )=b ,则f (-a )等于( ) A .bB .-b C.1b D .-1b解析:f (x )定义域为(-1,1),f (-a )=lg 1+a 1-a =lg ⎝ ⎛⎭⎪⎫1-a 1+a -1=-lg 1-a 1+a =-f (a )=-b . 答案:B3.命题“如果数列{a n }的前n 项和S n =2n 2-3n ,那么数列{a n }一定是等差数列”是否成立( )A .不成立B .成立C .不能断定D .与n 取值有关 解析:当n ≥2时,a n =S n -S n -1=4n -5又a 1=S 1=2×12-3×1=-1适合上式.∴a n =4n -5(n ∈N *),则a n -a n -1=4(常数)故数列{a n }是等差数列.答案:B4.(2014·四川卷)若a >b >0,c <d <0,则一定有( )A.a d >b cB.a d <b cC.a c >b dD.a c <b d解析:法一:令a =3,b =2,c =-3,d =-2,则a c =-1,b d=-1,排除选项C ,D ; 又a d =-32,b c =-23,所以a d <b c,所以选项A 错误,选项B 正确. 法二:因为c <d <0,所以-c >-d >0,所以1-d >1-c>0. 又a >b >0,所以a -d >b -c ,所以ad <b c. 答案:B5.在△ABC 中,已知sin A cos A =sin B cos B ,则该三角形是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形 解析:由sin A cos A =sin B cos B 得sin 2A =sin 2B ,所以2A =2B 或2A =π-2B ,即A =B 或A +B =π2.所以该三角形是等腰或直角三角形. 答案:D二、填空题6.命题“函数f (x )=x -x ln x 在区间(0,1)上是增函数”的证明过程“对函数f (x )=x -x ln x 求导,得f ′(x )=-ln x ,当x ∈(0,1)时,f ′(x )=-ln x >0,故函数f (x )在区间(0,1)上是增函数”,应用了________的证明方法.解析:本命题的证明,利用题设条件和导数与函数单调性的关系,经推理论证得到了结论,所以应用的是综合法的证明方法.答案:综合法7.角A ,B 为△ABC 内角,A >B 是sin A >sin B 的________条件(填“充分”“必要”“充要”或“即不充分又不必要”).解析:在△ABC 中,A >B ⇔a >b由正弦定理a sin A =b sin B,从而sin A >sin B . 因此A >B ⇔a >b ⇔sin A >sin B ,为充要条件.答案:充要8.设a >0,b >0,若3是3a 与3b 的等比中项,则1a +1b的最小值为________.解析:3是3a 与3b 的等比中项⇒3a ·3b =3⇒3a +b =3⇒a +b =1,因为a >0,b >0,所以ab ≤a +b 2=12⇒ab ≤14, 所以1a +1b =a +b ab =1ab ≥114=4. 答案:4三、解答题9.已知a >0,b >0,求证:a (b 2+c 2)+b (c 2+a 2)≥4abc .证明:因为b 2+c 2≥2bc ,a >0所以(b 2+c 2)a ≥2abc又因为b >0,c 2+a 2≥2ac所以b (c 2+a 2)≥2abc .因此a (b 2+c 2)+bc (c 2+a 2)≥4abc .10.设函数f (x )=ax 2+bx +c (a ≠0),若函数y =f (x +1)与y =f (x )的图象关于y 轴对称,求证:函数y =f ⎝ ⎛⎭⎪⎫x +12为偶函数. 证明:∵函数y =f (x )与y =f (x +1)的图象关于y 轴对称.∴f (x +1)=f (-x )则y =f (x )的图象关于x =12对称 ∴-b 2a =12,∴a =-b . 则f (x )=ax 2-ax +c =a ⎝ ⎛⎭⎪⎫x -122+c -a 4 ∴f ⎝ ⎛⎭⎪⎫x +12=ax 2+c -a 4为偶函数. B 级 能力提升1.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,若x 1+x 2>0,则f (x 1)+f (x 2)的值( )A .恒为负值B .恒等于零C .恒为正值D .无法确定正负解析:由f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,可知f (x )是R 上的单调递减函数,由x 1+x 2>0,可知x 1>-x 2,f (x 1)<f (-x 2)=-f (x 2),则f (x 1)+f (x 2)<0.答案:A2.已知sin x =55,x ∈⎝ ⎛⎭⎪⎫π2,3π2,则tan ⎝ ⎛⎭⎪⎫x -π4=________. 解析:∵sin x =55,x ∈⎝ ⎛⎭⎪⎫π2,3π2,∴cos x =-45, ∴tan x =-12,∴tan ⎝⎛⎭⎪⎫x -π4=tan x -11+tan x =-3. 答案:-33.如图,在四棱锥P ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,PA =AB =BC ,点E 是PC 的中点.(1)证明:CD ⊥AE .(2)证明:PD ⊥平面ABE .证明:(1)在四棱锥P ABCD 中,因为PA ⊥底面ABCD ,CD ⊂平面ABCD ,所以PA ⊥CD .因为AC ⊥CD ,PA ∩AC =A ,所以CD ⊥平面PAC .又因为AE ⊂平面PAC ,所以CD ⊥AE .(2)由PA =AB =BC ,∠ABC =60°,可得AC =PA .因为点E 是PC 的中点,所以AE ⊥PC .由(1)知,AE ⊥CD ,又PC ∩CD =C ,所以AE ⊥平面PCD .又因为PD ⊂平面PCD ,所以AE ⊥PD .因为PA ⊥底面ABCD ,所以平面PAD ⊥平面ABCD .又AB ⊥AD ,平面PAD ∩平面ABCD =AD ,所以AB ⊥PD .又因为AB ∩AE =A ,所以PD ⊥平面ABE .。
2.2.1 综合法与分析法明目标、知重点 1.了解直接证明的两种基本方法——综合法和分析法.2.理解综合法和分析法的思考过程、特点,会用综合法和分析法证明数学问题.1.综合法从已知条件出发,经过逐步的推理,最后达到待证结论.2.分析法从待证结论出发,一步一步寻求结论成立的充分条件,最后达到题设的已知条件或已被证明的事实.[情境导学]证明对我们来说并不陌生,我们在之前学习的合情推理,所得的结论的正确性就是要证明的,并且我们在以前的学习中,积累了较多的证明数学问题的经验,但这些经验是零散的、不系统的,这一节我们将通过熟悉的数学实例,对证明数学问题的方法形成较完整的认识.探究点一综合法思考1 请同学们证明下面的问题,总结证明方法有什么特点?已知a,b>0,求证:a(b2+c2)+b(c2+a2)≥4abc.证明因为b2+c2≥2bc,a>0,所以a(b2+c2)≥2abc.又因为c2+a2≥2ac,b>0,所以b(c2+a2)≥2abc.因此a(b2+c2)+b(c2+a2)≥4abc.总结:此证明过程运用了综合法.一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立.思考2 综合法又叫由因导果法,其推理过程是合情推理还是演绎推理?答因为综合法的每一步推理都是严密的逻辑推理,因此所得到的每一个结论都是正确的,不同于合情推理中的“猜想”,所以综合法是演绎推理.例1 在△ABC中,三个内角A,B,C的对边分别为a,b,c,且A,B,C成等差数列,a,b,c成等比数列,求证:△ABC为等边三角形.证明由A,B,C成等差数列,有2B=A+C,①由于A,B,C为△ABC的三个内角,所以A+B+C=π.②由①②,得B =π3,③ 由a ,b ,c 成等比数列,有b 2=ac ,④由余弦定理及③,可得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac ,再由④,得a 2+c 2-ac =ac ,即(a -c )2=0,从而a =c ,所以A =C .⑤由②③⑤,得A =B =C =π3, 所以△ABC 为等边三角形.反思与感悟 综合法的证明步骤如下:(1)分析条件,选择方向:确定已知条件和结论间的联系,合理选择相关定义、定理等;(2)转化条件,组织过程:将条件合理转化,书写出严密的证明过程.跟踪训练1 在△ABC 中,AC AB =cos B cos C,证明:B =C . 证明 在△ABC 中,由正弦定理及已知得sin B sin C =cos B cos C. 于是sin B cos C -cos B sin C =0,即sin(B -C )=0,因为-π<B -C <π,从而B -C =0,所以B =C .探究点二 分析法思考1 回顾一下:基本不等式a +b 2≥ab (a >0,b >0)是怎样证明的? 答 要证a +b 2≥ab ,只需证a +b ≥2ab ,只需证a +b -2ab ≥0,只需证(a -b )2≥0,因为(a -b )2≥0显然成立,所以原不等式成立.思考2 证明过程有何特点?答 从结论出发开始证明,寻找使证明结论成立的充分条件,最终把要证明的结论变成一个明显成立的条件.小结 一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理)为止,这种证明方法叫做分析法.思考3 综合法和分析法的区别是什么?答 综合法是从已知条件出发,逐步推向未知,每步寻找的是必要条件;分析法是从待求结论出发,逐步靠拢已知,每步寻找的是充分条件.例2 求证:a -a -1<a -2-a -3(a ≥3).证明 方法一 要证a -a -1<a -2-a -3, 只需证a +a -3<a -2+a -1,只需证(a +a -3)2<(a -2+a -1)2,只需证2a -3+2a 2-3a <2a -3+2a 2-3a +2, 只需证a 2-3a <a 2-3a +2,只需证0<2,而0<2显然成立, 所以a -a -1<a -2-a -3(a ≥3).方法二 ∵a +a -1>a -2+a -3>0, ∴1a +a -1<1a -2+a -3, ∴a -a -1<a -2-a -3.反思与感悟 当已知条件和结论联系不够明显、直接,证明中需要用哪些知识不太明确具体时,往往采用从结论出发,结合已知条件,用结论反推的方法.跟踪训练2 求证:3+7<2 5. 证明 因为3+7和25都是正数, 所以要证3+7<25,只需证(3+7)2<(25)2,展开得10+221<20,只需证21<5,只需证21<25,因为21<25成立,所以3+7<25成立.探究点三 综合法和分析法的综合应用思考 在实际证题中,怎样选用综合法或分析法?答 对思路清楚,方向明确的题目,可直接使用综合法;对于复杂的题目,常把分析法和综合法结合起来,先用分析法去转化结论,得到中间结论Q ;再根据结构的特点去转化条件,得到中间结论P .若P ⇒Q ,则结论得证.例3 已知α,β≠k π+π2(k ∈Z ),且 sin θ+cos θ=2sin α, ①sin θcos θ=sin 2β. ②求证:1-tan 2α1+tan 2α=1-tan 2β+tan 2β.证明 因为(sin θ+cos θ)2-2sin θcos θ=1,所以将①②代入,可得4sin 2α-2sin 2β=1. ③另一方面,要证1-tan 2α1+tan 2α=1-tan 2β+tan 2β, 即证1-sin 2αcos 2α1+sin 2αcos 2α=1-sin 2βcos 2β21+sin 2βcos 2β,即证cos 2α-sin 2α=12(cos 2β-sin 2β), 即证1-2sin 2α=12(1-2sin 2β), 即证4sin 2α-2sin 2β=1.由于上式与③相同,于是问题得证.反思与感悟 用P 表示已知条件、定义、定理、公理等,用Q 表示要证明的结论,则综合法和分析法的综合应用可用框图表示为: P ⇒P 1→P 1⇒P 2→…→P n ⇒P ′,⇓ ,Q ′⇒Q m ←…←Q 2⇒Q 1←Q 1⇒Q跟踪训练3 若tan(α+β)=2tan α,求证:3sin β=sin(2α+β). 证明 由tan(α+β)=2tan α,得α+βα+β=2sin αcos α, 即sin(α+β)cos α=2cos(α+β)sin α.①要证3sin β=sin(2α+β),即证3sin[(α+β)-α]=sin[(α+β)+α],即证3[sin(α+β)cos α-cos(α+β)sin α]=sin(α+β)cos α+cos(α+β)sin α,化简得sin(α+β)cos α=2cos(α+β)sin α.这就是①式.所以,命题成立.1.已知y >x >0,且x +y =1,那么( )A .x <x +y 2<y <2xy B .2xy <x <x +y 2<y C .x <x +y 2<2xy <y D .x <2xy <x +y2<y答案 D解析 ∵y >x >0,且x +y =1,∴设y =34,x =14,则x +y 2=12,2xy =38,∴x <2xy <x +y 2<y ,故选D.2.欲证2-3<6-7成立,只需证( )A .(2-3)2<(6-7)2B .(2-6)2<(3-7)2C .(2+7)2<(3+6)2D .(2-3-6)2<(-7)2答案 C解析 根据不等式性质,a >b >0时,才有a 2>b 2, 即证:2+7<6+3,只需证:(2+7)2<(3+6)2.3.要证明3+7<25,可选择的方法有很多,最合理的应为________. 答案 分析法4.已知1-tan α2+tan α=1,求证:cos α-sin α=3(cos α+sin α).证明 要证cos α-sin α=3(cos α+sin α),只需证cos α-sin αcos α+sin α=3,只需证1-tan α1+tan α=3,只需证1-tan α=3(1+tan α),只需证tan α=-12,∵1-tan α2+tan α=1,∴1-tan α=2+tan α,即2tan α=-1.∴tan α=-12显然成立,∴结论得证.[呈重点、现规律]1.综合法证题是从条件出发,由因导果;分析法是从结论出发,执果索因.2.分析法证题时,一定要恰当地运用“要证”、“只需证”、“即证”等词语.3.在解题时,往往把综合法和分析法结合起来使用.。