输电线路防雷技术及措施标准版本
- 格式:docx
- 大小:10.28 KB
- 文档页数:9
输电线路防雷措施在输电线路遭受雷击时,雷电会对输电线路造成过电压冲击,破坏输电线路的绝缘层使其出现闪络或产生涉漏电弧的现象,严重时可能会导致输电线路发生相间短路或者对地短路的故障,进而导致事故跳闸,如果不能在受到雷击的输电线路进行有效的处理措施,则会导致电力系统的供电中断,影响人们的日常生产和生活。
输电线路的防雷措施有:(1)避雷线(架空地线):沿全线装设避雷线是目前为止110KV及其以上架空线最重要和最有效的防雷措施。
35KV及以下一般不全线架设避雷器,因为其绝缘水平较低,即使增加绝缘水平仍很难防止直击雷,可以靠增加绝缘水平使线路在短时间故障情况运行,主要靠消弧线圈和自动重合闸装置。
(2)降低杆塔接地电阻:这是提高线路耐雷水平和减少反击概率的主要措施,措施有采用多根放射状水平接地体、降阻模块等。
反击是当雷电击到避雷针时,雷电流经过接地装置通入大地。
若接地装置的接地电阻过大,它通过雷电流时电位将升的很高,作用在线路或设备的绝缘体,可使绝缘发生击穿。
接地导体由于地电位升高可以反过来向带电导体放电的这种现象叫“雷电反击”。
(3)加强线路的绝缘:如增加绝缘子的片数、改用大爬距悬式绝缘子、增大塔头空气距离。
在实施上有很大的难度,一般为提高线路的耐雷水平,均优先采用降低杆塔接地电阻的方法。
(4)耦合地线:在导线的下方加装一条耦合地线,具有一定的分流作用和增大导地线之间的耦合系数,可提高线路的耐雷水平和降低雷击跳闸率。
(5)消弧线圈:能使雷电过电压所引起的单相对地冲击闪络不转变为稳定的工频电弧,即大大减少建弧率和断路器的跳闸次数。
(6)避雷器:不作密集安装,仅用作线路上雷电过电压特别大或绝缘薄弱的防雷保护。
能免除线路的冲击闪络,使建弧率降为零。
(7)不平和绝缘:为了避免线路落雷时双回路同事闪络跳闸而造成的完全停电的严重局面,当采用通常的防雷措施都不能满足要求时,在雷击线路时绝缘水平较低的线路首先跳闸,保护了其他线路。
( 安全技术 )单位:_________________________姓名:_________________________日期:_________________________精品文档 / Word文档 / 文字可改架空输电线路的防雷(标准版)Technical safety means that the pursuit of technology should also include ensuring that peoplemake mistakes架空输电线路的防雷(标准版)1架设避雷线架设避雷线是输电线路防雷保护的最基本和最有效的措施。
避雷线的主要作用是防止雷直击导线,同时还具有以下作用:①分流作用,以减小流经杆塔的雷电流,从而降低塔顶电位;②通过对导线的耦合作用可以减小线路绝缘子的电压;③对导线的屏蔽作用还可以降低导线上的感应过电压。
通常来说,线路电压愈高,采用避雷线的效果愈好,而且避雷线在线路造价中所占的比重也愈低。
因此规程规定,220kV及以上电压等级的输电线路应全线架设避雷线,110kV线路一般也应全线架设避雷线。
同时,为了提高避雷线对导线的屏蔽效果,减小绕击率。
避雷线对边导线的保护角应做得小一些,一般采用20°~30°。
220kV及330kV双避雷线线路应做到20°左右,500kV及以上的超高压、特高压线路都架设双避雷线,保护角在15°及以下。
为了起到保护作用,避雷线应在每基杆塔处接地。
在双避雷线的超高压输电线路上,正常的工作电流将在每个档距中两根避雷线所组成的闭合回路里感应出电流并引起功率损耗。
为了减小这一损耗,同时为了把避雷线兼作通讯及继电保护的通道,可将避雷线经过一个小间隙对地(杆塔)绝缘起来。
雷击时,间隙被击穿,使避雷线接地。
2降低杆塔接地电阻降低杆塔接地电阻可以减小雷击杆塔时的电位升高,这是配合架设避雷线所采取的一项有效措施。
输电线路防雷措施咱先来说说输电线路为啥要防雷吧。
我记得有一次,我去乡下走亲戚,那地方电力设施不算太先进。
有一天傍晚,狂风大作,电闪雷鸣的,那雷打得跟放炮似的。
结果第二天就听说附近的输电线路被雷给击中出故障了,周边好多村子都停电,给大家的生活带来了老大的不便。
这让我深深感受到,做好输电线路的防雷工作那是相当重要啊!要做好输电线路的防雷,第一步得合理安装避雷线。
这避雷线就像是输电线路的“防护服”,能把大部分直击雷给引开,保护线路不受直击雷的伤害。
安装的时候,位置、角度啥的都得讲究。
比如说,在山区这种地形复杂的地方,避雷线就得安装得更密一些,这样才能更好地发挥作用。
接着就是降低杆塔的接地电阻。
这就好比给电流修一条顺畅的“回家路”,电阻小了,雷电流就能更快地导入大地,减少对线路的损害。
我还听说过一个事儿,有个地方的杆塔接地电阻一直不达标,每次打雷都提心吊胆的。
后来技术人员费了好大劲,重新改造接地装置,把电阻降下来了,打雷的时候再也不用担心线路出问题了。
然后呢,加强线路绝缘也是个重要措施。
就像给线路穿上一层厚厚的“绝缘铠甲”,让雷电不容易击穿。
特别是在雷电活动频繁的地区,使用高质量的绝缘子,增加绝缘子的片数,都能提高线路的绝缘水平。
还有一个办法就是安装避雷器。
避雷器就像是线路的“小保镖”,一旦有雷电过电压,它能迅速动作,把电压限制在安全范围内。
有个小区的输电线路,之前老是被雷打坏,后来装上了避雷器,情况就好多了。
再说说架设耦合地线吧。
这耦合地线能增强避雷线和导线之间的耦合作用,提高线路的耐雷水平。
在一些容易遭受雷击的地段,加上这耦合地线,效果那是杠杠的。
另外,咱们还得做好线路的巡视和维护工作。
就像人要定期体检一样,线路也得经常检查。
看看有没有绝缘子损坏啊,接地装置有没有松动啊等等。
有一回,我在路上看到电力工人顶着大太阳在检查输电线路,那认真劲儿,真让人佩服。
总之啊,输电线路的防雷可不是一件简单的事儿,得从多个方面入手,把各项措施都落实到位。
线路防雷四原则和具体措施
线路防雷的四原则如下:
1. 保护导线不受或少受雷直击。
2. 雷击塔顶或避雷线时不使或少使绝缘发生闪络。
3. 当绝缘发生冲击闪络时,尽量减小由冲击闪络转变为稳定电力电弧的概率,从而减少雷击跳闸率次数。
4. 即使跳闸也不中断电力的供应。
具体措施如下:
1. 合理选择输电线路路径,避开易遭受雷击的地段,如雷暴走廊、潮湿盆地、土壤电阻率突变地带等。
2. 降低杆塔接地电阻、提高耦合系数、减小分流系数、加强高压输电线路绝缘等,以提高高压输电线路的耐雷水平。
3. 根据地区的地貌、地形、地质以及土壤状况与接地电阻的合理水平,找出可能存在薄弱环节或缺陷,因地制宜地采取措施。
请注意,上述措施并不能保证线路完全不受雷击,雷电活动具有复杂性和随机性,因此应综合考虑各种因素,采取多种措施,以最大程度地减少雷击对线路的危害。
解决方案编号:YTO-FS-PD892输电线路的防雷技术措施通用版The Problems, Defects, Requirements, Etc. That Have Been Reflected Or Can Be Expected, And A Solution Proposed T o Solve The Overall Problem Can Ensure The Rapid And Effective Implementation.标准/ 权威/ 规范/ 实用Authoritative And Practical Standards输电线路的防雷技术措施通用版使用提示:本解决方案文件可用于已经体现出的,或者可以预期的问题、不足、缺陷、需求等等,所提出的一个解决整体问题的方案(建议书、计划表),同时能够确保加以快速有效的执行。
文件下载后可定制修改,请根据实际需要进行调整和使用。
随着经济的发展,对输电线路供电可靠性的要求越来越高。
同时伴随着电网的发展,雷击输电线路引起的跳闸、停电事故绝对值也日益增多。
据电网故障分类统计表明,在我国跳闸率较高的地区,高压线路运行的总跳闸次数中,由于雷击原因的事故次数约占(50~70)%。
尤其是在多雷、土壤电阻率高、地形复杂的山区,雷击输电线路引起的事故率更高,带来巨大的损失。
要保障线路安全运行;应对雷害原因进行有效的分析,确定雷击性质,并采取相应有效的防雷措施。
1雷害原因分析输电线路雷击闪电是由雷云放电造成的过电压通过线路杆塔建立放电通道,导致线路绝缘击穿,这种过电压也称为大气过电压,可分为直击雷过电压和感应雷过电压。
雷击主要是通过建立一个放电泄流通道,从而使大地感应电荷中和雷云中的异种电荷,因此雷击和接地装置的完好性有直接的关系。
输电线路感应雷过电压最大可达到400kV左右,它对35KV及以下线路绝缘威胁很大,但对于110kV及以上线路绝缘威胁很小,110kV及以上输电线路雷击故障多由直击雷引起,并且同接地装置的完好性有直接的关系。
输电线路的防雷措施
1.架设避雷线使雷直接击在避雷线上,保护输电导线不受雷击。
减少流入杆塔的雷电流,对输电导线有耦合作用,抑制感应过电压。
2.增加绝缘子串的片数加强绝缘。
3.减低杆塔的接地电阻可快速将雷电流引泄入地。
4.装设管型避雷器或放电间隙以限制雷击形成过电压。
5.装设自动重合闸预防雷击造成的外绝缘闪络使断路器跳闸后的停电现象。
6.采用消弧圈接地方式。
7.架设耦合地线增加对雷电流的分流。
8.不同电压等级输电线路,避雷线的设置:
(1)500KV及以上送电线路,应全线装设双避雷线,且输电线路愈高,保护角愈小(有时小于20°)。
在山区高雷区,甚至可以采用负保护角。
(2)220~330KV线路,一般同样应全线装设双避雷线,一般杆塔上避雷线对导线的保护角为20~30°。
(3)110KV线路一般沿全线装设避雷线,在雷电特别强烈地区采用双避雷线。
在少雷区或运行经验证明雷电活动轻微的地区,可不沿线架设避雷线,但杆塔仍应随基础接地。
输电线路的防雷保护措施与方法摘要:在经济的快速发展以及科技水平不断提高的促进下,我国的电网事业也得到了很大的发展,而且在国家经济发展中电网行业占据着重要的位置,但是在实际的行业发展中,由于其暴露在野外,长期受到外界恶劣环境的影响,随时可能导致线路故障,影响安全供电,严重时将会导致大面积停电事故。
本文主要分析了输电线路的防雷保护措施与方法。
关键词:输电线路;防雷保护;措施;方法引言近些年我国输电线路的建设发展势头迅猛,其防雷工作的开展情况越来越受到社会的关注。
雷电是自然界中最常见的现象之一,它对于输电线路的影响是非常明显的,就会导致线路发生跳闸停电等事故,严重影响输电线路的安全性与可靠性。
因此,探究输电线路防雷水平的提高对策具有极强的现实意义一、雷电的危害1、电效应雷电流高压效应会产生高达数十万至数百万伏的冲击电压,可击毁电气设备的绝缘、烧断电线或劈裂电杆,造成大规模停电。
绝缘设备损坏还可能引起短路,导致火灾或爆炸事故。
巨大的雷电流流经防雷装置使电位升高,这样的高电位同样可以作用在电气线路、电气设备或其他金属管道上,在它们之间产生放电。
2、热效应雷电流高热效应会放出几十至上千安的强大电流,巨大的雷电流通过导体,在极短的时间内转换成大量的热能,在雷击点的热量会很高,雷击点的发热量为500-2000焦耳,可造成易爆物品燃烧或金属熔化、飞溅而引起火灾爆炸事故。
3、机械效应雷电流机械效应主要表现为被雷击的物体发生爆炸、扭曲、崩溃、撕裂等现象而导致财产损失和人员伤亡。
当被击物遭受巨大的雷电流通过时,由于雷电流作用产生的温度很高,一般在6000-20000℃,甚至高达数万摄氏度,被击物缝隙中的气体剧烈膨胀,缝隙中的水分也急剧蒸发为大量气体,因而在被击物体内部产生强大的机械压力,致使被击物体遭受严重破坏或发生爆炸。
二、输电线路的防雷保护措施与方法1、加强线路绝缘提高线路耐雷水平线路绝缘性能的优劣将直接影响到线路的耐雷水平,所以在雷击灾害的高发区,应该提升绝缘子的性能。
文件编号:RHD-QB-K7419
输电线路防雷技术及措
施标准版本
(解决方案范本系列)
编辑:XXXXXX
查核:XXXXXX
输电线路防雷技术及措施标准版本操作指导:该解决方案文件为日常单位或公司为保证的工作、生产能够安全稳走地有效运转而制走的,并由相关人员在办理业务或操作时进行更好的判断与管理。
,冥中条款可根据自己现实基5岀上
调整,请仔细浏览后进行编辑与保存。
随着国民经济的发展与电力需求的不断增长,电力生产的安全运行问题也越来越突出。
对于输电线路来讲,雷击跳闸一直是影响高压输电线路供电可靠性的重要因素。
由于大气雷电活动的随机性和复杂性, 目前世界上对输电线路雷害的认识硏究还有诸多未知的成分。
进行高压输电线路设计时要全面考虑,综合分析每一条线路的具体情况,通过安全、经济、质量比较,选取有针对性的防雷设计技术措施,以达到提高供电可靠性的目的。
—防雷的原则
线路防雷保护首先在于抓好基础工作,目前国内
外在雷电防护手段上并没有出现根本的变化,很大程度
上要依赖传统的技术措施,只要运用得好,仍然是
可以信赖的。
对已投运的线路,应结合地区的地貌、地形、地质以及土壤状况与接地电阻的合理水平给出
正确的评价,找出可能存在薄弱环节或缺陷,因地制宜地采取措施。
二雷击跳闸分析高压输电线路遭受雷击的事故主
要与四个因素有
关:线路绝缘子的50%放电电压;有无架空地线;雷电流强度;杆塔的接地电阻。
高压输电线路各种防雷措施都有其针对性,因此,在进行高压输电线路设计时,我们选择防雷方式首先要明确高压输电线路遭雷击跳闸原因。
2.1高压输电线路绕击成因分析
根据高压输电线路的运行经验、现场实测和模拟
试验均证明,雷电绕击率与避雷线对边导线的保护
角、杆塔高度以及高压输电线路经过的地形、地貌
和地质条件有关。
对山区的杆塔,我们的计算公式
111区高压输电线路的绕击率约为平地高压输电线路的3倍。
山区设计输电线路时不可避免会出现大跨越、大高差档距,这是线路耐雷水平的薄弱环节;
—些地区雷电活动相对强烈,使某一区段的线路较其它线路更容易遭受雷击。
2.2高压输电线路反击成因分析
雷击杆、塔顶部或避雷线时,雷电电流流过塔体
和接地体,使杆塔电位升高,同时在相导线上产生感应过电压。
如果升高塔体电位和相导线感应过电压合成的电位差超过高压输电线路绝缘闪络电压值,即
Uj > U50%时,导线与杆塔之间就会发生闪络,这种闪络就是反击闪络。
我们知道,
由以上公式可以看出,降低杆塔接地电阻Rch、提
高耦合系数k、减小分流系数卩、加强高压输电线路
绝缘都可以提高高压输电线路的耐雷水平。
在实际设计中,我们着重考虑降低杆塔接地电阻Rch和提高耦
合系数k的方法作为提高线路耐雷水平的主要手段。
三高压输电线路防雷措施
清楚了输电线路雷击跳闸的发生原因,我们就可以有针对性的对设计中输电线路经过的不同地段,不同地理位置的杆塔采取相应的防雷措施。
3.1加强高压输电线路的绝缘水平。
高压输电线
路的绝缘水平与耐雷水平成正比,加强零值绝缘子的
检测,保证高压输电线路有足够的绝缘强度是提高线
路耐雷水平的重要因素。
我们在设计高压线路时充分
比较各种绝缘子的性能,分析其特性,认为玻璃绝缘
子有较好的耐电弧和不易老化的优点,并且绝缘子本身具有自洁性能良好和零值自爆的特点。
特别是玻璃是熔融体,质地均匀,烧伤后的新表面仍是光滑的玻璃体,仍具有足够的绝缘性能,所以设计中我们多考虑采用玻璃绝缘子。
3.2降低杆塔的接地电阻。
高压输电线路的接地
电阻与耐雷水平成反比,根据各基杆塔的土壤电阻率
的情况,尽可能地降低杆塔的接地电阻,这是提高高压
输电线路耐雷水平的基础,是最经济、有效的手段。
对于土壤电阻率较高的疑难地区的线路,则应跳出原有设计参数的框框,特别是要强化降阻手段的应用,如増加埋设深度,延长接地极的使用,就近增加垂直接地极的运用,使用降阻剂等。
3.3根据规程规定:在雷电活动强烈的地区和经常发生雷击故障的杆塔和地段,可以增设耦合地线。
由于耦合地线可以使避雷线和导线之间的耦合系数增大,并使流经杆塔的雷电流向两侧分流,从而提高高压输电线路的耐雷水平。
3.4适当运用高压输电线路避雷器。
由于安装避雷器使得杆塔和导线电位差超过避雷器的动作电压时,避雷器就加入分流,保证绝缘子不发生闪络。
根据实际运行经验,在雷击跳闸较频繁的高压输电线路上选择性安
装避雷器可达到很好的避雷效果。
目前我公司在35kV 输电线路中根据运行经验,在无避雷线的特定地段安装了一走数量的高压输电线路避雷器,运行反映较好,但由于装设避雷器投资较大,我们只能根据特殊情况少量使用。
我们在进行输电线路设计时还应注意以下几点:4.1在选择高压输电线路路径时z应尽量避开雷电多发
区或对防雷不利的地方;对于易受雷击的杆塔接地,要尽量降低接地电阻。
4.2在选择避雷方式时也要充分考虑本地区的防
雷经验及特点,选用合适的避雷方法;
4.3对于雷击多发区也应当减少大档距段的设计和在规程允许的范围内降低塔高。
4.4加强高压输电线路的验收。
对于新投产的高压
输电线路,做好高压输电线路的验收工作,抽查接地体的埋深是否符合规程的要求,射线长度是否达到设计的长度,接地体与接地引下线是否有可靠的电气连接,这些都是保证杆塔可靠防雷基础。
4.5对已投运的线路,生产单位要加大对老旧线
路的投资和改造力度,对运行中发现问题较多的线
路、雷击频发区段,要集中人力、资金,尽快进行改
造。
五结束语
在总结了输电线路防雷工作存在的问题和如何运用好常规防雷技术措施的基础上,我们认为雷电活动是小概率事件,随机性强,要做好输电线路的防雷工作,就必须抓住其关键点。
综上所述,为防止和减少雷害故障,设计中我们要全面考虑高压输电线路经过地区雷电活
动强弱程度、地形地貌特点和土壤电阻率的高低等情况,还要结合原有高压输电线路运行经验以及系统运行方式等,通过比较选取合理的防雷设计,提高高压输电线路的耐雷水平。
雷电活动是一个复杂的自然现象,需要电力系统内各个部门的通力合作,才能尽量减少雷害的发生,将雷害带来的损失降低到最低限度。
这里写地址或者组织名称
Write Your Company Address Or Phone Number Here。