ZPW-2000A移频轨道电路
- 格式:doc
- 大小:71.00 KB
- 文档页数:6
ZPW-2000A技术标准一.技术条件1. 发送器(1)低频频率:10.3+n×1.1Hz ,n=0~17即:10.3 Hz.11.4 Hz.12.5 Hz.13.6 Hz.14.7Hz.15.8 Hz.16.9 Hz.18 Hz.19 .1 Hz.20.2 Hz.21.3 Hz.22.4 Hz.23.5 Hz.24.6 Hz.25.7 Hz.26.8 Hz.27 .9 Hz.29 Hz。
(2)载频频率下行:1700-1 1701.4 Hz 上行:2000-1 2001.4 Hz 1700-2 1698.7Hz 2000-2 1998.7Hz2300-1 2301.4Hz 2600-1 601.4Hz23002 2298.7 Hz 2600-2 2598.7 Hz(3)频偏:±11 Hz(4)输出功率:不小于70W2.接收器轨道电路调整状态下:主轨道接收电压不小于240mV;主轨道继电器电压不小于20V(1700Ω负载,无并机接入状态下);小轨道接收电压不小于33mV;小轨道继电器或执行条件电压不小于20V(1700Ω负载,无并机接入状态下)。
3.工作电源(1)直流电源电压范围:23.5V~24.5V;(2)设备耗电情况:发送器在正常工作时负载为400Ω,功出为1电平得情况下,耗电为5.55A;当功出短路时耗电小于10.5A;(3)接收器正常工作时耗电小于500mA。
4. 轨道电路(1)分路灵敏度为0.15Ω,分路残压小于140mv(带内)。
(2)主轨道无分路死区;调谐区分路死区不大于5m;(3)有分离式断轨检查性能;轨道电路全程断轨,轨道继电器可靠落下。
二.补偿电容规格及技术指标1700Hz:55μF±5%(轨道电路长度250~1450m)2000Hz:50μF±5%(轨道电路长度250~1400m)2300Hz:46μF±5%(轨道电路长度250~1350m)2600Hz:40μF±5%(轨道电路长度250~1350m)三.ZPW-2000A设备测试1.在衰耗盘测试:(测试周期:季)衰耗盘上共有5个指示灯,12个测试孔。
ZPW-2000设备测试方法及标准一、测试项目及周期二、测试方法及标准(用UM71/YP通用测试表)1、第1项用直流档在衰耗盒的SK1测试,标准为23.5-24.5V。
2、第2项用直流档在衰耗盒的SK2测试,标准为23.5-24.5V。
3、第3项用多载频档(两个载频)在衰耗盒的SK3测试,标准为75-170V。
(视输出电平等级)4、第4项用多载频档(两个载频)在衰耗盒的SK4测试,主轨道输入大于240mV,小轨道输入大于42mV5、第5项用用单载频档在衰耗盒的SK5测试,输出标准为≥240mV。
6、第6项用用单载频档在衰耗盒的SK6测试,,输出标准为110-130mV。
7、第7项用直流档在衰耗盒的SK7测试测试,继电器电压≥20V。
8、第8项用直流档在衰耗盒的SK8测试测试,继电器电压≥20V。
9、第9项用直流档在衰耗盒的SK9测试测试,继电器电压≥20V。
10、第10项用直流档在衰耗盒的SK10测试测试,继电器电压≥20V。
11、第11项用直流档在衰耗盒的SK11测试测试,继电器电压≥20V。
12、第12项用直流档在衰耗盒的SK12测试测试,继电器电压≥20V。
13、第13项用单载频档,使用“塞钉测试线”,测试端的一个测试插柄选插“小鳄夹”,另一个测试插柄选插“测试磁吸”,并插入磁吸侧面的塞孔中。
将“小鳄夹”啮夹在塞钉引接线的线鼻上,磁吸吸附于“小鳄夹”啮夹点垂直方向的钢轨轨面上(这时必须注意“测试磁吸”的引线与“小鳄夹”的引线所形成的平面应尽量与钢轨保持垂直),进行电压测量,测试数值≤5mV。
14、第14项“补偿电容”测试手段是:测出电容所在位置的阻抗值,然后换算出等效的、并非该电容自身的电容容值。
该项的操作步骤如下:(1)按动△键,选中菜单中“电容”测项;(2)仪表屏中显示。
首先测试补偿电容端压。
将两支“测试磁吸”分别插入“公用测试线”的标准测试插柄上,然后分别吸附在电容引接线正上方的钢轨轨面上,进行电压测试,此时电流钳必须空置,当电压测试数值稳定后,按动“选中”键确认后,方可撤回磁吸。
ZPW-2000A型无绝缘移频轨道电路室内设备故障处理分析ZPW-2000A型无绝缘移频轨道电路是铁路运输中常见的设备,它具有对列车进行移频轨道电路监测、使列车运行更加安全和便利的作用。
然而在使用过程中,设备可能会出现一些故障,为了保证设备的正常运行,我们需要及时对故障进行处理。
下面我们将就ZPW-2000A型无绝缘移频轨道电路室内设备故障处理进行分析,以便更好地理解和掌握处理故障的方法。
一、故障描述在进行故障处理之前,我们需要了解ZPW-2000A型无绝缘移频轨道电路室内设备可能会出现的故障情况。
常见的故障包括但不限于:供电异常、电源故障、线路短路、线路开路、信号干扰等。
这些故障都会对设备的正常运行造成影响,所以我们需要对这些故障进行及时的处理。
二、故障处理方法1. 供电异常如果发现ZPW-2000A型无绝缘移频轨道电路室内设备出现供电异常,首先需要检查电源线路是否连接正常,检查电源线路是否受潮或发生短路。
如果是因为电源线路故障导致的供电异常,需要及时更换电源线路并进行调试,以确保设备正常供电。
2. 电源故障3. 线路短路线路短路是ZPW-2000A型无绝缘移频轨道电路室内设备常见的故障之一,造成线路短路的原因可能是线路连接不良、线路受潮等。
对于线路短路,首先需要检查线路连接是否良好,如果发现线路连接不良,需要重新连接线路并进行测试。
如果线路受潮,需要将受潮部分进行清洁和烘干,并进行测试使用。
5. 信号干扰信号干扰是ZPW-2000A型无绝缘移频轨道电路室内设备可能遇到的故障之一,可能会受到外部干扰引起设备信号不稳定。
对于信号干扰,需要首先检查设备周围的环境情况,采取相应的屏蔽措施,确保设备的信号稳定。
铁路信号基础设备课程设计班级电1302-1学号 20132742姓名 zy题目:ZPW-2000A轨道电路及发送器仿真设计一、设计目的本课题制作的主要目的是掌握ZPW2000A的工作原理,深入了解发送器、接收器的工作原理和冗余设计方式,掌握发送器工作过程。
二、设计要求1、熟悉绘图软件CAD;2、绘制工作原理图;3、利用仿真软件实现发送器调频功能,产生18种低频种载频的高精度、高稳定的移频信号;4、撰写课程设计报告。
三、设计说明1、系统原理PW-2000A型无绝缘移频轨道电路系统,与UM71无绝缘轨道电路一样采用电气绝缘节来实现相邻轨道电路区段的隔离。
电气绝缘节长度改进为29m,由空心线圈、29m长钢轨和调谐单元构成。
调谐区对于本区段频率呈现极阻抗,利于本区段信号的传输及接收;对于相邻区段频率信号呈现零阻抗,可靠地短路相邻区段信号,防止了越区传输,这样便实现了相邻区段信号的电气绝缘。
同时为了解决全程断轨检查,在调谐区内增加了小轨道电路。
ZPW-2000A型无绝缘移频轨道电路将轨道电路分为主轨道电路和调谐区小轨道电路两个部分,并将短小轨道电路视为列车运行前方主轨道电路的所属“延续段”。
主轨道电路的发送器由编码条件控制产生表示不同含义的低频调制的移频信号,该信号经电缆通道(实际电缆和模拟电缆)传给匹配变压器及调谐单元,因为钢轨是无绝缘的,该信号既向主轨道传送,也向小轨道传送。
主轨道信号经钢轨送到轨道电路受电端,然后经调谐单元、匹配变压器、电缆通道,将信号传至本区段接收器。
调谐区小轨道信号由运行前方相邻轨道电路接收器处理,并将处理结果形成小轨道电路轨道继电器执行条件通过(XG、XGH)送至本轨道电路接收器,做为轨道继电器(GJ)励磁的必要检查条件之一。
本区段接收器同时接收到主轨道移频信号及小轨道电路继电器执行条件,判决无误后驱动轨道电路继电器吸起,并由此来判断区段的空闲与占用情况。
该系统“电气—电气”和“电气—机械”两种绝缘节结构电气性能相同。
1.原理说明系统原理ZPW-2000A型无绝缘移频轨道电路系统,与UM71无绝缘轨道电路一样采用电气绝缘节来实现相邻轨道电路区段的隔离。
电气绝缘节长度改进为29m,由空心线圈、29m长钢轨和调谐单元构成。
调谐区对于本区段频率呈现极阻抗,利于本区段信号的传输及接收;对于相邻区段频率信号呈现零阻抗,可靠地短路相邻区段信号,防止了越区传输,这样便实现了相邻区段信号的电气绝缘。
同时为了解决全程断轨检查,在调谐区内增加了小轨道电路。
ZPW-2000A型无绝缘移频轨道电路将轨道电路分为主轨道电路和调谐区小轨道电路两个部分,并将短小轨道电路视为列车运行前方主轨道电路的所属“延续段”。
主轨道电路的发送器由编码条件控制产生表示不同含义的低频调制的移频信号,该信号经电缆通道(实际电缆和模拟电缆)传给匹配变压器及调谐单元,因为钢轨是无绝缘的,该信号既向主轨道传送,也向小轨道传送。
主轨道信号经钢轨送到轨道电路受电端,然后经调谐单元、匹配变压器、电缆通道,将信号传至本区段接收器。
调谐区小轨道信号由运行前方相邻轨道电路接收器处理,并将处理结果形成小轨道电路轨道继电器执行条件通过(XG、XGH)送至本轨道电路接收器,做为轨道继电器(GJ)励磁的必要检查条件之一。
本区段接收器同时接收到主轨道移频信号及小轨道电路继电器执行条件,判决无误后驱动轨道电路继电器吸起,并由此来判断区段的空闲与占用情况。
主轨道和调谐区小轨道检查原理示意图见图2-1。
该系统“电气—电气”和“电气—机械”两种绝缘节结构电气性能相同。
2.电路工作原理及冗余设计2.1 发送器2.1.1 用途ZPW-2000A型无绝缘移频轨道电路发送器在区间适用于非电码化和电码化区段18信息无绝缘移频自动闭塞,供自动闭塞、机车信号和超速防护使用。
在车站可适用于非电码化和电码化区段站内移频电码化发送,并可作站内移频轨道电路使用。
2.1.2 原理框图及电路原理简要说明同一载频编码条件,低频编码条件源,以反码形式分别送入两套微处理器CPU中,其中CPU1产生包括低频控制信号Fc的移频信号。
原理说明1.系统原理ZPW-2000A型无绝缘移频轨道电路系统,与UM71无绝缘轨道电路一样采用电气绝缘节来实现相邻轨道电路区段的隔离。
电气绝缘节长度改进为29m,由空心线圈、29m长钢轨和调谐单元构成。
调谐区对于本区段频率呈现极阻抗,利于本区段信号的传输及接收;对于相邻区段频率信号呈现零阻抗,可靠地短路相邻区段信号,防止了越区传输,这样便实现了相邻区段信号的电气绝缘。
同时为了解决全程断轨检查,在调谐区内增加了小轨道电路。
ZPW-2000A型无绝缘移频轨道电路将轨道电路分为主轨道电路和调谐区小轨道电路两个部分,并将短小轨道电路视为列车运行前方主轨道电路的所属“延续段”。
主轨道电路的发送器由编码条件控制产生表示不同含义的低频调制的移频信号,该信号经电缆通道(实际电缆和模拟电缆)传给匹配变压器及调谐单元,因为钢轨是无绝缘的,该信号既向主轨道传送,也向小轨道传送。
主轨道信号经钢轨送到轨道电路受电端,然后经调谐单元、匹配变压器、电缆通道,将信号传至本区段接收器。
调谐区小轨道信号由运行前方相邻轨道电路接收器处理,并将处理结果形成小轨道电路轨道继电器执行条件通过(XG、XGH)送至本轨道电路接收器,做为轨道继电器(GJ)励磁的必要检查条件之一。
本区段接收器同时接收到主轨道移频信号及小轨道电路继电器执行条件,判决无误后驱动轨道电路继电器吸起,并由此来判断区段的空闲与占用情况。
主轨道和调谐区小轨道检查原理示意图见图2-1。
该系统“电气—电气”和“电气—机械”两种绝缘节结构电气性能相同。
2.电路工作原理及冗余设计2.1 发送器2.1.1 用途ZPW-2000A型无绝缘移频轨道电路发送器在区间适用于非电码化和电码化区段18信息无绝缘移频自动闭塞,供自动闭塞、机车信号和超速防护使用。
在车站可适用于非电码化和电码化区段站内移频电码化发送,并可作站内移频轨道电路使用。
2.1.2 原理框图及电路原理简要说明同一载频编码条件,低频编码条件源,以反码形式分别送入两套微处理器CPU中,其中CPU1产生包括低频控制信号Fc的移频信号。
ZPW-2000A轨道电路的调试介绍ZPW-2000A轨道电路在沪杭电气化铁路的应用,包括工作原理、试验调试和故障处理。
1工作原理ZPW-2000A型无绝缘移频自动闭塞室内主要设备发送器、接收器、衰耗器、电缆模拟网络盘、机柜。
室外主要有匹配变压器、调谐单元、空心线圈、机械绝缘节空心线圈、补偿电容、防雷单元等,通过载频信号(8信息和18信息)传输原理,传送机车信号和检查轨道的电气-电气绝缘节和机械-电气绝缘节。
图1:系统原理框图图1为ZPW-2000A型无绝缘轨道电路的工作原理框图,以一个区段ADG为例,正常工作时,ADG发送器向钢轨发送载频1700-1、频偏±11HZ、低频为随列车运行和轨道空闲情况而不同的移频信号。
移频信号一部分沿着ADG主轨迎着列车运行方向,向接收端传递,到接收端经匹配变压器→防雷电缆模拟网络→衰耗盘→接收器,形成主轨道检查条件。
该条件可以从衰耗盘的“轨出”塞孔中测出,该数值从钢轨中直接送来,与受电端电压一致,需要大于240mv。
同时移频信号又向列车运行前方的调谐区小轨道发送移频信号,在调谐区形成小轨道的检查条件,经下一个区段接收端的接收端经匹配变压器→防雷电缆模拟网络→衰耗盘→接收器,这一条件可以从这个区段衰耗盘“轨出2”测出。
这样ZPW-2000A无绝缘轨道电路继电器励磁条件必须有2个,一个是主轨检查条件,另一个是小轨道检查条件,前一个是本轨道衰耗盘测得,后一个是从本轨道列车运行前方所属区段衰耗盘测得。
2 ZPW-2000A轨道电路封锁开通前试验调试2.1 试验及调试流程如图所示:图2 自闭试验及调试流程图2.2 试验前的准备工作:2.2.1导通网络接口柜,组合架、区间柜内部配线。
2.2.2导通室内各架(柜)间的配线,特别注意组合架至区间柜编码条件线,防止点灯220v 电源引入区间柜烧损设备。
2.2.3处理好各种混线、接地等故障。
2.2.4检查送至机柜的24v电源极性是否正确,按机柜布置图将发送器、接收器安装在对应位置,并用钥匙锁紧。
铁路信号基础设备课程设计
班级电1302-1
学号 20132742
姓名 zy
题目:ZPW-2000A轨道电路及发送器仿真设计
一、设计目的
本课题制作的主要目的是掌握ZPW2000A的工作原理,深入了解发送器、接收器的工作原理和冗余设计方式,掌握发送器工作过程。
二、设计要求
1、熟悉绘图软件CAD;
2、绘制工作原理图;
3、利用仿真软件实现发送器调频功能,产生18种低频种载频的高精度、高稳定的移频信号;
4、撰写课程设计报告。
三、设计说明
1、系统原理
PW-2000A型无绝缘移频轨道电路系统,与UM71无绝缘轨道电路一样采用电气绝缘节来实现相邻轨道电路区段的隔离。
电气绝缘节长度改进为29m,由空心线圈、29m长钢轨和调谐单元构成。
调谐区对于本区段频率呈现极阻抗,利于本区段信号的传输及接收;对于相邻区段频率信号呈现零阻抗,可靠地短路相邻区段信号,防止了越区传输,这样便实现了相邻区段信号的电气绝缘。
同时为了解决全程断轨检查,在调谐区内增加了小轨道电路。
ZPW-2000A型无绝缘移频轨道电路将轨道电路分为主轨道电路和调谐区小轨道电路两个部分,并将短小轨道电路视为列车运行前方主轨道电路的所属“延续段”。
主轨道电路的发送器由编码条件控制产生表示不同含义的低频调制的移频信号,该信号经电缆通道(实际电缆和模拟电缆)传给匹配变压器及调谐单元,因为钢轨是无绝缘的,该信号既向主轨道传送,也向小轨道传送。
主轨道信号经钢轨送到轨道电路受电端,然后经调谐单元、匹配变压器、电缆通道,将信号传至本区段接收器。
调谐区小轨道信号由运行前方相邻轨道电路接收器处理,并将处理结果形成小轨道电路
轨道继电器执行条件通过(XG、XGH)送至本轨道电路接收器,做为轨道继电器(GJ)励磁的必要检查条件之一。
本区段接收器同时接收到主轨道移频信号及小轨道电路继电器执行条件,判决无误后驱动轨道电路继电器吸起,并由此来判断区段的空闲与占用情况。
该系统“电气—电气”和“电气—机械”两种绝缘节结构电气性能相同。
2、系统结构组成
1、一品自动闭塞柜
型号:ZPW▪G200A/T。
规格:900mm×400mm×2350mm。
机柜主要用于放置发送器、接收器、衰耗器等器材,由零层端子和器材层组成。
机柜内器材按纵向排列,每列安装的器材被分为两个闭塞分区所占用。
2、发送器
型号:ZPW▪F
规格:200mm×100mm×383mm。
(1)用于产生高精度、高稳定的18中低频信号调制的8种移频信号。
(2)输出足够功率的移频信号。
(3)所产生移频信号的电平可以满足不同轨道电路的使用。
3、接收器
型号:ZPW▪J
规格:220mm×100mm×123mm。
用于对主轨道电路移频信号的解调,并配合与送电端相连接调谐区短小轨道电路的检查条件,动作轨道继电器。
另外,还实现对与受电端相连接调谐区短小轨道电路移频信号的解调,给出短小轨道电路执行条件,送至相邻轨道电路接收器。
接收器接收端及输出端均按双机并联运用设计,与另一台接收器构成相互热机并联运用系统,保证接收系统的高可靠运用.
接收器双机并联运用原理接收器由本接收“主机”及另一接收“主机”两部分构成。
4、衰耗器
型号:ZPW▪S
规格:188mm×68mm×178mm。
用作对主轨道电路及调谐区小轨道电路的调整(含正、反方向);给出发送器、接收器用电源电压,发送器功出电压和轨道继电器(含GJ、XGJ)电压测试条件;给出发送器、接收器的故障报警、轨道状态及正反向运行指示灯等。
5、防雷模拟网络组匣
型号:ZPW▪XML/T
规格:820mm×419mm×178mm。
6、防雷模拟网络盘
型号:ZPW▪ML
规格:820mm×76mm×178mm。
用作对通过传输电缆引入至室内雷电冲击的防护(横向、纵向)。
通过0.5、0.5、1、2、2、2×2km,以便于轨道电路的调整和构成改变列车运行方向。
电路原理介绍横向压敏电阻采用V20-C/1 280V 20KA(OBO)或275V 20KA(DEHNguard),用于对室外通过传输电缆引入的雷电冲击信号的防护。
低转移系数防雷变压器用于对雷电冲击信号的纵向防护,特别在目前钢轨线路旁没有设置贯通地线的条件下,该防雷变压器对雷电防护有显著作用。
7、防雷匹配变压器
型号:ZPW▪BPL
规格:355mm×270mm×86mm。
8、协调单元
型号:ZPW▪ T,对应1700Hz、2000 Hz、2300 Hz、2600 Hz四种频率设计四种类型。
规格:335mm×270mm×86mm。
9、空芯线圈
型号:ZPW▪XK,对应使用位置,在两个调谐单元中间放置时设计一种类型;靠近机械绝缘节放置时,按照1700Hz、2000 Hz、2300 Hz、2600 Hz四种频率设计四种,所以空芯线圈共五种类型。
规格:355mm×270mm×86mm。
逐段平衡两钢轨的牵引电流回流,实现上下行线路间的等位连接,改善电气绝缘节的Q 值,保证工作稳定性。
电路原理简要说明该线圈用19×1.53mm电磁线绕制,其截面积为
35mm,电感约为33μH,直流电阻4.5mΩ。
中间点引出现作等电位连接。
空心线圈设置在29m 长调谐区的两个调谐单元中间,由于它对50Hz牵引电流呈现很小的交流阻抗(约10mΩ),即可起到平衡牵引电流的作用。
设I1、I2有100A不平衡电流,可近似将空心线圈视为短路,则有I3=I4=(I1+I2)/2=450A。
由于空心线圈对牵引电流的平衡作用,减少了工频谐波干扰对轨道电路的影响。
对于上、下行线路间的两个空心线圈中心线可等电位连接,一方面平衡线路间牵引电流,一方面保证维修人员安全。
10、补偿电容
型号:CBG1
规格:55μF、50μF、46μF、40μF四种。
(1)、保证轨道电路传输距离;
(2)、保证接收端信号有效信干比;
(3)、实现了对断轨状态的检查;
(4)、保证了钢轨同侧两端接地条件下,轨道电路分路及断轨检查性能
11、空芯线圈防雷单元
型号:ZPW▪ULG、ZPW▪ULG1
规格:355mm×75mm×76mm、355mm×60mm×76mm两种,ZPW▪ULG用于电气化区段,ZPW▪ULG1用于非电气化区段。
3、发送器工作原理图如下:
四、设计心得
在此次的课程设计学习中,巩固了课上所学的知识,对所学的ZPW-2000A移频轨道电路有了更深入的认识,掌握了ZPW-2000A的工作原理;通过查阅大量的资料,也学到了很多相关的知识,同时实习中需要用CAD制图,使我对CAD有了更多的熟练度,以前总认为CAD 的操作和作用仅仅局限于书本上所教授的内容,但是这次亲身体验了之后,才发现CAD在实际的操作上有很多很多书本上学不到的细节问题和小技巧,在实际的操作过程中,同学们不断遇到新的问题,进而不断解决新的问题,大家一起讨讨论,共同进步。
这次的课程设计使我收获很多,它不仅让我了解如何模拟ZPW-2000A移频轨道电路的工作原理,让我在这个过程中学到了很多过去学不到的东西以及课本上所不能详尽讲述给你的东西,同时也让我深刻地认识到我对知识的理解程度以及掌握程度还是极其有限的,要想真正的弄懂某件事物的原理或流程还需我们付出更多的课下时间来学习其他相关的知识。
在本次ZPW-2000A 课程设计中我不仅检验了自己所学习的知识,也培养了我如何去把握一件事情,如何去做一件事情,又如何完成一件事情。
在设计过程中,与同学分工设计,和同学们相互探讨,相互学习,相互监督。
学会了合作,学会了理解,也学会了做人与处世。
经过了这次的课程设计,我才发现我们在无形中浪费了学校的很多资源,第九实验楼有很多实验室会给学生们开放,平时我们根本不会去实验室做实验,增强自己的动手能力,在以后的日子里我会在没有课的时候去实验室做自己喜欢的实验,增强自己的动手能力,为将来的毕业设计提前做好准备,同时也为以后的工作积累经验。
最后,我要感谢同组的同学以及在实验过程中帮助我的同学,他们在我遇到困难的时候,全力的给予我帮助,同时也要感谢高老师在百忙之中通过电话为我们解决实验中所遇到的困难。