最新单招(精品)2020年数学中职对口升学考试模拟试卷三
- 格式:pdf
- 大小:228.87 KB
- 文档页数:2
机密★启用前山东省高等职业教育对口招生数学模拟试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间90分钟.考试结束后,将本试卷和答题卡一并交回.2.本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01.第Ⅰ卷(选择题,共60分)一、选择题(本大题共30小题,每小题2分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项选出)1.已知集合A={ x 1≤x≤4},B={ x x- a>0}, 若A ⊆ B,则实数a的取值范围为()(A) (1,+∞) (B) (-∞,1)(C) [1,+∞) (D) (-∞,1]2.已知方程x2 +a x+ (a+3)=0有实根,则a的取值范围()(A) {a|a>6或a<- 2} (B) {a| -2≤a ≤6}(C) {a|a≥6或a≤- 2} (D) {a| -2< a < 6}3. 已知圆的方程为22-+-=,则点(1,2)(3)(5)16x y-().(A)在圆内(B)在圆上(C)在圆外(D)与圆心重合4.函数y=f (x) 的图象与直线x=k (k 是常数)的交点的个数()(A) 有且只有一个(B) 至少有一个(C) 至多有一个(D) 有一个或两个5.若x > y > 0, 0 < a < 1, 则下列各式成立的是()(A) a x≤a y(B) log a x < log a y(C) a x ≥a y(D) log a x > log a y6. 设a , b是实数,则a2+b2 ≠ 0的充要条件是()(A) a ≠ 0 (B) b ≠ 0 (C) a ≠ 0且b ≠ 0 (D) a ≠ 0或b ≠ 0 7.二次函数 y =x 2+px +q 的顶点在第二象限, 则p 和q 的符号是( )(A) p > 0, q >0 (B) p > 0, q < 0 (C) p < 0, q < (D) p < 0, q > 0 8.在数列3,4,7,12,x ,28, … 中,x 的值是( ).(A ) 18 (B ) 19 (C ) 20 (D ) 21 9. 过点()1,0且平行于y 轴的直线方程是( ).(A )1y = (B ) 1y =- (C )1x = (D ) 1x =-10.在四边形ABCD 中,若→A B = 2→a ,→C D = - 3 →a , ∣→A D ∣=∣→B C ∣ , 则 四边形ABCD 是( ) (A) 平行四边形 (B)菱形 (C) 等腰梯形 (D) 矩形 11.函数y =3 sin (ω x + π3 )(ω > 0)的最小正周期为π3, 则ω等于( )(A) 3 (B) 6 (C) 52(D) 912. 若平面α∥平面β,P 是平面α、β外一点,过P 的两条直线AB 、CD 交平面α于A 、C ,交平面β于B 、D ,且P A =6,AB =2,BD =12,则AC 的长是( ). (A ) 10 (B ) 9 (C ) 8 (D ) 713. 若双曲线的焦点在x 轴上,并且6a =、2b =,则双曲线的标准方程为( ). (A) 221364x y -= (B ) 221436x y -= (C ) 22162x y -= (D ) 22126x y -=14. 某数学兴趣小组成员的数学中考成绩如下:116 99 108 93 100 111 98 95 106 113 若102分以上(包括102)为优秀, 则优秀率为( ).(A ) 0.30 (B ) 0.40 (C ) 0.50 (D ) 0.60 15.0.3()log (2)f x x =,若()0f a =,则实数a 的值是( ).(A )16 (B ) 1 (C ) 0 (D ) 1216. 抛甲、乙两粒骰子,甲骰子点数不小于乙骰子点数的概率是( ). (A )512 (B ) 12 (C ) 712 (D ) 2317. 若椭圆的方程为224312x y +=,则它的焦点坐标为( ). (A ) ()()1,01,0-、 (B ) ()()0,10,1-、(C ) ((0,、 (D ))()、18.有四条线段,长度分别是2cm ,3cm ,4cm ,5cm ,从中任取两条, 长度之和不小于8cm 的概率是( ).(A) 14(B) 12(C) 13(D) 119.不等式 | 3- 2x | ≥ 5 的解集是( )(A) [-1, 4 ] (B) (- ∞, - 1]∪[ 4,+∞) (C) (- ∞, - 4)∪[ 1,+∞) (D) [- 4, 1]20.已知f (x )是奇函数,且x ≥ 0时,f (x )= 2x -x 2,则当x < 0时,f (x ) 的解析式为( )(A) f (x ) = x 2+2x (B) f (x ) = - x 2- 2x (C) f (x ) = x 2- 2x (D) f (x ) = - x 2+2x 21.设函数log ()4a x f x =,且1(16)2f =,则a 的值为( ). (A ) 4 (B ) 8 (C )18(D ) 1422.已知∣→a ∣= 4,→b 在 →a 方向上的射影的数量为- 3,则 →a ·→b =( ) (A) - 12 (B) - 7 (C) - 34 (D) 3423. 若抛物线的焦点在x 轴正半轴上,焦点到准线的距离是12,则它的 标准方程是( ).(A ) 2y x =- (B ) 2y x = (C ) 2x y =- (D ) 2x y = 24.5人参加4项比赛,每人限报一项,报名方法有( )(A) 45 (B) 54 (C) 20 (D) 25 25.函数y = 2sin 2x +4sin x +2 的最大值和最小值分别为( )(A) 6, 0 (B) 6, - 1 (C) 8, 0 (D) 8, - 1 26.等差数列前10项和1060S =,则110a a +等于( ).(A )10 (B ) 11 (C ) 12 (D ) 13 27. 函数()f x 在()5,5-上是增函数,下列选项错误的是( ).(A ) (2)(0)f f ->(B ) (1)(1)f f -< (C ) (2)(3)f f < (D ) (0)(4)f f < 28.△ABC 中:AB =10,S △= 160, 则边AC 的最小值为( )(A) 32 (B) 16 (C) 8 (D) 16 3 29.函数22y x x =+与22y x x =-的图像( ).(A ) 关于x 轴对称 (B ) 关于y 轴对称(C ) 关于原点对称 (D ) 关于x 轴和y 轴都不对称 30.在等比数列{a n }中,a 1+ a 2=30,a 3+ a 4=120,那么a 5+ a 6 =( ) (A) 210 (B) 240 (C) 480 (D) 700第Ⅱ卷(非选择题,共40分)二、填空题(本大题共4小题,每小题3分,共12分)31. 某超市大米3.5元/千克,现设x表示购买大米的重量(千克),y表示应付款数(元),将,x y 的函数关系用列表法表示为:32.若正四棱锥的体积为12,底面对角线的长为_____.33. 若圆的方程222230x y by b+--=,则圆心坐标为_______,半径为_______.34.已知t anα是方程x2-2x-3=0的一个根,且α是第一象限的角,则cosα·tanα= . 三、解答题(本大题共4小题,共28分)35. (7分)设二次函数的图象的顶点是(-2, 32)与x轴的两个交点之间的距离是6,求这个二次函数的解析式.36. (7分) 角α.37.(7分) 如图,正三棱柱ABC —A 1B 1C 1的底面边长为a ,在侧棱BB 1上取BD =2a,在侧棱CC 1上截取CE =a ,过A 、D 、E 作棱柱的截面,试证明截面ADE 与侧面ACC 1A 1垂直。
第二部分 数学(模拟题1)一、单项选择题.(每题5分,共8小题,共40分)1.下列正确的是( )A .{Ø}=0B .1∈{(-1,1)}C .3⊆{x |x >1}D .Ø⊆{0}2.下列函数是偶函数的是( )A .y =x 2+1B .y =sin xC .y =cos xD .y =2x3.已知函数的定义域为R ,则下列函数正确的是( )A .y =x -1B .y =2x -1C .y =log 2xD .x y =4.已知角α是三角形的一个内角,若21sin =α,则α=( ) A .300 B .600 C .1200 D .300 或15005.已知点A(2,1)与点B(-2,-4),则向量BA =( )A. (-4,-5)B.(4,5)C.(-4,5)D.(4,-5)6.已知圆的方程为x 2-2x +y 2+4y -11=0,则它的圆心与半径分别是( )A .(1,2),4B .(-1,2),4C .(1,-2),4D .(-1,-2),47.下列命题错误的是( )A.如果两个平行平面同时和第三个平面相交,那么它们的交线互相平行。
B .如果一条直线与一个平面平行,并且经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
C . 如果在一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面互相平行。
D .如果平面外的一条直线与平面内的所有直线都平行,那么这条直线与这个平面平行。
8.某样本容量为60,若采取分层抽样的方法,若一、二、三级品的个数之比为2:3:5,则从二级品中应抽取( )个。
A .12B .18C .30D .60二、填空题(本大题共5小题,每小题6分,共30分)9.设A =[-2,+∞),B ={x |x<3},求A ∩B = ;10.已知向量→a =(-2,4),→b =(3,-1),则2→a -3→b = ;11.小王、小李、小张、小高的平均体重是40千克,已知小王体重为45千克,小李体重为40千克,小张比小高轻2千克,则小高的体重为;12.若一个球的半径为R,现经过这个球的半径的中点,作一个垂直于这条半径的截面,那么这个截面的面积为.13.某商店搞活动,兵乓球拍原价每副20元,现在打5折,若小明有88元,则小明最多可以购买副兵乓球拍.三、解答题(本大题共2小题,共30分)14. 求数列:1,2,6,24,120.....的第8项。
机密★启用前山东省高等职业教育对口招生数学模拟试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间90分钟.考试结束后,将本试卷和答题卡一并交回.2.本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01.第Ⅰ卷(选择题,共60分)一、选择题(本大题共30小题,每小题2分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项选出)1.满足关系式M ⊆{1,2,3}的集合M的个数为()(A) 5个(B) 6个(C) 7个(D) 8个2.x= - 3且y = 2是(x+3)2 + (y-2)2 = 0的()(A) 充分不必要条件(B)必要不充分条件(C) 充要条件(D)既不充分也不必要条件3.设函数f (x) = 3x + 4 , g (x) = x+3 , 求f [g(x) ]=( )(A) 3x +13(B) 3x +9(C) 4x +7(D) 3x +74. 如果直线210Ax y--=和直线640x y C-+=平行,那么A、C应当().(A)3,2A C==-(B)3,2A C=≠-(C)3,2A C≠=-(D)3,2A C≠≠-5.若∣→A B∣= 8 ,∣→A C∣= 5 ,则∣→B C∣的取值范围是()(A) [ 3, 8 ] (B) ( 3, 8 )(C) [ 3, 13 ] (D) ( 3, 13 )6.已知α = - 2,则角α是第()象限角(A)一(B)二(C)三(D)四7. 若平面α∥平面β,直线l⊂α,,点B∈β,则在β内过点B的所有直线中(). (A)不一定存在与l平行的直线(B)只有两条与l平行的直线(C)存在无数多条与l平行的直线(D)存在唯一一条与l平行的直线8.已知0 < a < 1, log a m < log a n < 0 ,则下列式子正确的是( )(A) m > n > 1 (B) n > m > 1 (C) m < n < 1 (D) n < m < 19. 若椭圆标准方程为22154x y +=,则该椭圆的焦点坐标为( ). (A ) ()()3,03,0-、 (B ). ()()0,30,3-、 (C ) ()()1,01,0-、 (D )()()0,10,1-、10.三个数成等差数列,三个数之和为9,积为15,则这三个数为( ) (A) 1, 3, 5(B) 5,3,1(C) 1,3,5或5,3,1(D) -1,3,-511.据统计,某企业自1994年到2003年10年间年产值的增长率相同,若95年年产值为a 万元,98年年产值为b 万元,则2001年的年产值为( ) (A) a +b2 万元 (B) ab 万元(C) (2a – b )万元 (D) b 2a万元12.已知∣→a ∣= 1 ,∣→b ∣= 2,且(→a - →b )与 →a 垂直 ,则 →a 与 →b 的夹角 ( ) (A) 30° (B) 45° (C) 60° (D)135° 13.化简1+2cos 2θ- cos2θ 的结果为( ) (A) 1(B) 2 (C) 3 (D) 414. 求以(1,2)-的圆的方程为( ).(A )22(1)(2)x y -++= (B ) 22(1)(2)5x y -++=(C )22(1)(2)x y ++-= (D ) 22(1)(2)5x y ++-= 15.下列叙述错误的是( )(A) 若两个变量之间没有确定的函数关系,则这两个变量相关 (B) 正相关是两个变量相关关系中的一种(C) “庄家一枝花,全靠粪当家”说明农作物产量与施肥量之间具有相关关系 (D) 根据散点图可判断两个变量之间有无相关关系16.已知a > b , 且a , b 均不为零,则下列正确的是( )(A) 1a > 1b (B) 1a < 1b(C) 1a = 1b (D) 1a 和 1b 的大小不确定17.函数 y =log (x-1)(3 -x )的定义域是 ( )(A) (1, 3) (B) (1, 3] (C) (1, 2) ∪ (2, 3] (D) (1, 2) ∪ (2, 3)18.已知函数f (x ) 是偶函数,g (x )是奇函数,且在区间 [0, a ] (a>0) 上f (x ) 和g (x )都是增函数,则在[- a , 0 ] 上( )(A) f (x ) 和g (x )都是减函数 (B) f (x ) 是减函数, g (x ) 是增函数 (C) f (x ) 是增函数, g (x ) 是减函数 (D) f (x ) 和g (x )都是增函数19.若log 2 3 = a , log 2 5= b , 则log 2 95= ( )(A) a 2 - b (B) 2a - b(C) a 2b (D) 2a b20.某单位职工的工资经过5年翻了一番,按照相同的增长率,多少年后可以翻两番( ). (A ) 8 (B ) 9 (C ) 10 (D ) 12 21.数列{}n a 中,13a =,且1n a +与1na 是方程2320x x -+= 的根,则3S 为( ). (A ) 9 (B ) 9- (C ) 21- (D ) 21 22.在△ABC 中,a = 3,b = 4, 且a 2+b 2 =c 2+ a b , 则△ABC 的面积是( ) (A) 3 (B) 6 (C) 3 3 (D) 6 323. 若方程22111x y m m-=+-表示双曲线,则实数m 的取值范围是( )(A ) 1<<1m - (B ) >0m (C )m <0 (D) >1m 或<1m -24. 为了研究某班45名学生上学期数学期末考试成绩,特抽查了15名学生的成绩,下列说法错误的个数是( ). ① 全班学生是总体② 每名学生的数学期末考试成绩是个体 ③ 抽查的15名学生的数学成绩是样本 ④ 样本容量是45(A ) 1个 (B ) 2个 (C ) 3个 (D ) 4个 25.不等式 1 ≤ | 3x +4 | < 6 的解集为( )(A) {x | -1 ≤ x < 23 }(B) {x | - 103 < x ≤ - 53 或-1 ≤ x < 23 } (C) {x | - 103 < x ≤ - 53 } (D) {x |-103 ≤ x ≤ - 53 或-1 ≤ x ≤ 23} 26. 函数()g x 在(),-∞+∞上是增函数,且(0)25g =,下列选项正确的是( ) (A ) ()428g = (B ) ()225g ->(C ) ()1225g < (D ) 1()252g >27.若双曲线2212516x y -=上一点P 到双曲线一个焦点的距离是12,则P 点到另一个焦点的距离为( ).(A ) 2 (B ) 22 (C ) 5 (D ) 22或228. 有5件新产品,其中A 型产品3件,B 型产品2件,现从中任抽2件,它们都是A 型产品的概率是( ). (A )35(B ) 25 (C ) 310 (D ) 32029.工人月工资y (元)与劳动生产率x (千元)的回归直线方程为y =50+80x , 则下列判断不正确的是( )(A) 劳动生产率为1000元时,月工资为130元(B) 劳动生产率提高1000元时,则月工资平均提高80元 (C) 劳动生产率提高1000元,则月工资平均提高130元 (D) 当月工资为210元时,劳动生产率为2000元 30. 二次函数f (x )= x 2- 2x +4,x ∈[2,3]的最小值是( ) (A) 1 (B) 3(C) 4 (D) -6第Ⅱ卷(非选择题,共40分)二、填空题(本大题共4小题,每小题3分,共12分)31.函数()f x 用图像法表示为:则它的单调增区间是 .32.若正三棱锥底面边长为4,体积为1,则侧面和底面所成二面角的正切值为___________. 33.函数y =4 sin (2x - π3 )单调递减区间是 .34. 若直线230x y ++=与直线()22150x k y +--=()1k ≠±平行,则k 是 .三、解答题(本大题共4小题,共28分)35.(7分) 已知函数f (x )=x 2+2ax +3 求:(1)如果函数图象恒在x 轴上方,求a 的取值范围. (2) 如果f (a ) - f (a +1) = - 9 ,求a 的值.36.(7分) 某房地产公司在2010年对某户型推出两种售房方案:第一种是一次性付款方案,购房的优惠价为28.5万元;第二种是分期付款方案,要求购房时缴纳首付款10万元,然后从第二年起连续十年,在每年的购房日向银行付款2.25万元.假设在此期间银行存款的年利率为3%,若不考虑其他因素,试问:对于购房者来说,采用哪种方案省钱?请计算说明.37.(7分) 如图,三棱锥P—ABC中,△ABC是正三角形,∠PCA 90°,D为P A的中点,二面角P—AC—B为120°,判断AC与BD是否垂直,并说明理由.38.(7分)一条直线与抛物线y2=2px(p>0)交于A,B两点,O为坐标原点,若OA OB,并且OD⊥AB,垂足是D(2, -1).求抛物线的标准方程.答案一、选择题1.D 2.C 3.A 4.B 5.D 6.C 7.D 8.A 9.C 10.C 11.D 12.C 13.B 14.D 15.A 16.D 17.D 18.B 19.B 20.C 21.D 22.C 23.A24.B25.B26.D27.D28.C29.C30.C二、填空题31.(-2 , O] ∪[2,+∞) 32. 38 33.[5π12+k π, 11π12+k π] k ∈Z34.± 5三.解答35.解:(1) ƒ(x)=x 2+2ax +3的图象恒在x 轴上方∴△=4a 2-12<0∴a 2<3∴- 3 < a < 3 ∴a 的取值范围(- 3 , 3 )(2) 2849]3)1(22)1[(32229)1()(=∴-=-∴-=++++-++∴-=+-a a a a a a a a f a f36解:第一种方案,十年后付款的本息之和为:28.5×(1+0.03)10≈38.30(万元).第二种方案,还款结束时实际付款的本息之和为:10×(1+0.03)10+2.25×(1+0.03)9+2.25×(1+0.03)8+…+2.25 =10×1.0310+2.25×(1.0310-1)1.03-1≈39.23(万元). 因此对于购房者来说,采用第一种方案省钱. 37.解:过C 作CE ⊥AC 交AB 的延长线于E , 连结PE .则∠BCE = 30º ∠CBE =120º ∴∠BEC = 30º ∴BC =BE B 为AE 的中点。
第二部分 数学(模拟题1)一、单项选择题.(每题5分,共8小题,共40分)1.设集合M ={-1,0,2}, N ={0,1}, 则 ( )A .M ∩N =ØB .N ∈MC .N ⊆MD .-1∉N2.下列不等式中正确得到是 ( )A .5a >3aB .5+a >3-aC .3-a >2-aD .a 3a 5> 3.函数23y 2+-=x x 的定义域为是( )A .(1,2)B .(-∞,1)∪(2,+∞)C .(-∞,1]∪(2,+∞)D .(-∞,1]∪[2,+∞)4.若f (x )=2x 2,且x ∈{-2,0,2} 则f (x ) 的值域是( )A .{-2,0,2}B .{1,9}C .[1,9]D .(1,9)5.函数与x x y y=)21(2=与的图像关于( )A .原点对称B .x 轴对称C .直线y =1对称D .y 轴对称6.若角α是第二象限角,则化简αα2sin 1tan -的结果为( ) A .sin α B .-sin α C .cos α D .-cos α7.已知点A (2,-3),点B (5,2),则向量的坐标为( )A .(3,5)B .(-3,-5)C .(-3,5)D .(3,-5)8.空间中平行于同一条直线的两条直线的位置关系是( )A .相交B .平行C .异面D .以上三种情况都有二、填空题(本大题共5小题,每小题6分,共30分)二、填空题(本大题共5小题,每题6分,共30分)9.已知y =1-2cosα,则y 的最小值是 ,最大值是 ; 10.=-)314sin(π; 11.已知数列:...643-432321-,,,⨯⨯⨯则这个数列的通项公a n = . 12.已知一扇形的半径为5cm ,圆心角为1200,则此扇形的面积为 .13.若某学校高三一班有25个男生,30个女生,要从男女生中各选拔出一个同学作为学校代表参加比赛,共有种选法。
第二部分 数学(模拟题1)一、单项选择题.(每题5分,共8小题,共40分)1、设A ={a },则下列写法正确的是( )。
A .a =A B.a ∈A C. a ⊆A D.a ∉A2.函数f (x )=lg (1-x )的定义域为( )A .x ≠1B .{x |x ≠1 }C .(1,+∞)D .[1,+∞)3.如果函数f (x )=g (x )+2 ,已知g (2)=-2,那么f (2)=( )A .2B . 5C .4D .04.已知→a =(0,-2),→b =(-1,1),则→a ∙→b =( ) A .-2 B .0 C .-3 D .25.与角-450终边相同的角是 ( )A 、π45B 、-405ºC 、π47- D 、765º 6.已知直线l : 2x -y -1=0,那么这条直线的斜率和截距分别为( )A .2,1B .1,2C .2,-1D .-2,-17.下列命题中,正确的是( )A 、平面就是平行四边形 。
B 、过直线外一点有且只有一条直线与这条直线平行 。
C 、空间内不相交的两条直线一定是平行直线。
D 、垂直于同条直线的两条直线平行。
8. 书架上有语文、英语、数学、物理、化学共5本不同的书,现从中任抽一本,则没有抽到物理书的概率是( ).A .51B . 52C .53D .54 二、填空题(本大题共5小题,每题6分,共30分)9. 已知集合A ={小于4的自然数},B ={0,1},则A ∩B = ;10.函数y =1+3sin (2x +1)的最小正周期是 ;11.已知两直线l 1: x -y+2=0与l 2: x -y -1=0,则这两条直线的距离为 ;12.假设某人从甲地到乙地有8种不同的方法,从乙地到丙地有5种不同的方法,则从甲地到丙地一共有种方法;13.已知圆柱体的模具的底面半径为10cm,高15cm,现在在模具中间挖空一个半径为4cm,高为15cm的小圆柱体,问剩下的这个模具的体积为;三、解答题(本大题共2小题,共30分)14.已知数列为:1,2,4,7,11...,求这个数列的第12项。
第二部分 数学(模拟题1)一、单项选择题.(每题5分,共8小题,共40分)1.下列正确的是( )A .{Ø}=0B .1∈{(-1,1)}C .3⊆{x |x >1}D .Ø⊆{0}2.下列函数是偶函数的是( )A .y =x 2+1B .y =sin xC .y =cos xD .y =2x3.已知函数的定义域为R ,则下列函数正确的是( )A .y =x -1B .y =2x -1C .y =log 2xD .x y =4.已知角α是三角形的一个内角,若21sin α,则α=( ) A .300 B .600 C .1200 D .300 或15005.已知点A(2,1)与点B(-2,-4),则向量BA =( )A. (-4,-5)B.(4,5)C.(-4,5)D.(4,-5)6.已知圆的方程为x 2-2x +y 2+4y -11=0,则它的圆心与半径分别是( )A .(1,2),4B .(-1,2),4C .(1,-2),4D .(-1,-2),47.下列命题错误的是( )A.如果两个平行平面同时和第三个平面相交,那么它们的交线互相平行。
B .如果一条直线与一个平面平行,并且经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
C . 如果在一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面互相平行。
D .如果平面外的一条直线与平面内的所有直线都平行,那么这条直线与这个平面平行。
8.某样本容量为60,若采取分层抽样的方法,若一、二、三级品的个数之比为2:3:5,则从二级品中应抽取( )个。
A .12B .18C .30D .60三、解答题(本大题共2小题,共30分)9.已知y =1-2cosα,则y 的最小值是 ,最大值是 ;10.=-)314sin(π; 11.已知数列:...643-432321-,,,⨯⨯⨯则这个数列的通项公a n = . 12.已知一扇形的半径为5cm ,圆心角为1200,则此扇形的面积为 .13.若某学校高三一班有25个男生,30个女生,要从男女生中各选拔出一个同学作为学校代表参加比赛,共有 种选法。
机密★启用前山东省高等职业教育对口招生数学模拟试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间90分钟.考试结束后,将本试卷和答题卡一并交回.2.本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01.第Ⅰ卷(选择题,共60分)一、选择题(本大题共30小题,每小题2分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项选出) 1.设集合A={1,2,4,5},B={2,5,6,7},则A ∪B 等于﹙ ﹚ (A ){2,5}(B ){1,2,,3,4,5,6,7}(C ){1,2,4,5,6,7} (D ){2,4,5} 2. 对于命题p :x >3,命题q :x >1,则p 是q 的﹙ ﹚ (A )充分条件 (B )必要条件(C )充要条件 (D )既不充分也不必要条件 3.函数y =2x -1的定义域是( )(A ){x ︱x >0} (B ){x ︱x <0} (C ){x ︱x =0} (D )x ∈R 4.设log a 13>1,则a 的取值范围是( )(A )(13 ,1) (B )(0,13)(C)(0,1) (D)(1,+∞)5.等差数列{a n}中,a1=3, a100=36,则a5+a96=()(A)39 (B)36 (C)38 (D)426.已知:∣→a∣= 4, ∣→b∣= 3,<→a,→b>= 60°,则∣→a+2→b∣=()(A)13 (B)10 (C)27(D)219 7.已知f (2x)=x2+x+1,则f (-2) = ( )(A)0 (B)1 (C)3 (D)68.直线y-3=k (x+2)恒过点()(A)(3,-2)(B)(-2,3)(C)(2,-3) (D)(-3,2)9.某同学到4个景点旅游,每个景点游览一天,则不同的游览次序有()种。
第二部分 数学(模拟题1)一、单项选择题.(每题5分,共8小题,共40分)1.设集合M ={-1,0,1}, N ={0,1}, 则 ( )A .M ∩N =ØB .N ∈MC .N ⊆MD .-1∈N2.函数12y -+=x x 的定义域为是( ) A .(-2,1) B .(-∞,-2)∪(1,+∞) C .(-∞,1]∪(2,+∞) D .[-2,1)∪(1,+∞)3.函数y=| x|-2的值域是( )A .(0,+∞)B .(2,+∞)C .[2,+∞)D .R4.函数y =sin α 的图像关于( )A .原点对称B .x 轴对称C .直线y =1对称D .y 轴对称5.若α=-450,则下列终边相同的角是( )A .-3150B .2πC .6750D .-3π6.已知点A (1,-2)到直线3x - 4y -1=0的距离为( )A .0B .1C .2D .37.空间中两平面同时垂直于另一个平面,则两个平面的位置关系是( )A .相交B .平行C .相交或平行D .无法确定8. 随机抽查工厂生产的一批灯泡100个,一等品和二等品为合格产品,其余为残次品,抽到一等品为60件,抽到二等品为36件,则该灯泡的合格率为( )A .60%B .36%C .96%D .4%二、填空题(本大题共5小题,每小题6分,共30分)9.已知集合A ={(x,y )|x+y -1=0},B ={(x,y )|2x -y +4=0},则A ∩B= .10.已知若→a =(-2,n ),→b =(2,-3),且b a ρρ⊥,则n 的值为 . 11.经过点P(-3,4) ,且圆心在(1,0)的圆的标准方程是 .12.有20个学生,8个老师,要分别派一个学生和一个老师组合参加会议,共有种不同派法;13.圆锥的底面半径为5cm,母线长为8cm,则这个圆锥的侧面积为.三、解答题(本大题共2小题,共30分)14. 已知数列{a n}中,a1=2且a n+1-a n=n,求a8 . (10分)15.为了鼓励节约用水,某地方水费按这样的形式:每户每月用水不超过10立方时,按1.8元每立方收费,超过15立方时,超出部分按2元每立方收费,设某户用水量为x立方,应每月缴费为y元.(1)列出的函数解析式.(10分)(2)若该户某月用了18立方水,应交多少钱?如交了40元钱,可用多少立方水?(10分)第二部分数学(模拟题2)一、单项选择:(第二部分数学(模拟题2)一、单项选择题.(每题5分,共8小题,共40分)1.下列正确的是( )A.0 ⊈ØB.0⊆{0,-1}C.Ø∈{0}D.0∈{x|3x≥0}2.函数f (x)=-2x2-1,则函数的值域为( )A.[-2,+∞) B.[-1,+∞) C.[1,+∞) D.R3.已知→a=(-2,6),→b=(4,-2),则→a•→b=( )A.20 B.4 C.-20 D.-44.已知直线4x-3y-1=0与圆(x-2)2+y2=4,则它们的位置关系是( )A. 相交B. 相切C. 相离D. 以上都有可能5.已知cos x=2a-3,则实数a的取值范围是( )A. (-1,2)B.[-1,1]C.[1,2]D.[-5,-1]6.均值是17的样本是( )A .12,15,23 B. 9,16,27 C. 14,18,19 D. 3,19,287. 下列说法不正确的是( )A.两条相交直线一定能确定一个平面。
第二部分 数学(模拟题1)一、单项选择题.(每题5分,共8小题,共40分)1.设集合M ={奇数}, N ={x |x <6,x ∈N },则M ∩N = ( )A .{x |x <6}B .{x |0≤x <6}C .{1,3,5}D .{x |x <6,x ∈N }2.函数13)(--=x x x f 的定义域为是 ( ) A .{x |x ≤0且x ≠1} B .{x |x ≥3且x ≠1} C .(-∞,1)∪[3,+∞) D .(-∞,1)∪(1,+3]3.函数32-=x y 的值域是( ) A .(0,+∞) B . ),3[+∞- C .),3[+∞ D .R4.“以a 为底x 的对数等于y ”记作( )A .x =log y aB .x =log a yC .y =log a xD .y =log x a5.与角-450终边相同的角的集合是( )A .{x |x=-450+k ∙900,k ∈Z }B .{x |x=-450+k ∙1800,k ∈Z }C .}4{Z ,k +k x|x=∈-ππD .}24{Z ,k k +x|x=∈-ππ 6.函数y =3-2sin 2x 的最大、最小值分别是( )A .1,4B .4,1C .7,-1D .5,17.等比数列1,-2,4,..中-128是( )A .第9项B .第8项C .第7项D .第10项8.一容量为n 的样本,分组后,如果某数的频数为60,频率为0.3,则n =( )A .200B .18C .60.3D .180三、解答题(本大题共2小题,共30分)9.已知y =1-2cosα,则y 的最小值是 ,最大值是 ; 10.=-)314sin(π; 11.已知数列:...643-432321-,,,⨯⨯⨯则这个数列的通项公a n = . 12.已知一扇形的半径为5cm ,圆心角为1200,则此扇形的面积为 .13.若某学校高三一班有25个男生,30个女生,要从男女生中各选拔出一个同学作为学校代表参加比赛,共有种选法。
第二部分 数学(模拟题1)一、单项选择题.(每题5分,共8小题,共40分)1.设集合M ={-1,0,2}, N ={0,1}, 则 ( )A .M ∩N =ØB .N ∈MC .N ⊆MD .-1∉N2.下列不等式中正确得到是 ( )A .5a >3aB .5+a >3-aC .3-a >2-aD .a 3a 5> 3.函数23y 2+-=x x 的定义域为是( )A .(1,2)B .(-∞,1)∪(2,+∞)C .(-∞,1]∪(2,+∞)D .(-∞,1]∪[2,+∞)4.若f (x )=2x 2,且x ∈{-2,0,2} 则f (x ) 的值域是( )A .{-2,0,2}B .{1,9}C .[1,9]D .(1,9)5.函数与x x y y=)21(2=与的图像关于( )A .原点对称B .x 轴对称C .直线y =1对称D .y 轴对称6.若角α是第二象限角,则化简αα2sin 1tan -的结果为( ) A .sin α B .-sin α C .cos α D .-cos α7.已知点A (2,-3),点B (5,2),则向量BA 的坐标为( )A .(3,5)B .(-3,-5)C .(-3,5)D .(3,-5)8.空间中平行于同一条直线的两条直线的位置关系是( )A .相交B .平行C .异面D .以上三种情况都有二、填空题(本大题共5小题,每小题6分,共30分)9.已知集合A ={x |0<x <4,x ∈N },B ={x |-1<x ≤7},则A ∩B= .10.|x -2|≥3的解集是 .11.若角a 的终边上的一点坐标为(-2,2),则sinα的值为 .12.在2和32之间插入3个数a ,b ,c ,使2,a ,b ,c ,32成等比数列,则b 的值是 .13.学校餐厅有8根底面周长为3πm ,高是4m 的圆柱形柱子,现在要刷上油漆,每平方米用油漆2kg ,则刷这些柱子需要用 kg 。
第二部数学(模拟题1)三、解答题(本大题共3小题)13.已知集合4}<x <0|{x =A ,5}<x 2|{x = B ≤,求B A B A ,.(10分){15.(1)甲乙二人同时射击,甲的命中率是0.79,乙的命中率为0.83,则至少一人命中的概率是多少?(10分)(2)求以P (4,1)为圆心且与直线5x-12y-60=0相切的圆的标准方程。
(10分)=)(x f .设14.0,23,01,2,1x x 2≥-<≤---<x x x 分)10(21f 3f 2-f )的值。
()(),(求第二部分数学(模拟题2)三、解答题(本大题共3小题)13.计算:(10分)(1)lg2+lg5(2)21414.某电影院有20排座位,第一排有16个座位,后排比前一排多一个座位,若每个座位票价为2元,问满座后营业额是多少?15.为了鼓励节约用水,某地方水费按这样的形式收费,每户每月用水不超过10立方米时,按1.5元每立方米收费,超过10立方米时,超出部分按2元每立方收费,设某用户用水量为x 立方米,应每月缴费f (x )元,(1)列出f (x )的函数解析式?(10分)(2)若该用户某月用了15立方水要多少钱?如交了40元钱,可用多少立方水?(10分)第二部分数学(模拟题3)三、解答题(本大题共3小题)13.计算:(10分)(1)31-021125.02.8-94)()()(++;(2)1522log 5log 10lg 1log -33--+14.已知sina=-21,且a 是第三象限的角,求角a 的余弦和正切值。
(10分)15.某商品的价格为60元时,月销售量为5000件,价格每提高2元,月销量就会减少100件。
在不考虑其他因素的情况下,(20分)(1)试求这种商品的月销量与价格之间的函数关系;(2)当价格提高到多少时,这种商品会卖不出去?三、解答题(本大题共3小题)13.计算:(10分)(1)21169)(;(2)5log 2414.已知圆锥的侧面展开图的圆心角是120°,半径是4,求这个圆锥的全面积(10分)15.某服装厂生产一批某品牌运动服,总量为2000套,定价按80元每套销售,刚好能卖完,如果价格每提高10元,销售量就减少500套,设销售总量为y 套,每套价格定价为x 元:(10分)(3)求这批运动服的销售总量与每套销售价格之间的函数关系;(10分)(4)当价格定价为多少元时,这批运动服卖不出去?(10分)三、解答题(本大题共3小题)13.解不等式,解集用区间表示:(10分)(1)51-x 2≥;14.求值:)427sin(-π(10分)15.某模具厂生产某种模具,如果每日最多可生产200件,每日固定成本为600元,生产每件产品的可变成本为15元:(5)请写出该厂每日的生产成本与生产产量之间的函数关系式;(10分)(6)求产量为50件时生产成本?产量为100件时生产成本?(10分)三、解答题(本大题共3小题)13.解不等式:(10分)x2 ;x2-14.已知函数f(x)=1-3sin2x,求f(x)的最大值与最小值:(10分)15.某航空公司允许旅客随身携带一定质量的行李,如果超过规定,就需要购买行李票,要交钱,已知所需购买行李票的费用y(元)与行李(千克)成一次函数关系,旅客甲的行李质量为4千克,被告知要付款10元,旅客乙的行李质量为6千克,被告知要付款30元:(1)求所需要购买行李票的费用y(元)与行李(千克)所成的函数关系式;(10分)(2)旅客可以免费携带的行李最多是多少?(10分)三、解答题(本大题共3小题)13.解不等式,并把它的解集用区间表示出来:(10分)023x -x 2≥+;14.已知一个小球的体积为)cm (362π,现做一个垂直于这个球的直径的截面,求这个截面的最大面积可以是多少?(10分)15.某城市地铁按以下标准收费:在1到3站以内(包含3站),收费2元,7站以内(包含7站),收费4元,12站以内(包含12站),收费6元,12站以上全部收8元:(1)设搭地铁所需车费为y 元,搭地铁所经过的站数为x 个站,请写出y 与x 的解析式;(2)如果小张在地铁线路的第2个站上车,第13个站下车,小张要给多少车费?如果在第9个站下车,要给多少车费?三、解答题(本大题共3小题)13.已知()53x -2x x f 2+=,求()1-f ,()1f ,()0f 的值。
第二部分 数学(模拟题1)一、单项选择题.(每题5分,共8小题,共40分)1.下列正确的是( )A .{Ø}=0B .1∈{(-1,1)}C .3⊆{x |x >1}D .Ø⊆{0}2.下列函数是偶函数的是( )A .y =x 2+1B .y =sin xC .y =cos xD .y =2x3.已知函数的定义域为R ,则下列函数正确的是( )A .y =x -1B .y =2x -1C .y =log 2xD .x y =4.已知角α是三角形的一个内角,若21sin =α,则α=( ) A .300 B .600 C .1200 D .300 或15005.下列相互平行的向量是( )A.→a =(4,-5),→b =(-4,5)B.→a =(2,4),→b =(8,4)C.→a =(1,-2),→b =(4,2)D.→a =(3,-4),→b =(-4,3) 6.在平面直角坐标中,已知点A (-1,2),点B (2,-2),则AB 的距离是( )A .5B .10C .25D .37.下列命题错误的是( );A .不共线的三点一定能够确定一个平面。
B .两条相交直线一定能确定一个平面。
C .一条直线与一个平面内无数条直线垂直,则这条直线垂直与这个平面。
D .若两条直线同时垂直于同一个平面,那么这二条直线平行。
8. 在10000张奖券中,有1张一等奖,5张二等奖,2000张三等奖,某人从中任意摸出一张,那么他中三等奖的概率是( )A .110B .51C .201D .100016 二、填空题(本大题共5小题,每小题6分,共30分)9.已知y =1-8cosα,则y 的最小值是 ,最大值是 ;10.若直线2x -ay +1=0与3x +2y -1=0互相垂直,那么a = ;11.已知一个圆柱体的底面半径是8cm ,高是3cm ,则这个圆柱体的表面积是;12.由数字1,2,3,4,5可以组成个没有重复数字的三位奇数;13.若某学校高三一班有25个男生,30个女生,要从中选拔出一个同学作为学校代表参加比赛,共有种选法。
第二部分 数学(模拟题1)一、单项选择题.(每题5分,共8小题,共40分)1.下列数学表达正确的是( )A. 0∈{(0,1)} B .Ø⊆{0,1,2,3} C .0∈Ø D .4⊆{x |x>3}2.函数21)(+=x x f 的定义域为是( ) A .x ≠2 B .(-∞,-2)∪(-2,+∞) C .{x |x<2或x>2} D .(-∞,+∞)3.函数f (x )=x 2-2x +1,则f (2)=( )A .1B .5C .7D .94.已知22sin =α,且α是第二象限角,则cos α=( )tan α=( ), A .33,22 B .33,22-- C .1,22- D .1,22-- 5.已知经过点A (2,2),且与直线2x -3y -1=0平行是直线是( ) A.3132--=x yB.2x +3y -5=0C.2x +3y =0D. 2x -3y +2=0 6.已知圆的方程为x 2+y 2+2x -4y =0,则这个圆的圆心是( ),半径是( )A .5),2,1(-B .5),2,1(-C .5),2,1(-D .5),2,1(-7. 下列不正确的是( );A.若一条直线有两个点在一个平面上,则这条直线在此平面内;B.平行于同一条直线的两直线平行,在空间中也是一样;C.若平面外的一条直线与平面内的所以直线平行,那么这条直线与这个平面平行;D.如果在一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面互相平行。
8.体育课中,进行投3分篮比赛,甲同学投进3分的概率是0.2,乙同学投进3分的概率是0.15,问甲乙同学都投进3分的概率是( )A .0.3B .0.15C .2D .0.03二、填空题(本大题共5小题,每题6分,共30分)9.设A =[-2,+∞),B ={x |x<3},求A ∪B = ;10.已知向量→a=(-2,4),→b=(3,-1),则2→a-3→b=;11.小王、小李、小张、小高的平均体重是40千克,已知小王体重为45千克,小李体重为40千克,小张比小高重2千克,则小高的体重为;12.若一个球的半径为R,现经过这个球的半径的中点,作一个垂直于这条半径的截面,那么这个截面的面积为.13.某商店搞活动,兵乓球拍原价每副20元,现在打6折,若小明有80元,则小明最多可以购买副兵乓球拍.三、解答题.(本大题共2小题,共30分)14.某电影院有20排座位,第一排有16个座位,后排比前排多一个座位,若每个座位票价为25元,问满座后营业额是多少?(10分)15.为了鼓励节约用水,某地方水费按这样的形式收费,每户每月用水不超过20立方时,按2.5元每立方收费,超过20立方时,超出部分按3元每立方收费,设某有户用水量为x立方,每月缴费为f (x)元:(1)列出f (x)的函数解析式;(10分)(2)若该户某月用了25立方水要用多少钱?如交了80元,可用多少立方水?(10分)第二部分 数学(模拟题2)一、单项选择题.(每题5分,共8小题,共40分)1.设集合M ={奇数}, N ={x |x <6,x ∈N },则M ∩N = ( )A .{x |x <6}B .{x |0≤x <6}C .{1,3,5}D .{x |x <6,x ∈N }2.函数13)(--=x x x f 的定义域为是( ) A .{x |x ≤0且x ≠1} B .{x |x ≥3且x ≠1} C .(-∞,1)∪[3,+∞) D .(-∞,1)∪(1,+3]3.函数32-=x y 的值域是( ) A .(0,+∞) B . ),3[+∞- C .),3[+∞ D .R4.“以a 为底x 的对数等于y ”记作( )A .x =log y aB .x =log a yC .y =log a xD .y =log x a5.与角-450终边相同的角的集合是( )A .{x |x=-450+k ∙900,k ∈Z }B .{x |x=-450+k ∙1800,k ∈Z }C .}4{Z ,k +k x|x=∈-ππD .}24{Z ,k k +x|x=∈-ππ 6.函数y =3-2sin 2x 的最大、最小值分别是( )A .1,4B .4,1C .7,-1D .5,17.等比数列1,-2,4,..中-128是( )A .第9项B .第8项C .第7项D .第10项8.一容量为n 的样本,分组后,如果某数的频数为60,频率为0.3,则n =( )A .200B .18C .60.3D .180二、填空题(本大题共5小题,每题6分,共30分)9.log 64+log 69= .10.已知若→a =(-2,n ),→b =(1,-4),且b a ρρ⊥,则n 的值为 .11.经过点P(-3,4) ,圆心在(1,1)的圆的标准方程是 .12.样本2,5,6,9,13的均值是 .13.圆锥的底面半径为6cm ,母线长为10cm,则这个圆锥的体积为 .三、解答题(本大题共2小题)14.已知21-=sin α,且角α是第三象限角,求角α的余弦值和正切值.(10分)15.依法纳税时每个公民的应尽义务,国家征收个人工资,薪金所得税是分段计算的。
第二部分 数学(模拟题1)一、单项选择题.(每题5分,共8小题,共40分)1.x +1=0是(x -2)(x +1)=0的( )A .充分条件B .必要条件C .充要条件D .无法确定2.函数2)(2-=x x f 的值域是( )A .RB .),(2-∞C .)2[∞+-,D .)2[∞+,3.下列函数在定义域内是增函数的是( )A .y =x 2+3 B. y =-2x +1 C.y =0.8x D .y =lgx4.=)(413-t πan ( )A .1B .-1C .±1D .3-5.已知→a =2,→b =4,→a ∙→b =-4,则→a 与→b 的夹角为( )A.1200B.600C. 32-π D.34π6.半径为2,且与x 轴相切于原点的圆的方程为( )A .(x +2)2+y 2=4B .(x -2)2+y 2=4C .x 2+(y +2)2=2D .x 2+(y -2)2=47.下列命题不正确的是( )A 在空间中,互相垂直的两条直线不一定是相交直线。
B 过空间一点与已知直线垂直的直线有无数条。
C 空间内垂直同一条直线的两条直线一定平行。
D 平行于同一条直线的两条直线必平行。
8.小明从一副54张的扑克牌中任抽取一张,抽中3的概率是( )A .541B .5413C .41D .272二、填空题(本大题共5小题,每题6分,共30分)9.已知某器械内的转子逆时针旋转,每秒钟旋转80圈,问该转子1分钟内转过的圆心角为 ;(用弧度制表示)10.已知直线l 1: x -y+2=0与l 2: x -2y -1=0的交点坐标为(a,b),则a -b= ;11.已知一副扑克牌有54张,那么任抽一张是红心的概率是= .(保留分数)12.已知矩形ABCD ,AB =4cm ,BC =3cm ,现以BC 为旋转轴旋转一周,得到一个几何体,那么这个几何体的表面积是 cm 2;13.已知⎩⎨⎧--=33)(2x x x f 00x x ≤>,则f(-2)= 。
第二部分数学(模拟题1)一、单项选择题.(每题5分,共8小题,共40分)1.下列正确的是( )A.0 ⊈ØB.0⊆{0,-1}C.Ø∈{0}D.0∈{x|3x≥0}2.函数f (x)=-2x2-1,则函数的值域为( )A.[-2,+∞) B.[-1,+∞) C.[1,+∞) D.R3.已知→a=(-2,6),→b=(4,-2),则→a•→b=( )A.20 B.4 C.-20 D.-44.已知直线4x-3y-1=0与圆(x-2)2+y2=4,则它们的位置关系是( )A. 相交B. 相切C. 相离D. 以上都有可能5.已知cos x=2a-3,则实数a的取值范围是( )A. (-1,2)B.[-1,1]C.[1,2]D.[-5,-1]6.均值是17的样本是( )A .12,15,23 B. 9,16,27 C. 14,18,19 D. 3,19,287. 下列说法不正确的是( )A.两条相交直线一定能确定一个平面。
B.若平面α内不共线的三点到平面β的距离相等,则平面α∥平面β。
C.两平行直线一定能够确定一个平面。
D.一条直线与一个平面内的所有直线都垂直,则这条直线垂直该平面。
8. 已知点A(-2,3)和点B(1,-1),则AB两点的距离为( )A.-5B.3 C.4 D.5二、填空题(本大题共5小题,每小题6分,共30分)9.已知角α的终边经过点M(12,-5),则sinα=;10.若直线经过点(2,5)和(4,-3),那么直线方程为:;11.若三棱锥的棱长都是a,则它的表面积为:;12.从A,B,C三个球队中产生冠亚军各一队,共有种结果;13.某工厂生产一批产品,每月固定成本为12000元,每件产品的可变成本为60元,若某月生产5000件产品,则这个月的成本为元.三、解答题(本大题共2小题,共30分)14. 在4与24之间插入3个数,使这5个数成等差数列,求这3个数.(10分)15.某航空公司规定旅客可以携带一定重量的行李,如果超出规定就要付钱,假如行李费用为y元,行李质量为x千克,y与x成一次函数关系,已知小东携带40千克要付费2块钱,小明携带50千克行李要付费4块钱:(1)请写出y与x的函数关系式; (8分)(2)求旅客携带65千克行李需要付费多少?(6分)(3)求旅客最多可以免费携带多少千克行李?(6分)第二部分 数学(模拟题2)一、单项选择题1.下列关系中不正确的是( )A .}{0φ∈B .{(2,3)}2∉C .{0}⊆φD .})1,0({0∈2.“21sin =A ”是“A=30°”的( )A .充分条件B .必要条件C .充要条件D .既不充分也不必要3.不等式x 2-3x -4>0的解集是( )A .()4,1- B.()+∞,4 C. ()1--∞, D .()()∞+∞,,41-- 4.函数)(x -4log y 3=的定义域是( ) A .)4,1[- B .),4+∞( C .)4-,(∞ D .)4,1-( 5.下列在实数域上定义的函数,是减函数的是( )A .x 2y =B .2x y =C .x log y 2=D .y=-3x+56.π617cos 的值是( ) A. 21 B. 21- C.23 D.33- 7.下列命题错误的是( )A .垂直于同一条直线的两个平面互相平行;B .垂直于同一个平面的两条直线互相平行;C .垂直于同一个平面的两个平面互相平行;D .一条直线在平面内,另一条直线与这个平面垂直,则这两条直线互相垂直。
2020年中职数学对口升学模拟试题一.选择题(本大题10小题,每小题3分,共30分) 1.集合M={x |x ≤4},15a =,那么正解的关系是( )A.M ⊆aB.M ∉aC. M ∈}a {D.M ⊆}a {2.“三角形一个内角是︒60”是“三角形三个内角成等差数列”的( )A.充分条件B.必要条件C.充要条件D.以上都不对3.12log x 3=,则x4=( )A.6B.9C.2l 34og D.44.已知向量→→→→→→+--==b -a b a ),1,8(b ),,1(a 与且x 相互垂直,则x=( )A.-8B.8±C.8D.不存在5.函数212)52()(f +-=x x x 的值域是( );A.),0[+∞B.),2[+∞C.),4[+∞D.),-[+∞∞6.直线ax+2y-8=0与直线x+(a+1)y+4=0平行,则a=( )A.1B.1或-2C.-2或-1D.-17.=︒︒-︒15cos 15sin 415cos 32( )A.2-B.22C.22-D.28.抛物线px 2y 2=与直线ax+y-4=0交于A,B 两点,其中点A(1,2),设抛物线焦点为F ,则|FA|+|FB|=( )A.4B.5C.6D.7 9.52)1(xx +的展开式中的系数之和是( )A.32B.12C.10D.1610.如果偶函数f(x)在区间[-6,-2]上是减函数且最大值为5,则函数f(x)在[2,6]上是( ) A.增函数且最小值为-5 B.增函数且最大值为5 C.减函数且最小值为-5 D.减函数且最大值为5二.填空题(本大题共8小题,每小题4分,共32分) 1.已知=<<<=-=βπαββαα则若,20,1413)cos(,71c os . 2.若实数x,y 满足=+==y1x 1,217,213则yx. 3.圆4x 22=+y 上的点到直线4x+3y+c=0的最小距离为5,则圆上的点到直线的最大距离为 4.用1,2,3,4,5五个数组成没有重复数字的四位数,从这四位数中任取一个数,不是5的倍数的概率是5.圆锥的侧面积是其底面积的2倍,则其母线与底面所有的角为 .6.过圆4x 22=+y 上一点P (1,-3)的切线方程是 .7.等比数列}{n a 中,173a a 和是方程016102=+-x x 的两根,则=10a .8.已知双曲线19y 16x 22=-,过右焦点2F 交双曲线右支的弦AB ,|AB |=5,双曲线另一个焦点为F 1, 则1ABF ∆点的周长是 . 三.解答题(本大题共6小题,共38分)1.求函数)352(log )(f 22--=x x x 的定义域,单调区间和值域.(6分)2.已知等差数列}{n a 中,14,5a 52==a (1)求}{n a 的通项公式(2)设}{n a 的前n 项和为n S =155,求n 的值.(6分)3.一个袋中有6个球,编号分别为1,2,3,4,5,6,现从中任取3只,求3只球中号码最大的编号X 的概率分布及其期望.(6分)4.已知→→→→→→→→→→-=+=︒>=<==bamdbacbaba3,53,60,,2,3,问(6分)(1)当m取何值时,→→dc与垂直;(2)当m为何值时→→dc与平行。