高等数学导数的四则运算法则
- 格式:ppt
- 大小:490.00 KB
- 文档页数:31
求函数的导数公式函数的导数公式是描述函数在某一点处斜率的一种数学工具,对于一般的函数f(x),它的导数可以用下面的公式来表示:1.导数的定义公式f'(x) = lim(h->0) [f(x + h) - f(x)]/h在这个公式中,f(x + h)表示以点(x + h, f(x + h))为端点的割线斜率,f(x)是函数f(x)在点x处的函数值,h表示x + h与x之差,即点(x + h, f(x + h))与点(x, f(x))之间的距离。
这个公式是导数定义的最基本形式,通常用于求解复杂函数的导数。
2.基本求导公式f'(x) = k,k为常数[f(x)g(x)]' = f'(x)g(x) + f(x)g'(x)[f(g(x))]’ = f'(g(x))g'(x)f’(x)/g(x) = [f'(x)g(x) - f(x)g'(x)]/[g(x)]^2[f(x)]^n = nf'(x)[f(x)]^(n-1),n为正整数这里列举了一些常用的求导公式。
对于任何由基本函数组成的函数,都可以使用这些公式求其导数。
3.导数的运算法则导数具有很好的运算性质,常用的运算法则有:(1)线性性质:f(x) ±g(x)的导数为f'(x) ±g'(x),kf(x)的导数为kf'(x),k为常数。
(2)乘积法则:[f(x)g(x)]' = f'(x)g(x) + f(x)g'(x)。
(3)商数法则:[f(x)/g(x)]' = [f'(x)g(x) - f(x)g'(x)]/[g(x)]^2。
(4)复合函数的求导法则:如果y = f(g(x)),那么y' = f'(g(x))g'(x)。
以上是函数导数的一些基本公式和运算法则。
四个导数运算法则导数运算是高等数学中最重要的概念之一,它可以帮助我们分析特定函数在某一特定点处的斜率,从而了解函数的变化趋势。
从理论上讲,导数运算有四个法则,它们是加法法则、乘法法则、链式法则和指数法则。
首先,加法法则是指如果我们有两个函数f(x)和g(x),那么在某一特定点处,它们的导数之和的斜率等于f(x)的斜率加上g(x)的斜率,即:f'(x) + g'(x) = (f(x) + g(x))'其次,乘法法则指的是,如果我们有两个函数f(x)和g(x),那么在某一特定点处,它们的导数之乘积的斜率等于f(x)的斜率乘以g(x)的斜率,即:f'(x) * g'(x) = (f(x) * g(x))'第三,链式法则是指,如果我们有一个函数f(x),其中有另一个函数g(x),那么在某一特定点处,它们的导数的斜率等于f(x)的斜率乘以g(x)的导数的斜率,即:f'(x) * g'(x) = (f(g(x))'最后,指数法则指的是,如果我们有一个函数f(x)=ax^n,其中a是一个常数,那么在某一特定点处,它的导数的斜率等于这个函数乘以n的斜率,即:f'(x) = ax^(n-1) * n以上就是四个导数运算法则,它们可以帮助我们更好地理解特定函数在某一特定点处的变化趋势。
在实际应用中,这四个导数运算法则都是非常重要的,它们可以帮助我们计算函数的极限和斜率,从而了解函数的变化趋势。
例如,如果我们要求解f(x)=x2+2x+1的导数,那么我们可以使用加法法则,即f'(x)=2x+2,这样就可以计算出在某一特定点处f(x)的斜率。
另外,乘法法则也可以用来计算复杂函数的斜率,例如f(x)=x2+2x+1,g(x)=sinx。
我们可以使用乘法法则,将这两个函数相乘,得到f(x) * g(x)=x2+2x+1 * sinx,然后再求f(x) * g(x)的导数,即(f(x) * g(x))'=2x * sinx+2 * cosx+sinx,根据这个结果,我们可以得出某一特定点处f(x) * g(x)的斜率。
高等数学微积分公式大全一、基本导数公式⑴()0c '= ⑵1x xμμμ-= ⑶()sin cos x x '=⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅⑼()xxee'= ⑽()ln xxaaa '= ⑾()1ln x x'=⑿()1log ln xax a'= ⒀()arcsin x '= ⒁()arccos x '=⒂()21arctan 1x x '=+ ⒃()21arccot 1x x '=-+⒄()1x '=⒅'=二、导数的四则运算法则()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫= ⎪⎝⎭三、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑ 四、基本初等函数的n 阶导数公式 (1)()()!n nxn = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (5) ()()cos cos 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7) ()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则 ⑴()0d c = ⑵()1d xxdx μμμ-= ⑶()sin cos d x xdx =⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =- ⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅ ⑼()xxd ee dx = ⑽()ln xxd a aadx = ⑾()1ln d x dx x=⑿()1logln xad dx x a =⒀()arcsin d x =⒁()arccos d x = ⒂()21arctan 1d x dx x =+ ⒃()21arccot 1d x dx x=-+ 六、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭七、基本积分公式⑴kdx kx c =+⎰ ⑵11x x dx c μμμ+=++⎰ ⑶ln dxx c x=+⎰ ⑷ln xxa a dx c a=+⎰ ⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰ ⑺sin cos xdx x c =-+⎰⑻221sec tan cos dx xdx x c x ==+⎰⎰ ⑼221csc cot sin xdx x c x ==-+⎰⎰⑽21arctan 1dx x c x =++⎰ ⑾arcsin x c =+八、补充积分公式tan ln cos xdx x c =-+⎰ cot ln sin xdx x c =+⎰ sec ln sec tan xdx x x c =++⎰ csc ln csc cot xdx x x c =-+⎰2211arctan xdx c a x a a=++⎰ 2211ln 2x adx c x a a x a-=+-+⎰arcsinxc a=+ ln x c =+十、分部积分法公式⑴形如n ax x e dx ⎰,令nu x =,axdv e dx =形如sin n x xdx ⎰令nu x =,sin dv xdx =形如cos n x xdx ⎰令nu x =,cos dv xdx = ⑵形如arctan n x xdx ⎰,令arctan u x =,ndv x dx =形如ln n x xdx ⎰,令ln u x =,ndv x dx =⑶形如sin ax e xdx ⎰,cos ax e xdx ⎰令,sin ,cos axu e x x =均可。
课题2导数的四则运算法则一、复习基本初等函数的导数公式用定义只能求出一些较简单的函数的导数(常函数、幂函数、正、余弦函数、指数函数、对数函数),对于比较复杂的函数则往往很困难。
本节我们就来建立求导数的基本公式和基本法则,借助于这些公式和法则就能比较方便地求出常见的函数——初等函数的导数,从而是初等函数的求导问题系统化,简单化。
二、导数的四则运算法则设函数)(x u u =、)(x v v =在点x 处可导,则函数)(x u ±)(x v ,)()(x v x u ⋅,)0)(()()(≠x v x v x u 也在点x 处可导,且有以下法则: (1) [])()()()(x v x u x v x u '±'='±推论:[]'±±'±'±'='±±±±n n u u u u u u u u 321321 (2) [])()()()()()(x v x u x v x u x v x u '+'=', 推论1: [])()(x u C x Cu '='(C 为常数); 推论2:此法则可以推广到有限个函数的积的情形. 例 w uv w v u vw u uvw '+'+'=')((3) )0(2≠'-'='⎥⎦⎤⎢⎣⎡v v v u v u v u , 三、例题分析例:求 的导数解:例:已知x x y ln 3=,求y '解:)1ln 3(ln 3)(ln ln )()ln (222333+=+='+'='='x x x x x x x x x x x y例: 解:例:求的导数x x x x y ln cos sin 2⋅+⋅= 解3ln 11cos )(3++-=x x x x f ()()'+'⎪⎭⎫ ⎝⎛+'⎪⎭⎫ ⎝⎛-'='3ln 11cos )(3x x x x f 0131sin 234+-+-=-x x x x xx x sin 13123--=(x)f ,1)(2'+=求设x xx f 22222)1()1()1()()1()(x x x x x x x x f +'+-+'='+='2222222)1(1)1(21x x x x x +-=+-+=x x x x x x xx x x x x x x x x x x x cos ln sin cos 2sin )(ln cos ln )(cos )(sin 2sin )(2)ln (cos )sin x 2y +-+='⋅+⋅'+'+'='⋅+'='(附加练习:求下列函数的导数(1)x x y 33log = (2)x x xy sin cos 41+-=,(3)π+-=x x y 32(4)xx y +=41(5) (6)设4sin cos 4)(3π-+=x x x f ,求)(x f '及)2(πf '(7)x x x y cos )ln 2(-=四、导数的应用 例1 [电流]电路中某点处的电流i 是通过该点处的电量q 关于时间的瞬时变化率,如果一电路中的电量为t t t q +=3)(,(1)求其电流函数i (t ) ?(2)t =3时的电流是多少? 解:(1)13)()(23+='+==t t t t i ,(2)i(3)=28例2 [电压的变化率]一个电阻为 Ω6,可变电阻R 为的电路中的电压由下式给出: ,求在R=Ω7电压关于可变电阻R 的变化率 解例3[气球体积关于半径的变化率]现将一气体注入某一球状气球,假定气体的压力不变.问当半径为2cm 时,气球的体积关于半径的增加率是多少?解:气球的体积V 与半径r 之间的函数关系为气球的体积关于半径的变化率为 半径为2cm 时气球的体积关于半径的变化率为小结导数的四则运算作业 上册 p57 1—6),1()11)(1()(22f xx x f '-+=求3256++=R R V 26256333R R R V R R +++''==++()-(625)()()07.01007)7(-=-='V 334r V π=24r V π=')/(1624/322cm cm dtdVr ππ=⋅==课题3复合函数的导数一、复习导数公式 导数的四则运算法则 二、复合函数的求导法则因为x x cos )(sin =',是否可以类似写出x x 2cos )2(sin ='呢? 由三角函数的倍角公式可知x x x cos sin 22sin = ])(cos sin cos )[(sin 2)2(sin '+'='x x x x x )sin (cos 222x x -= x 2c o s 2=显然x x 2cos )2(sin ≠',因为x 2sin 不再是基本初等函数而是一个复合函数,对于求复合函数的导数给出如下法则.定理:如果函数)(x u ϕ=在点x 处可导,而函数)(u f y =在对应的u 处可导,则复合函数[])(x f y ϕ=也在x 处可导,且有dxdudu dy dx dy ⋅= 或 )()(]))(([x u f x f ϕϕ''=', 简记为 x u x u y y ''='证明:当)(x u φ=在x 的某邻域内不等于常数时, ∆u ≠0, 给自变量x 一增量x ∆,相应函数有增量y u ∆∆,因为0y 0x )()(→∆→∆==时,处连续,固有在处可导,可知在x x u x x u φφ)()(lim lim lim lim0000x u f xu u y x u u y x y x u x x ϕ'⋅'=∆∆∆∆=∆∆⋅∆∆=∆∆→∆→∆→∆→∆即 )()(]))(([x u f x f ϕϕ''=' 或 dxdudu dy dx dy ⋅= 当)(x u φ=在x 的某邻域内为常数时, y =f [ϕ(x )]也是常数, 此时导数为零, 结论自然成立. 说明:(1)复合函数对自变量的导数等于它对中间变量的导数乘以中间变量对自变量的导数。