小学数学几何图形计算公式
- 格式:doc
- 大小:24.50 KB
- 文档页数:2
小学数学常见几何图形计算公式1.正方形C周长 S面积 a边长周长=边长×4C=4a面积=边长×边长S=a×a2.长方形C周长 S面积 a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab3.三角形s面积 a底 h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高4.平行四边形s面积 a底 h高面积=底×高s=ah5.梯形s面积 a上底 b下底 h高面积=(上底+下底)×高÷2s=(a+b)× h÷26.圆形S面积 C周长 d=直径 r=半径π=圆周率(1)周长=直径×π=2×π×半径C=πd=2πr(2)面积=半径×半径×π7.长方体V:体积 s:面积 a:长 b: 宽 h:高(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh8.正方体V:体积 a:棱长表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a9.圆柱体v:体积 h:高 s;底面积 r:底面半径 c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10.圆锥体v:体积 h:高 s;底面积 r:底面半径体积=底面积×高÷3友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!。
——几何图形计算公式大全1.长方形的周长=(长+宽)×2公式:C=(a+b)×22.正方形的周长=边长×4公式:C=4a3.长方形的面积=长×宽公式:S=ab4.正方形的面积=边长×边长公式:S=a×a=a²5.三角形的面积=底×高÷2公式:S=ah÷2 6.平行四边形的面积=底×高公式:S=ah7.梯形的面积=(上底+下底)×高÷2 公式:S=(a+b)h÷28.圆的直径=半径×2公式:d=2r9.圆的半径=直径÷2公式:r=d÷210.圆的周长=圆周率×直径=圆周率×半径×2公式:c=πd=2πr——几何图形计算公式大全11.圆的面积=圆周率×半径×半径公式:S=πr²12.长方体的体积=长×宽×高公式:V=abh13.长方体(或正方体)的体积=底面积×高公式:V=S底面积h14.正方体的体积=棱长×棱长×棱长公式:V=a³15.圆柱的侧面积=底面的周长×高公式:S=C底h=πdh=2πrh16.圆柱的表面积=底面的周长×高+两侧圆的面积公式:S=Ch+2S=Ch+2πr²17.圆柱的体积=底面积×高公式:V=Sh18.圆锥的体积=⅓底面积×高公式:V=⅓Sh。
小升初数学几何热点“求阴影部分面积”专项练习求平面图形中阴影部分的面积,是每年小升初考试中的几何热点,思维能力要求高,学生失分率高。
由于阴影部分的图形常常不是以基本几何图形的形状出现,没法直接利用课本中的基本公式来计算,所以比较麻烦。
家长辅导孩子处理这类型的几何题,除了要让孩子熟练地掌握平面图形的概念和面积公式之外,关键还在于懂得如何“巧用方法、妙在变形”。
以下是小学阶段常见的求阴影面积的方法,家长可以让孩子边做边总结方法,逐一攻关,体验解题思维的乐趣。
一、几何图形计算公式1.正方形:周长=边长×4 C=4a面积=边长×边长 S=a×a2.正方体:表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3.长方形:周长=(长+宽)×2 C=2(a+b)面积=长×宽 S=ab4.长方体:表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)体积=长×宽×高V=abh5.三角形:面积=底×高÷2 s=ah÷26.平行四边形:面积=底×高 s=ah7.梯形:面积=(上底+下底)×高÷2 s=(a+b)×h÷28.圆形:周长=直径×π=2×π×半径 C=πd=2πr面积=半径×半径×π9.圆柱体:侧面积=底面周长×高表面积=侧面积+底面积×2体积=底面积×高10.圆锥体:体积=底面积×高÷3二、解题方法解题要点:1.观察图形的特点,根据图形特点选择合适的方法求解图形的面积。
2.能灵活运用所学过的基本的平面图形的面积求阴影部分的面积。
小学数学几何图形考点总结一、常见考点(1)三角形(分类、面积的计算)(2)四边形:①平行四边形(长方形—正方形)②梯形:(周长和面积)(3)圆:特征、周长、面积的计算(4)组合图形:面积的计算二、考试形式概念以及基本性质的考察、公式运用、平面图形的周长、面积、高的求解,这类题目主要以填空题的形式出现,难度较低。
平面几何出现大题中,常见类型是求阴影面积。
平面图形的面积问题一直是考察的重难点内容,可分为规则、不规则以及组合图形。
三、常见方法一、填空题类型:1、以某年TS试卷为例填空题多考察基础概念和性质。
该题边长增加1分米变为16分米,面积变为16*16=256平方分米。
原面积为15*15=225平方分米增加了256-225=31平方分米。
做这类题目,需要注意它的常见陷阱---单位。
首先要看题目中有没有单位,没有单位的我们要写上,其次要看单位是否统一,不统一的要化成统一单位。
此外,这些题目画草图也是一种好方法。
2、解答题类型,多以求阴影面积为主。
此类题要注意方法。
(1)求下图中的阴影面积该种题型的方法是重新组合法,一句话就是将不规则图形拆开,根据情况,组合成一个新的组合图形去求解。
组合后如下图:转换成一个圆,一个正方形,直接求即可。
(2)求下列阴影部分面积此类题型一般是用旋转法,左半图形绕B点逆时针方向旋转180度,使A 与C重合,从而构成下图的样子,此时阴影部分的面积可以看做半圆面积减去中间等腰三角形的面积。
对于不规则图形的面积通常比较难于求解.但掌握一些解题方法,有助于我们快速的解决问题。
常见的平面图形的面积的方法,除了上面两种方法,还有直接求法,辅助线法,割补法,平移法,对称添补法,大家在平面几何专题的时候,务必重视这些基本方法。
计算公式:1、长方形的周长= (长+宽)×2 C=(a+b)×22、长方形的面积= 长×宽 S=a×b3、正方形的周长= 边长×4 C=a×44、正方形的面积= 边长×边长 S=a×a。
完整版)小学数学图形体积计算公式大全在小学数学中,学生们需要研究和掌握不同图形的体积计算公式。
了解这些公式对于解决与三维几何相关的问题非常重要。
下面是一些常见图形的体积计算公式:1.立方体立方体是一个由六个相等的正方形面组成的三维图形。
它的边长一般用a表示。
立方体的体积计算公式为:体积 = a × a × a 或 V = a^32.直方体直方体是一个由六个矩形面组成的三维图形。
它的长度、宽度和高度分别用l、w和h表示。
直方体的体积计算公式为:体积 = l × w × h 或 V = lwh3.正方体正方体是一个特殊的立方体,其所有边长相等。
它的边长一般用s表示。
正方体的体积计算公式与立方体相同:体积 = s × s × s 或 V = s^34.圆柱体圆柱体是一个由一个底面为圆形的圆柱和两个平行于底面的圆柱面构成的图形。
它的底面半径和高度分别用r和h表示。
圆柱体的体积计算公式为:体积= π × r^2 × h 或V = πr^2h5.圆锥体圆锥体是一个由一个底面为圆形的圆锥和一个连接底面与顶点的曲面构成的图形。
它的底面半径和高度分别用r和h表示。
圆锥体的体积计算公式为:体积= (1/3) × π × r^2 × h 或V = (1/3)πr^2h6.球体球体是一个由所有距离球心相等的点构成的图形。
它的半径用r表示。
球体的体积计算公式为:体积= (4/3) × π × r^3 或V = (4/3)πr^3这些是小学数学中常见的图形的体积计算公式。
通过熟悉并掌握这些公式,学生们可以更好地理解和解决与三维几何相关的问题。
如果有需要计算体积的图形,请使用适当的公式进行计算。
图形与几何线和角(1)线*直线直线没有端点;长度无限;过一点可以画无数条,过两点只能画一条直线。
*射线射线只有一个端点;长度无限。
*线段线段有两个端点,它是直线的一部分;长度有限;两点的连线中,线段为最短。
*平行线在同一平面内,不相交的两条直线叫做平行线。
两条平行线之间的垂线长度都相等。
*垂线两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,相交的点叫做垂足。
从直线外一点到这条直线所画的垂线的长叫做这点到直线的距离。
(2)角(1)从一点引出两条射线,所组成的图形叫做角。
这个点叫做角的(2)角的分类顶点,这两条射线叫做角的边。
锐角:小于90°的角叫做锐角。
直角:等于90°的角叫做直角。
钝角:大于90°而小于180°的角叫做钝角。
平角:角的两边成一条直线,这时所组成的角叫做平角。
平角180°。
周角:角的一边旋转一周,与另一边重合。
周角是360°。
二平面图形1长方形(1)特征对边相等,4个角都是直角的四边形。
有两条对称轴。
(2)计算公式c=2(a+b)s=ab2正方形(1)特征:四条边都相等,四个角都是直角的四边形。
有4条对称轴。
(2)计算公式c=4as=a23三角形(2)计算公式(1)特征由三条线段围成的图形。
内角和是180度。
三角形具有稳定性。
三角形有三条高。
(2)计算公式s=ah+2(3)分类按角分锐角三角形:三个角都是锐角。
直角三角形:有一个角是直角。
等腰三角形的两个锐角各为45度,它有一条对称轴。
钝角三角形:有一个角是钝角。
按边分不等边三角形:三条边长度不相等。
等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴。
等边三角形:三条边长度都相等;三个内角都是60度;有三条对称轴。
4平行四边形(1)特征两组对边分别平行的四边形。
相对的边平行且相等。
对角相等,相邻的两个角的度数之和为180度。
平行四边形容易变形。
小学六年级上册数学公式详细整理汇总一、用字母表示运算定律或性质加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法交换律:ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:a(b+c)=ab+ac二、几何图形计算公式(1)周长:即围绕物体一周的长度。
①长方形周长=(长+宽)×2 C=(a+b)×2②正方形周长=边长×4 C=4a③圆的周长=圆周率×直径=圆周率×半径×2 C=πd C =2πr(2)面积:即物体的表面或封闭图形的大小①长方形的面积=长×宽S=ab②正方形的面积=边长×边长S=a?a=a2③平行四边形的面积=底×高S=ah④三角形的面积=底×高÷2 S=ah÷2⑤梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2⑥圆的面积=圆周率×半径S=πr2⑦直径d=2r 半径=直径÷2 r=d÷2⑧环形面积=外圆面积-内圆面积S环=S外-S内【相互联系】平面图形的面积公式是以长方形面积计算公式为基础的。
如两个完全相同的三角形、梯形可拼成一个平行四边形。
圆拼成长方形的长时1/2C,宽是R.(3)表面积:立体图形的所有面的面积之和叫做它的表面积①长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)②正方体的表面积=棱长×棱长×6 S=a×a×6 =6a2③圆柱体的侧面积=底面周长×高S=Ch =2πrh④圆柱体的表面积=侧面积+底面积×2 S=Ch+2πr2=2πrh+2πr2 注意:圆柱的底面周长与高相等时侧面展开是正方形,C=h 2πr=h(4)体积:物体所占空间的大小叫体积①长方体的体积=长×宽×高V=abh②正方体的体积=棱长×棱长×棱长V=a×a×a=a3③圆柱的体积=底面积×高V=sh=πr2h④圆锥的体积=底面积×高÷3 V=1/3sh=1/3πr2h 【相互联系】长方体、正方体和圆柱体的体积公式可统一成:V=sh即底面积×高.。
人教版小学1----6年级数学公式数量关系计算公式方面1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数总数÷总份数=平均数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学几何形体周长面积体积计算公式1、长方形的周长=(长+宽)×2 C=(a+b)×22、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽S=ab4、正方形的面积=边长×边长S=a.a=5、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高S=ah7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷28、直径=半径×2 d=2r 半径=直径÷2 r= d÷29、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr10、圆的面积=圆周率×半径×半径小学数学图形计算公式1 、正方形C周长S面积a边长周长=边长×4 C=4a边长=周长÷4 a=C÷4面积=边长×边长 S=a×a=a22 、正方体V:体积a:棱长表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a=a33 、长方形C周长S面积a长b宽周长=(长+宽)×2 C=(a+b)×2长=周长÷2-宽宽=周长÷2-长面积=长×宽S=a×b4 、长方体V:体积s:面积a:长b: 宽h:高(1)表面积=长×宽×2+长×高×2+宽×高×2 S=2(ab+ah+bh)(2)体积=长×宽×高V=abh长=体积÷(宽×高)宽=体积÷(长×高)高=体积÷(长×宽)5 三角形s面积a底h高面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 平行四边形s面积a底h高面积=底×高s=ah底=面积÷高高=面积÷底7 梯形s面积a上底b下底h高面积=(上底+下底)×高÷2 s=(a+b)×h÷2高=面积×2÷(上底+下底)上底=面积×2÷高-下底下底=面积×2÷高-上底8圆形S面积C周长∏d=直径r=半径直径=半径×2 d=2r 半径=直径÷2 r= d÷2 (1)周长=直径×π=2×π×半径C= π d =2πr 直径=周长÷π d= C ÷π半径=周长÷(2π) r=C÷(2π)(2)面积=π×半径×半径s=πr29 圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高①侧面积=πd×高(据直径求侧面积)②侧面积=2πr×高(据半径求侧面积)(2)表面积=侧面积+底面积×2①πd×高+π()2×2(据直径求表面积)②2πr×高+πr2 ×2(据半径求表面积)(3)体积=底面积×高 V=Sh底面积=体积÷高S=V÷H高=体积÷底面积H=V÷S长方体(正方体、圆柱体)的体积=底面积×高V=Sh10 圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3 V= S H底面积=体积×3÷高高=体积×3÷底面积长度单位换算1公里=1千米1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米1亩=666.666平方米体(容)积单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升重量单位换算1吨=1000 千克1千克=1000克1千克=1公斤(1公斤= 2市斤)人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒小学数学定义定理公式(二)一、算术方面1.加法交换律:a+b=b+a两数相加交换加数的位置,和不变。
上次和孩子一起做了小学数学几何图形的思维导图,今天把这个导图彻底完善了下,把所有的计算公式都加进去了,整个导图画下来,等于把这些几何图形知识全部复习了一遍,同时找到不同几何图形之间的关联,加深了孩子的记忆。
里面还有些图形孩子目前还没学到,我在填充的时候,着重给孩子讲解了公式的由来,实在讲不出来的,就直接写上公式了,等于给孩子预习,也方便孩子以后的复习。
下面直接上图。
一、基本图形在认识线和角的基础上,主要回顾了计量单位以及换算。
线段的长度单位:千米:km、米:m、分米:dm、厘米:cm、毫米:mm换算:1千米=1000米、1米=10分米、1分米=10厘米、1厘米=10毫米、1米=100厘米、1米=1000毫米角的计量单位:(°)二、平面图形平面图形在认识三角形、四边形、圆的基础上,主要是回顾计量单位、周长、面积计算公式,还有些图形对应的性质。
面积的计量单位:1、周长:围成一个图形的所有边长的总和就是这个图形的周长周长的计量单位和换算和线段一样2、面积:物体的表面或围成的平面图形的大小,叫做它们的面积面积的计量单位:平方千米、公顷、平方米、平方分米、平方厘米单位换算:1平方千米=100公顷、1公顷=10000平方米、1平方米=100平方分米、1平方分米=100平方厘米长方形:周长:长方形周长=(长+宽)× 2面积:长方形面积=长×宽正方形:正方形周长= 边长× 4正方形面积= 边长×边长长方形和正方形的周长和面积公式,孩子都记得比较熟悉,所以直接列出来。
平行四边形:平行四边形的周长是四条边相加,但对边相等,所以只要是两条边相加×2就可以了。
面积:平行四边形的面积是通过剪切和平移,转化成一个长方形来计算,最后演变结果是:平行四边形面积=底×高。
即:S=ah梯形:周长比较好计算,四边相加即可。
梯形的面积演变过程,因为两个一样的梯形可以拼成一个平行四边形,所以梯形的面积就是:梯形面积=(上底+下底)×高÷2。
小学几何图形基本概念及计算公式轴对称图形:如果一个图形沿着一条直线对折,直线左右的两部分能够完全重合,那么这个图形就叫做轴对称图形.这条直线叫做对称轴.长方形(2条对称轴),正方形(4条对称轴),等腰三角形(1),等边三角形(3),等腰直角三角形(1),等腰梯形(1),圆(无数条对称轴)等等,都是对称图形.点:线和线相交于点.直线:某点在空间中或平面上沿着一定方向和相反方向运动,所画成的图形,叫做直线.直线是向相反方向无限延伸的,所以它没有端点,不可以度量. (可以用表示直线上任意两点的大写字母来记:直线AB,也可以用一个小写字母来表示:直线a)射线:由一个定点出发,向沿着一定的方向运动的点的轨迹,叫做射线.这个定点叫做射线的端点,这个端点也叫原点.射线只有一个端点,可以向一端无限延长,不可以度量.(射线可以用表示他端点,和射线上任意一点的两个大写字母表示:射线OA)线段:直线上任意两点间的部分,叫做线段.这两点叫做线段的端点,线段有长度,可以度量.(线段可以用两个端点的大写字母表示:线段AB,也可以用一个小写字母表示;线段a)线段的性质:在连接两点的所有线中,线段最短.角:从一点引出两条射线所组成的图形,叫做角.这两条射线的公共端点,叫做角的顶点.组成角的两条射线,叫做角的边. 角的大小与夹角两边的长短无关.角的分类:直角:90度的角叫做直角平角:一条射线由原来的位置,绕它的端点按逆时针方向旋转,到所成的角的终边和始边成一直为止,这时所成的角叫做平角.或者角的两边的方向相反,且同在一条直线上时的角叫做平角,平角是180度. 锐角:小于90度的角叫做锐角钝角:大于90度的角叫做钝角垂直与平行:在同一个平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行.如果两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足.点到直线的距离:从直线外一点作这条直线的垂线,这点和垂足之间的线段长度,叫做点到直线的距离.从直线外一点到这条直线所画的垂线段最短.平行线间的距离:从一条直线上的一点向它的平行线作一条垂线,这点到垂足之间的线段的长度,叫做平行线间的距离.平行线间的距离处处相等.即,平行线间的垂线的长度都相等.三角形:由三条线段围成的图形(每相邻两条线段的的端点相连)叫做三角形.从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底.三角形具有稳定性.三角形边的性质:1、三角形任何两边的长度和大于第三边.2、三角形的任何两边的差小于第三边.三角形角三个内角的度数和叫做三角形的内角和.三角形的内角和是180度.三角形的分类:1、按边分:三条边都不相等的三角形,叫不等边三角形;三条边中有两条边相等的三角形,叫等腰三角形.三条边都相等的三角形,叫做等边三角形,也叫正三角形.2、按角分:三个角都是锐角的三角形,叫做锐角三角形.有一个角是直角的三角形,叫做直角三角形.有一个角是钝角的三角形,叫做钝角三角形.三角形的面积:三角形的面积=底×高÷2 通常用S表示三角形的面积,用a表示底,用h表示高.那么:S=ah÷2 或S=1/2ah长方形:对边相等,四个角都是直角的四边形,叫做长方形.长方形的长边叫做长方形的长,短边叫做长方形的宽.长方形的对边相等,并且四个角都是直角;对角线长度相等,又互相平行分.周长:图形一周的长度就是图形的周长.长方形的周长:长方形的周长=(长+宽)×2 通常用C表示周长,a表示长,b表示宽,那么C=(a+b)×2长方形的面积:长方形的面积=长×宽字母公式:S=a×b正方形:长和宽相等的长方形,叫做正方形.正方形的每条边都叫做边长.正方形的四条边的长度都相等,四个角都是直角.正方形又是特殊的长方形.对角线的长度相等,又互相垂直且平分.正方形的周长:正方形的周长=边长×4 字母公式:C=4a正方形的面积:正方形的面积=边长×边长字母公式:S=a×a或S=a的平方平行四边形:两组对边分别平行的四边形,叫做平行四边形.平行四边行对边相等,对角相等平行四边形的任意一组对边间的距离,叫做平行四边形的高,和高垂直的一边,叫做平行四边行的底. 平行四边形的面积:平行四边形的面积=底×高用字母表示:S=a×h菱形:有一组邻边相等的平行四边形,叫做菱形.菱形的四条边都相等,对角相等.梯形:只有一组对边平行的四边形,叫做梯形.在梯形中,互相平行的一组对边,分别叫做梯形的上底和下底.不平行的一组对边,叫做梯形的腰.梯形的两底之间的距离,叫做梯形的高.等腰梯形:两腰相等的梯形,叫做等腰梯形.直角梯形:一条腰垂直于底的梯形,叫做直角梯形.梯形的面积:梯形的面积=(上底+下底)×高÷2 梯形的面积=中位线×高,用a表示上底,b表示下底, h表示高.那么, 用字母表示:S=1/2(a+b)h圆:在平面上,以一个定点为中心,以一定长度为距离而运动一周形成的轨迹,叫做圆周,简称圆.这个定点叫做圆心,圆心通常用字母O表示.连接圆心和圆上任意一点的线段叫做半径,一般用字母r表示.通过圆心,并且两端都在圆上的线段叫做直径.一般用字母d表示.圆的性质:在同一个圆内,所有的半径都相等,所有的直径都相等;直径等于半径的2倍圆周率:圆的周长与这个圆的直径长度的比,叫做圆周率.圆周率是一个固定的值,用希腊字母“π”表示.它是一个无限不循环小数,但在实际应用中,一般取它的近似值,即π=3.14.约在2000年前中国的古代数学著作《周髀算经》中就有“周三径一”的说法,意思是说圆的周长是它直径的3倍.约1500年前,中国有一位伟大的数学家和天文学家祖冲之,他计算出圆周率应在:3.1415926和3. 1415927之间,成为世界上第一个把圆周率值精确到7位小数的人.他的这项伟大成就比国外数学家得出这样精确的数值的时间,至少要早1000年.现在人们用计算机算出的圆周率,小数点后面已经达到上亿位.圆的周长:圆的周长=圆周率×直径用字母示:C=πd 或C=2πr圆的面积:圆的面积=圆周率×半径的平方字母公式:S=πr的平方环形的面积:即圆环.两个半径不相等的同心圆的圆周之间所夹的平面部分,叫做环形.面积等于外圆的面积减去内圆的面积.扇形:由圆心角和圆心角所对的弧围成的图形,叫做扇形.扇形面积:扇形面积等于所在圆的面积除以360,再乘以圆心角的度数值.用n表示圆心角的度数,那么:S=πr的平方/360×n.体积:物体的占空间的大小,叫做物体的体积.容积:容器所能容纳物质的体积的大小,叫做容器的容积.长方体:长方体是由6个长方形(特殊情况也有两个相对的面是正方形)围成的立体图形.在一个长方体中,有6个面,12条棱,8个顶点,相对的面完全相同,相对的棱长度相等.相交于一个顶点的三条棱的长度分别叫做长方形的长,宽,高.长方体的表面积:长方体6个面的面积总和叫做它的表面积.长方体表面积=(长×高+长×宽+宽×高)×2长方体的体积:长方体的体积=长×宽×高或长方体的体积=底面×积高通常用V表示体积,a表示长,b表示宽,h表示高,S表示底面积.那么,V=abh 或V=sh正方体:长、宽、高都相等的长方体,叫做正方体(也叫立方体).正方体六个面都是正方形,12条棱长度都相等,6个面的面积都相等.正方体是特殊的长方体.正方体的表面积:正方体的表面积=棱长×棱长×6正方体的体积:正方形的体积=棱长×棱长×棱长字母公式V=a ×a×a或V=a的立方.圆柱:用长方形的一边作轴,并旋转360度,所得的几何体,叫做圆柱,简称圆柱.圆柱的上下两个面是相等的圆,叫做圆柱的底面;两个底面之间的距离叫做圆柱的高;曲面部分称为侧面.圆柱的侧面展开是一个长方形(或正方形)长就是圆柱的底面周长,宽就是圆柱的高.圆柱的表面积:圆柱的表面积=2底面积×底面周长×高圆柱的体积:圆柱的体积=底面积×高字母公式V=sh圆锥:用直角三角形的一条直角边为轴,把它旋转360度,所得的几何体,叫做直圆锥,简称圆锥.圆锥的底面是圆形;圆锥的顶点到底面的距离,叫做圆锥的高;圆锥的体积:圆锥的体积=1/3底面积×高字母公式V=1/3shTHANKS !!!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求欢迎您的下载,资料仅供参考。
小学数学图形计算公式:1立方分米=1升 1立方厘米=1毫升 1立方米=1000升重量单位换算1吨=1000 千克 1千克=1000克 1千克=1公斤人民币单位换算1元=10角 1角=10分 1元=100分时间单位换算1世纪=100年 1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月¥平年 2月28天, 闰年 2月29天平年全年365天, 闰年全年366天1日=24小时 1小时=60分 1分=60秒 1小时=3600秒小学数学几何形体周长面积体积计算公式1、长方形的周长=(长+宽)×2 C=(a+b)×22、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽 S=ab4、正方形的面积=边长×边长 S=a.a= a5、三角形的面积=底×高÷2 S=ah÷2,6、平行四边形的面积=底×高 S=ah7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷28、直径=半径×2 d=2r 半径=直径÷2 r= d÷29、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr10、圆的面积=圆周率×半径×半径常见的初中数学公式 :1 过两点有且只有一条直线2 两点之间线段最短。
3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行*11 同旁内角互补,两直线平行12 两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余|19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理(ASA) 有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等!27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边){35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理 1 关于某条直线对称的两个图形是全等形\43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理 3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247 勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48 定理四边形的内角和等于360°49 四边形的外角和等于360°50 多边形内角和定理 n边形的内角的和等于(n-2)×180°#51 推论任意多边的外角和等于360°52 平行四边形性质定理 1 平行四边形的对角相等53 平行四边形性质定理 2 平行四边形的对边相等54 推论夹在两条平行线间的平行线段相等55 平行四边形性质定理 3 平行四边形的对角线互相平分56 平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形57 平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形58 平行四边形判定定理 3 对角线互相平分的四边形是平行四边形~59 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形60 矩形性质定理 1 矩形的四个角都是直角61 矩形性质定理 2 矩形的对角线相等62 矩形判定定理 1 有三个角是直角的四边形是矩形63 矩形判定定理 2 对角线相等的平行四边形是矩形64 菱形性质定理 1 菱形的四条边都相等65 菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66 菱形面积=对角线乘积的一半,即S=(a×b)÷2》67 菱形判定定理 1 四边都相等的四边形是菱形68 菱形判定定理 2 对角线互相垂直的平行四边形是菱形69 正方形性质定理 1 正方形的四个角都是直角,四条边都相等70 正方形性质定理 2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71 定理 1 关于中心对称的两个图形是全等的72 定理 2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73 逆定理如果两个图形的对应点连线都经过某一点并且被这一点平分,那么这两个图形关于这一点对称74 等腰梯形性质定理等腰梯形在同一底上的两个角相等-75 等腰梯形的两条对角线相等76 等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77 对角线相等的梯形是等腰梯形78 平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论 1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论 2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半"82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例<90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理 1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理 2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理 3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理 1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比<97 性质定理 2 相似三角形周长的比等于相似比98 性质定理 3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101 圆是定点的距离等于定长的点的集合102 圆的内部可以看作是圆心的距离小于半径的点的集合103 圆的外部可以看作是圆心的距离大于半径的点的集合104 同圆或等圆的半径相等;105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107 到已知角的两边距离相等的点的轨迹,是这个角的平分线108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109 定理不在同一直线上的三点确定一个圆。
1.数字的认识和运算:
-整数:正整数、负整数、零
-四则运算:加法、减法、乘法、除法
-乘法公式:a×(b+c)=a×b+a×c
2.几何图形:
-点、直线、线段、射线
-平行线和垂直线
-角的分类:锐角、直角、钝角
-三角形:等边三角形、等腰三角形
-四边形:矩形、正方形、长方形、菱形、平行四边形
-圆:半径、直径、圆心、弧、弦
3.分数和小数的认识与运算:
-分数:分子、分母、真分数、假分数、带分数
-分数的四则运算:加法、减法、乘法、除法
-分数的化简:求最大公约数
-分数的比较:分子相乘、分母相乘
-小数与分数的转换:小数转换为分数、分数转换为小数-小数的计算:加法、减法、乘法、除法
4.数据的收集与分析:
-统计:调查、收集数据
-数据的表示:表格、柱状图、折线图-平均数:算术平均数。
小学数学图形周长的计算公式和方法一、周长的意义周长是指封闭图形一周的长度。
如:圆形、正方形、长方形、三角形等。
二、图形周长的计算公式和方法1.长方形的周长=(长+宽)×2 C=(a+b)×2例:已知长方形长为4,宽为6,求周长?解:(4+6)×2=202.正方形的周长=边长×4 C=a×4例:已知正方形边长为5,求周长?解:5×4=203.圆的周长=圆周率×直径×2 C=πd × 2 或C=2πr例:已知圆半径为3,求周长?解:π是圆周率,约等于3.14,所以,3×2×π×3/14=5.98(去整数部分)≈ 6米4.扇形周长 = 圆心角侧弧 + 圆心角外弧 + 弧长圆周率为:π≈3.14(要查表可以π≈3.14)在小学生眼中这些定义是较难理解的。
教学过程中建议不要从微观的角度来讲解图形的各部分名称、意义等。
但是老师如果抓住主要的部分使学生明确掌握以下三条即可:①各条线段的和称为长度。
②能够重合的两个图形是全等图形。
③由封闭图形一周的长度叫作周长。
因此围绕以上三点,教师给学生怎样一种指导。
①教师让学生亲自尝试几何图形的定义并利用给定的公式来求解周长。
②教师要结合图形告诉学生在实际生活中有许许多多的几何图形和计算。
③给孩子们的题组训练也是相当关键的,它不仅可以帮助孩子们更好的理解和记忆公式和方法,而且可以增强孩子们的自信心和兴趣。
三、理解公式的方法首先,老师要引导学生从整体上理解公式的含义。
如计算正方形和圆的周长时,要引导学生思考为什么这么算?其次,教师需要结合具体的例子,帮助学生掌握和理解公式的具体应用。
例如,老师可以拿出一个圆形和一个正方形,让学生亲手测量并计算它们的周长。
通过实践操作,学生可以更好地理解公式的意义和应用。
此外,教师还可以通过对比不同的计算方法,帮助学生区分不同图形的特点和计算方法。
小学数学几何图形的面积计算与实际应用在小学数学的学习中,几何图形的面积计算是一个重要的部分。
它不仅是数学知识体系中的关键环节,还与我们的日常生活有着紧密的联系。
首先,让我们来了解一下常见的几何图形及其面积计算公式。
矩形(也就是长方形)是我们最常见的图形之一。
它的面积等于长乘以宽,如果用字母表示,就是 S = a×b(其中 S 表示面积,a 表示长,b 表示宽)。
例如,一个长方形的长是 5 厘米,宽是 3 厘米,那么它的面积就是 5×3 = 15 平方厘米。
正方形是一种特殊的长方形,它的四条边长度相等。
正方形的面积等于边长乘以边长,用字母表示为S =a×a =a²(其中 a 表示边长)。
比如,一个正方形的边长是 4 厘米,它的面积就是 4×4 = 16 平方厘米。
三角形的面积计算稍微复杂一些,它的面积等于底乘以高除以 2,公式为 S = a×h÷2(其中 a 表示底,h 表示高)。
假设一个三角形的底是 6 厘米,高是 4 厘米,那么面积就是 6×4÷2 = 12 平方厘米。
平行四边形的面积等于底乘以高,即 S = a×h(其中 a 是底,h 是高)。
比如,底为 8 厘米,高为 3 厘米的平行四边形,面积为 8×3 =24 平方厘米。
梯形的面积等于(上底+下底)乘以高除以 2,用公式表示为 S =(a + b)×h÷2(其中 a 和 b 分别是上底和下底,h 是高)。
掌握了这些基本的面积计算公式后,让我们看看它们在实际生活中的应用。
在家庭装修中,我们常常需要计算房间的面积,以确定需要购买多少地板、地砖或者涂料。
比如,客厅是一个长方形,长6 米,宽4 米,要铺上地砖,就需要先算出客厅的面积为 6×4 = 24 平方米,然后根据每块地砖的面积,计算出需要购买的地砖数量。
小学数学几何图形面积计算法在小学数学的学习中,几何图形的面积计算是一个重要的部分。
它不仅是数学知识的基础,也与我们的日常生活息息相关。
接下来,让我们一起探索几种常见几何图形面积的计算方法。
一、长方形长方形是我们最常见的几何图形之一,它的面积计算方法非常简单。
长方形的面积等于长乘以宽,用公式表示就是:面积=长×宽。
比如说,有一个长方形的花坛,长是 5 米,宽是 3 米,那么它的面积就是 5×3 = 15 平方米。
在计算长方形面积时,一定要注意长和宽的单位要统一,如果长是厘米,宽是米,那就需要先把单位换算一致,再进行计算。
二、正方形正方形是一种特殊的长方形,它的四条边长度相等。
所以正方形的面积等于边长乘以边长,公式为:面积=边长×边长。
假设一个正方形手帕的边长是 2 分米,那么它的面积就是 2×2 = 4平方分米。
三、三角形三角形的面积计算相对复杂一些。
三角形的面积等于底乘以高除以2,公式为:面积=底×高÷2。
例如,有一个三角形的木板,底是 6 米,高是 4 米,那么它的面积就是 6×4÷2 = 12 平方米。
在计算三角形面积时,关键是要找到对应的底和高。
而且,同一个三角形,选择不同的底,对应的高也会不同,但面积是不变的。
四、平行四边形平行四边形的面积等于底乘以高,公式为:面积=底×高。
假如有一个平行四边形的菜地,底是 8 米,高是 3 米,它的面积就是 8×3 = 24 平方米。
需要注意的是,计算平行四边形面积时,底和高一定要相互垂直。
五、梯形梯形的面积等于(上底+下底)乘以高除以 2,公式为:面积=(上底+下底)×高÷2 。
比如有一个梯形的果园,上底是 4 米,下底是 6 米,高是 5 米,那么它的面积就是(4 + 6)×5÷2 = 25 平方米。
在学习梯形面积计算时,要理解上底加下底的和的含义。
小学数学几何图形相关公式及单位换算几何形体周长、面积计算公式长方形的周长=(长+宽)×2 C=(a+b)×2正方形的周长=边长×4 C=4a长方形的面积=长×宽S=ab正方形的面积=边长×边长S=a×a= a2三角形的面积=底×高÷2 S=ah÷2平行四边形的面积=底×高S=ah梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2直径=半径×2 d=2r 半径=直径÷2 r= d÷2圆的周长=圆周率×直径=圆周率×半径×2 C=πd=2πr圆的面积=圆周率×半径×半径S=πr²长方体的总棱长=(长+宽+高)×4 长+宽+高=长方体的总棱长÷4 正方体的总棱长=棱长×12 正方体的棱长=总棱长÷12长方体的表面积=(长×宽+长×高+宽×高)×2正方体的表面积=棱长×棱长×6常见的量1、长度单位换算1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1米=100厘米=1000毫米2、面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米3、质量单位换算1吨=1000千克1千克=1000克1克=1000毫克1千克=1公斤=2市斤(斤)4、时间单位换算1世纪=100年1年=12月=4个季度1个季度=3个月大月(31天):1\3\5\7\8\10\12月小月(30天):4\6\9\11月平年2月有28天,全年365天闰年2月有29天,全年366天1昼夜=1天=24时白昼12小时黑夜12小时1时=60分1分=60秒1时=3600秒5、体积单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1升=1000毫升6、人民币换算1元=10角1角=10分1元=100分。
小学数学知识归纳认识三角形和四边形的体积小学数学知识归纳:认识三角形和四边形的体积在小学数学学习中,我们会接触到各种各样的几何图形,其中三角形和四边形是最基础的几何图形之一。
在认识三角形和四边形的基础上,我们还需要了解它们的体积计算方法。
本文将对小学数学中关于三角形和四边形的体积计算进行归纳总结。
一、三角形的体积计算三角形是由三条边围成的一个平面图形。
根据三角形的特点,我们可以利用底边的长度、高度的长度来计算三角形的面积和体积。
1.1 三角形的面积计算三角形的面积计算公式为:面积 = 底边长度 ×高度 / 2其中,底边长度表示三角形的底边的长度,高度表示从顶点到底边的垂直距离。
通过这个公式,我们可以计算出任意三角形的面积。
1.2 三角形的体积计算三角形是一个平面图形,所以它没有体积。
但是,在某些实际问题中,我们可能需要计算与三角形相关的立体体积,比如金字塔。
金字塔是由一个底边为三角形的四面体,我们可以利用已知的底面积和高度来计算金字塔的体积。
体积 = 底面积 ×高度 / 3其中,底面积表示三角形底边的面积,高度表示从底边到金字塔顶点的垂直距离。
二、四边形的体积计算四边形是由四条边围成的一个平面图形,根据四边形的不同形状,我们可以分为矩形、正方形、梯形等类型。
下面将对这些不同形状的四边形的体积计算进行介绍。
2.1 矩形和正方形的体积计算矩形和正方形是最常见的四边形类型,它们有一个共同的特点,就是底面和顶面都是平行的,并且相等。
因此,矩形和正方形的体积计算可以简化为利用底面积和高度进行计算。
矩形和正方形的体积计算公式为:体积 = 底面积 ×高度其中,底面积表示矩形或正方形底边的面积,高度表示从底边到顶部的垂直距离。
2.2 梯形的体积计算梯形是一个有两个并行边的四边形,我们可以利用梯形的底边长、顶边长和高度来计算梯形的体积。
体积 = (上底边长 + 下底边长) ×高度 / 2其中,上底边长和下底边长分别表示梯形的上底边和下底边的长度,高度表示从上底边到下底边的垂直距离。
小学数学图形计算公式
(C:周长 S:面积 a:边长、长、底、上底、棱长 b: 宽、
下底
h: 高 d:直径 r:半径 V:体积)
1、长方形周长=(长+宽)×2 C=2(a+b)
长方形面积=长×宽 S=ab
2、正方形周长=边长×4 C = 4a
正方形面积=边长×边长 S = a×a = a²
3、平行四边形面积=底×高 s=ah
4、三角形面积=底×高÷2s=ah÷2
三角形高=面积×2÷底 h = 2s÷a 三角形底=面积×2÷高5、梯形面积=(上底+下底)×高÷2s=(a+b)× h÷2
6、圆的周长=直径×圆周率=2×圆周率×半径C=лd=2лr d=C
π
r=C
2π
圆的面积=半径×半径×圆周率 S = πr²
环形的面积=外圆的面积-内圆的面积 S环=π(R²-r²)
7、长方体的棱长总和 = 长×4 + 宽×4 + 高×4 =(长 + 宽 + 高)×4
长方体表面积=(长×宽+长×高+宽×高)×2 S = 2( ab + ah + bh ) 长方体体积=长×宽×高= 底面积×高 V=abh = sh
8、正方体的棱长总和=棱长×12
正方体表面积=棱长×棱长×6 S表 = a×a×6 = 6a²
正方体体积=棱长×棱长×棱长=底面积×高 V = a×a×a = a³ = sh 9、圆柱的侧面积=底面周长×高 s侧=ch=πdh=2πrh
圆柱表面积=侧面积+底面积×2 s表=s侧+s底×2
圆柱体积=底面积×高V柱 = sh =πr²h
10、圆锥体体积=底面积×高×1
3
V锥 =
1
3
sh =
1
3
πr²h。