当前位置:文档之家› 实验一:TTL与非门的静态参数测试

实验一:TTL与非门的静态参数测试

实验一:TTL与非门的静态参数测试
实验一:TTL与非门的静态参数测试

Testbed静态测试使用指南V1.1

目录 1Testbed功能介绍 (1) 1.1编程规则验证 (1) 1.2数据流分析 (1) 1.3控制流分析 (1) 1.4表达式分析 (2) 1.5接口分析 (2) 1.6软件质量度量分析 (2) 2使用Testbed 进行编码规则的定制和检查 (3) 2.1确定测试需求 (3) 2.2建立测试工程 (3) 2.3定制代码分析规则 (6) 2.4配置Report选项 (7) 2.5分析执行及结果查看 (8) 3结果分析及测试报告编写 (9) 3.1质量度量信息的获取 (9) 3.2程序质量度量报告单 (11) 3.3静态分析质量报告单 (12) 附录A:静态分析推荐规则使用说明 (1)

1Testbed功能介绍 1.1编程规则验证 编程标准验证是高可靠性软件开发不可缺少的软件质量保证方法,使用LDRA Testbed 自动地验证应用软件是否遵循了所选择的编程规则。编程规则由软件项目管理者根据自身项目的特点并参考现有的成熟的软件编程标准制定,如DERA(欧洲防务标准),MISRA(汽车软件标准),LDRA Testbed依据此规则搜索应用程序,并判断代码是否违反所制定的编程规则。LDRA Testbed报告所有违反编程规则的代码并以文本方式或图形反标注的方式显示。测试人员或编程人员可根据显示的信息对违反编程规则的代码进行修改。 1.2数据流分析 LDRA Testbed分析软件中全局变量、局域变量及过程参数的使用状况,并以图形显示、HTML或ASCII文本报告方式表示,清晰地识别出变量使用引起的软件错误,此种方法既可使用于单元级,亦可使用于集成级、系统级。 通过Testbed数据流分析功能,可方便地分析出软件中一些可能的程序欠缺,如: 1.没使用的函数参数; 2.不匹配的参数; 3.变量未赋初值就引用; 4.代码中有多余变量; 5.给值传递参数赋值; 6.无返回值的函数路径; 7.函数的实参是全局变量。 1.3控制流分析 控制流分析检查以下内容: 1.不可达代码; 2.不合理的循环结构; 3.存在浮点相等比较; 4.函数存在多个出口; 5.函数存在多个入口。

实验二 TTL与非门电路参数测试

实验二 TTL 与非门电路参数测试 一、实验目的 ·掌握TTL 与非门主要参数的测试方法。 ·掌握TTL 与非门电压传输特性的测试方法。 ·熟悉集成元器件管脚排列特点。 二、实验原理 TTL 集成与非门是数字电路中广泛使用的一种基本逻辑门,使用时必须对它的逻辑功能、主要参数和特性曲线进行测试,以确定其性能好坏。 本实验采用TTL 集成元器件74LS00与非门进行测试。它是一个2输人端4与非门,形状为双列直插式,逻辑表达式为F =A ·B ,其逻辑符号及外引线排列图如图 1—1(a)(b)(c)(d)所示。

1.TTL与非门主要参数 (1)输出高电平V OH和输出低电平V OL V OH是指与非门一个以上的输入端接低电平或接地时,输出电压的大小。此时门电路处于截止状态。如输出空载,V OH必须大于标准高电平(V SH=2.4V),一般在3.6V左右。当输出端接有拉电流负载时,V OH将降低。 V OL是指与非门的所有输人端均接高电平时,输出电压的大小。此时门电路处于导通状态。如输出空载,V OL必须低于标准低电平(V SL=0.4V),约为0.1V左右。接有灌电流负载时,V OL将上升。 (2)低电平输入电流I IL I IL是指当一个输入端接地,而其他输入端悬空时,输入端流向接地端的电流,又称为输入短路电流。I IL的大小关系到前一级门电路能带动负载的个数。 (3)高电平输入电流I IH I IH是指当一个输入端接高电平,而其他输入端接地时,流过接高电平输入端的电流,又称为交叉漏电流。它主要作为前级门输出为高电平时的拉电流。当I IH太大时,就会因为“拉出”电流太大,而使前级门输出高电平降低。 (4)输入开门电平V ON和关门电平V OFF V ON是指与非门输出端接额定负载时,使输出处于低电平状态时所允许的最小输入电压。换句话说,为了使与非门处于导通状态,输入电平必须大于V ON。 V OFF是指使与非门输出处于高电平状态所允许的最大输人电压。 (5)扇出系数N0 N0是说明输出端负载能力的一项参数,它表示驱动同类型门电路的数目。N0的大小主要受输出低电平时,输出端允许灌人的最大电流的限制,如灌人负载电流超出该数值,输出低电平将显著抬高,造成下一级逻辑电路的错误动作。

信号与测试技术实验一

实验一基本信号分析实验报告 一实验目的 1掌握基本信号的时域和频域分析方法; 2掌握信号的自相关和互相关分析,了解其应用。 二实验内容与图像结果分析 (1)产生不同的周期信号,包括正弦信号、方波信号、锯齿波,在时域分析这些波形特征(幅值、频率(周期))。 (2)在Matlab中产生不同的非周期信号,包括随机噪声、阶跃信号、矩形脉冲。(3)对产生的信号进行Fourier变换,从频率域分析信号的特征,并说明方波信号和锯齿波信号的信号带宽; 从图中可以看到,正弦信号基频为10rad/s,因此其Fourier变换在w=10处出现了峰值,而方波信号依据佛利叶级数展开可知是由一系列不同频率的正弦波构成,基频是w=10,基频的幅值最大,同时其他频率为基频的整数倍(不含20,40…),且幅值依次减少。

锯齿波信号的基频为w=10,因此傅里叶级数展开同样在10出出现了峰值,而其他出现的依次是基频的整数倍,且幅值依次减少。由于随机噪声信号是随机信号,不具有规律性,因此在傅里叶变换后我们可以看到它含有各个频率的谐波。 阶跃信号的傅里叶变换为冲击函数。矩形信号为非周期信号,因此它的傅里叶变换为连续函数,频率在各处均有分布。 (4)产生复合信号:由3个不同频率、幅值的正弦信号叠加的信号,从图形上判断信号的特征; 产生由正弦信号和随机信号叠加的混合信号,从图形上判断信号的特征;产生由正弦信号和方波叠加的信号,从图形上判断信号的特征。 (5)对(4)中的3种复合信号进行FFT计算,从图上判断信号的特征。

三种不同幅值、频率的正弦信号叠加后,在时域图上我们看不出很有规律性的东西,然而进行傅里叶变换后,放到频域图之后,我们可以很清楚的看到叠加信号的组成规律,在三个频率出现了峰值。正弦信号叠加随机噪声,我们在时域图上也看不到很明显的规律特征,进行傅里叶变换后,我们看到时域图上在一处出现了峰值,则这个频率处实际就是正弦信号的频率。正弦信号叠加方波信号在时域图中同样规律不明显,在进行傅里叶变换后,在频域图上我们看到有两处峰值,这两个频率实际就是正弦波的频率和方波的基频信号,其余较小的为方波的谐波信号。 由此可以看出,通过傅里叶变换,将时域波形变换到频域波形,更加有助于我们分析信号的本质特征,也有利于从噪声信号出提取有用的信号。

DAC静态参数测试

第四章 DAC 静态电参数测试 本文要点: DAC 电参数义的定 DAC 规静态电参数测试计常方法及算公式 DAC 测试统系的典型硬件配置 DAC 数规据范(Data Sheet)样例 选择输码减如何入代以少DAC 测试时间的 如何提高DAC 电参数测试的精度及稳定性 关键词释解 调误失差Eo(Offset Error)转换线实际值与值值:特性曲的起始理想起始(零)的偏差。 误增益差E G (Gain Error)转换线实际与资:特性曲的斜率理想斜率的偏差。(在有些料误称为满误上增益差又刻度差) 线误性差Er(Linearity Error)转换线与拟线间:特性曲最佳合直的最大偏差。(NS 公司义定)或者用:准确度E A (Accuracy 转换线与转换线):特性曲理想特性曲的最大偏差(AD 义公司定)。 线误微分性差E DL (Differential Linearity Error)值满值围内邻输:在起始到刻度的范相入数码对应拟输电压实际值与的模出之差的1LS 值简单说个理想得最大偏差。的,就是在整转换围内范每一步距(1LSB)的最大偏差。 满围刻度范(FSR):DAC 输电压围的出范。 最小有效位(LSB):DAC 输变时输电压变入化一位,出的化量。 单调性(Monotonic):DAC 输号个变时输个变的入信朝一方向化,出也向一方向化或保持常量 分辨率(Resolution):DAC 总的输数义为入位,定2 n 一、 DAC 静态电参数义测试简定及介 在图4.1中,Summing Junction 和 I out 连没电过电端接在一起,如果有流流阻R∑输,电压出Vout 为电压当零刻度;DAC 电过电的最大流流阻R∑输电压,出Vout 为满电压刻度。

实验一--TTL门电路参数测试实验复习进程

实验一--T T L门电路参数测试实验

实验一 TTL门电路参数测试实验 一、实验目的 1.掌握TTL集成与非门的主要性能参数及测试方法。 2.掌握TTL器件的使用规则。 3.熟悉数字电路测试中常用电子仪器的使用方法。 二、实验原理 本实验采用二输入四与非门74LS00(它的顶视图见附录),即一块集成块内含有四个相互独立的与非门,每个与非门有两个输入端。其逻辑框图如下: 图1-1 74LS00的逻辑图图1-2 I is的测试电路图TTL集成与非门的主要参数有输出高电平V OH、输出低电平V OL、扇出系数N0、电压传输特性和平均传输延迟时间t pd等。 (1)TTL门电路的输出高电平V OH V OH是与非门有一个或多个输入端接地或接低电平时的输出电压值,此 时与非工作管处于截止状态。空载时,V OH的典型值为3.4~3.6V,接有 拉电流负载时,V OH下降。 (2)TTL门电路的输出低电平V OL

V OL是与非门所有输入端都接高电平时的输出电压值,此时与非工作管 处于饱和导通状态。空载时,它的典型值约为0.2V,接有灌电流负载 时,V OL将上升。 (3)TTL门电路的输入短路电流I is 它是指当被测输入端接地,其余端悬空,输出端空载时,由被测输入端 输出的电流值,测试电路图如图1-2。 (4)TTL门电路的扇出系数N0 扇出系数N0指门电路能驱动同类门的个数,它是衡量门电路负载能力的一个参数,TTL集成与非门有两种不同性质的负载,即灌电流负载和拉电流负载。因此,它有两种扇出系数,即低电平扇出系数N0L和高电平扇出系数N0H。通常有I iHN0L,故常以N0L作为门的扇出系数。 N0L的测试电路如图1-3所示,门的输入端全部悬空,输出端接灌电流负载R L,调节R L使I OL增大,V OL随之增高,当V OL达到V Olm(手册中规定低电平规范值为0.4V)时的I OL就是允许灌入的最大负载电流,则 N0L=I OL÷I is,通常N0L>8 (5)TTL门电路的电压传输特性 门的输出电压V o随输入电压V i而变化的曲线V o=f(V i)称为门的电压传输特性,通过它可读得门电路的一些重要参数,如输出高电平V OH、输出低电平V OL、关门电平V off、开门电平V ON等值。测试电路如图1-4所示,采用逐点测试法,即调节R w,逐点测得V i及V o,然后绘成曲线。

信号与系统实验报告_1(常用信号的分类与观察)

实验一:信号的时域分析 一、实验目的 1.观察常用信号的波形特点及产生方法 2.学会使用示波器对常用波形参数的测量 二、实验仪器 1.信号与系统试验箱一台(型号ZH5004) 2.40MHz双踪示波器一台 3.DDS信号源一台 三、实验原理 对于一个系统特性的研究,其中重要的一个方面是研究它的输入输出关系,即在一特定的输入信号下,系统对应的输出响应信号。因而对信号的研究是对系统研究的出发点,是对系统特性观察的基本手段与方法。在本实验中,将对常用信号和特性进行分析、研究。 信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。常用信号有:指数信号、正弦信号、指数衰减正弦信号、复指数信号、Sa(t)信号、钟形信号、脉冲信号等。 1、信号:指数信号可表示为f(t)=Ke at。对于不同的a取值,其波形表现为不同的形式,如下图所示: 图1―1 指数信号 2、信号:其表达式为f(t)=Ksin(ωt+θ),其信号的参数:振幅K、角频率ω、与初始相位θ。其波形如下图所示:

图1-2 正弦信号 3、指数衰减正弦信号:其表达式为其波形如下图: 图1-3 指数衰减正弦信号 4、Sa(t)信号:其表达式为:。Sa(t)是一个偶函数,t= ±π,±2π,…,±nπ时,函数值为零。该函数在很多应用场合具有独特的运用。其信号如下图所示:

图1-4 Sa(t)信号 5、钟形信号(高斯函数):其表达式为:其信号如下图所示: 图1-5 钟形信号 6、脉冲信号:其表达式为f(t)=u(t)-u(t-T),其中u(t)为单位阶跃函数。其信号如下图所示: 7、方波信号:信号为周期为T,前T/2期间信号为正电平信号,后T/2期间信号为负电平信号,其信号如下图所示 U(t)

厦大数电实验二TTL与非门电路参数测试

实验二 TTL 与非门电路参数测试 一、实验目的 1、掌握TTL 与非门参数的物理意义。 2、掌握TTL 与非门参数的测试方法。 3、了解TTL 与非门的逻辑功能。 二、实验原理 7400是TTL 型中速二输入四与非门。下图为其内部电路原理图和管脚排列图。 TTL 内部原理图 管脚排列图 1.与非门参数 (1)输入短路电流I IS : 与非门某输入端接地时,该输入端流入地的电流. (2)输入高电平电流I IH : 与非门某输入端接Vcc ,其他输入端悬空或接Vcc 时,流入该输入端的电流. (3)开门电平V ON : 使输出端维持V OL 所需的最小输入高电平,通常以Vo=0.4V 时的Vi 定义。 (4)关门电平V OFF : 使输出端维持V OH 所允许的最大输入低电平,通常以Vo=0.9V OH 时的Vi 定义。 阈值电平V T :V T =(V OFF +V ON )/2

(5)开门电阻R ON 某输入端对地接入电阻,使输出端维持低电平所需的最小电阻值。 (6)关门电阻R OFF 某输入端对地接入电阻,使输出端维持高电平所允许的最大电阻值。 TTL 与非门输入端的电阻负载特性曲线: (7)平均传输延迟时间t pd : 开通延迟时间t OFF :输入正跳变上升到1.5V 相对输出负跳变下降到1.5V 的时间间隔;关闭延迟时间t ON :输入负跳变下降到1.5V 相对输出正跳变上升到1.5V 的时间间隔;平均传输延迟时间:开通延迟时间与关闭延迟时间的算术平均值,t pd =(t OFF +t ON )/2。 2.与非门电压传输特性: 3.TTL 与非门的逻辑特性: 三、实验仪器

信号与系统实验二

实验二 常用信号分类与观察 一、实验目的 1、观察常用信号的波形特点及产生方法。 2、学会使用示波器对常用波形参数的测量。 二、实验内容 1、信号的种类相当的多,这里列出了几种典型的信号,便于观察。 2、这些信号可以应用到后面的“基本运算单元”和“无失真传输系统分析”中。 三、实验仪器 1、信号与系统实验箱一台(主板)。 2、20MHz 双踪示波器一台。 四、实验原理 对于一个系统特性的研究,其中重要的一个方面是研究它的输入输出关系,即在一特定的输入信号下,系统对应的输出响应信号。因而对信号的研究是对系统研究的出发点,是对系统特性观察的基本手段与方法。在本实验中,将对常用信号和特性进行分析、研究。 信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。常用信号有:指数信号、正弦信号、指数衰减正弦信号、抽样信号、钟形信号、脉冲信号等。 1、正弦信号:其表达式为)sin()(θω+=t K t f ,其信号的参数:振幅K 、角频率ω、与初始相位θ。其波形如下图所示: 图 1-5-1 正弦信号 2、指数信号:指数信号可表示为at Ke t f =)(。对于不同的a 取值,其波形表现为不同的形式,如下图所示:

图 1-5-2 指数信号 3、指数衰减正弦信号:其表达式为 ?? ???><=-)0()sin()0(0)(t t Ke t t f at ω 其波形如下图: 图 1-5-3 指数衰减正弦信号 4、抽样信号:其表达式为: sin ()t Sa t t = 。)(t Sa 是一个偶函数,t = ±π,±2π,…,±n π时,函数值为零。该函数在很多应用场合具有独特的运用。其信号如下图所示:

实验31 TTL与非门参数测试及使用

第三部分数字电路实验 实验3.1 TTL与非门参数测试及使用 [要点提示] 一、实验目的 二、实验预习要求 三、实验原理 四、实验仪器设备 五、练习内容及方法 六、实验报告 七、思考题 [内容简介] 一、实验目的 1.掌握TTL集成与非门的逻辑功能和主要参数的测试方法。 2.掌握TTL器件的使用规则。 3.熟悉数字电路实验箱的结构、基本功能和使用方法。 二、实验预习要求 1.了解数字实验箱的基本结构及使用方法。 2.了解TTL与非门主要参数的定义和意义。 3.熟悉各测试电路,了解测试原理及测试方法。 4.熟悉TTL与非门74LS00的外引线排列。 5.自拟实验步骤和数据表格。 三、实验原理 1.TTL与非门的主要参数 TTL与非门具有较高的工作速度、较强的抗干扰能力、较大的输出幅度和负载能力等优点,因而得到了广泛的应用。 (1)输出高电平VoH:输出高电平是指与非门有一个以上输入端接地或接低电平时的输出电平值。空载时,VOH必须大于标准高电平(VSH=2.4 V),接有拉电流负载时,VOH将下降。测试VOH的电路如图1、1所示。

图1、1 VOh 的测试电路图1、2 VOL的测试电路 (2)输出低电平VOL:输出低电平是指与非门的所有输入端都接高电平时的输出电平值。空载时,VOL 必须低于标准低电平(VsL=O.4 V),接有灌电流负载时,VOL将上升。测试VoL电路如图1、2所示。(3)输入短路电流IIS:输入短路电流IIS是指被测输入端接地,其余输入端悬空时,由被测输入端流出的电流。前级输出低电平时,后级门的IIS就是前级的灌电流负载。一般IIS<1.6mA。测试IIS的电路见图1、3所示。 (4)扇出系数N:扇出系数N是指能驱动同类门电路的数目,用以衡量带负载的能力。图1、4所示电路能测试输出为低电平时,最大允许负载电流IOL,然后求得N=IOL/IIS。一般N>8的与非门才被认为是合格的。 图1、3 IIS的测试电路图1、4 扇出系数N的测试电路 2.TTL与非门的电压传输特性 利用电压传输特性不仅能检查和判断TTL与非门的好坏,还可以从传输特性上直接读出其主要静态参数,如VOH、VOL、VON、Voff、VNH和VNL,如图1-5所示。传输特性的测试电路如图1、6所示。

信号与测试实验1时率与频率

基本信号分析 一、实验目的 1.掌握基本信号的时域和频域分析方法 2.掌握信号的自相关和互相关分析,了解其应用 二、数据处理与分析 (1)幅值为1,频率为100Hz的正弦信号,上图为时域图,下图为利用快速傅里叶变换获得的频谱图。从频谱图上看出,f=100Hz时频域的幅值最大。 (2)频域为100Hz,幅值为1的方波信号,上图为时域图,下图为借助快速傅立叶变换获得的频域图。从频谱图上看出,f=100Hz时频域的幅值最大,随着频域增大,频域的幅值逐渐衰减。

(3)频率为100Hz,幅值为1的锯齿波信号图,上图为时域图,下图为借助傅立叶变换而获得的频域图。从频域图看出,在100Hz的整数倍频率上,频域幅值都出现了峰值,随着频率的增大,峰值逐渐收敛至0. (4)平均振幅为1的噪声信号,上图为时域图,下图为通过快速傅立叶变

换得出的频谱图,从频谱图可以看出,白噪声信号的频谱杂乱无章,无明显规律。 (5)由频率为50Hz、100Hz、150Hz的正弦信号组成的复合信号,上图为时域图,下图为频域图,从图中可以看出,频谱图在50、100、150Hz处出现了峰值。 (6)频率为100Hz 的正弦信号叠加噪声信号:上图为时域信号图,下图为

通过快速傅立叶变换获得的频谱图。与没有叠加噪声信号的正弦波相比,时域波形出现了毛刺,而频谱图中除了在100Hz处有峰值外,在其他频率点处也出现了一些较低的峰值。 (7)频率为100Hz的正弦信号和频率为100Hz的方波信号进行叠加,上图为时域信号,下图为频谱图。从时域图上可以看出,正弦波形叠加方波后有了明显的畸变。从频谱图上可以看出,除了100Hz处出现峰值以外,在其他频率点也出现了一些峰值。

测试信号分析与处理作业实验一二

王锋 实验一:利用FFT 作快速相关估计 一、实验目的 a.掌握信号处理的一般方法,了解相关估计在信号分析与处理中的作用。 b.熟悉FFT算法程序;熟练掌握用FFT作快速相关估计的算法。 c.了解快速相关估计的谱分布的情况。 二、实验内容 a.读入实验数据[1]。 b.编写一利用FFT作相关估计的程序[2]。 c.将计算结果表示成图形的形式,给出相关谱的分布情况图。 注[1]:实验数据文件名为“Qjt.dat”。 实验数据来源:三峡前期工程 “覃家沱大桥” 实测桥梁振动数据。 实验数据采样频率:50Hz。 可从数据文件中任意截取几段数据进行分析,数据长度N 自定。 注[2]:采用Matlab 编程。 三、算法讨论及分析 算法为有偏估计,利用FFT计算相关函数 Step 1: 对原序列补N个零,得新序列x2N(n) Step2: 作FFT[x2N(n)]得到X2N(k) Step 3: 取X2N(k)的共轭,得 Step 4: 作 Step 5: 调整与的错位。 四、实验结果分析 1. 该信号可以近似为平稳信号么? 可以近似为平稳信号,随机过程的统计特性不随样本的采样时刻而发生变化。取N=8192,分别取间隔m=500,m=700,m=1000,所得到的均值均为0.5366,方差为47369,与时间无关。

图1-1 自相关函数图 (上图表示的R0,下图为调整后的R0) 2. 该信号是否具有周期性,信噪比如何? >> load Qjt.dat; %加载数据 N=32768; %数据长度 i=1:1:N; %提取数据 plot(i,Qjt(i)); 抛去几个极值点,从图1-2可以看出,数据具有一定的周期性,杂音比较少,说明信噪比较高。 图1-2 数据图

实验一 单级放大电路静态参数的测试

实验一 单级放大电路静态参数的测试 (验证性实验) 一、实验目的 1. 熟悉模拟电子技术实验箱的结构,学习电子线路的搭接方法。 2. 学习测量和调整放大电路的静态工作点,观察静态工作点设置对输出波形的影响。 二、实验仪器 1. 低频信号发生器 SG1026 1台 2. 双踪示波器 SS7802或COS5020BF 1台 3. 万用表 VC9802A 1块 三、实验说明 图1为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用RB1和RB2组成的分压电路,并在发射极中接有电阻RE ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号ui 后,在放大器的输出端便可得到一个与ui 相位相反,幅值被放大了的输出信号u0,从而实现了电压放大。 图1 共射极单管放大器实验电路 在图1电路中,旁路电容CE 是使RE 对交流短路,而不致于影响放大倍数,耦合电容C1和 C2 起隔直和传递交流的作用。当流过偏置电阻RB1和RB2 的电流远大于晶体管T 的基极电流IB 时(一般5~10倍),则它的静态工作点可用下式估算 CC B2 B1B1 B U R R R U +≈ U CE =U CC -I C (R C +R E ) C E BE B E I R U U I ≈-≈

电压放大倍数 be L C V r R R β A // -= 输入电阻 R i =R B1 / R B2 / r be 输出电阻 R O ≈R C 由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量和调试技术。在设计前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。一个优质放大器,必定是理论设计与实验调整相结合的产物。因此,除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。 放大器的测量和调试一般包括:放大器静态工作点的测量与调试,消除干扰与自激振荡及放大器各项动态参数的测量与调试等。 放大器静态工作点的测量与调试 1) 静态工作点的测量 测量放大器的静态工作点,应在输入信号ui =0的情况下进行, 即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流IC 以及各电极对地的电位UB 、UC 和UE 。一般实验中,为了避免断开集电极,所以采用测量电压UE 或UC ,然后算出IC 的方法,例如,只要测出UE ,即可用 E E E C R U I I =≈算出IC (也可根据C C CC C R U U I -=,由UC 确定IC ), 同时也能算出UBE =UB -UE ,UCE =UC -UE 。 为了减小误差,提高测量精度,应选用内阻较高的直流电压表。 2) 静态工作点的调试 放大器静态工作点的调试是指对管子集电极电流IC (或UCE )的调整与测试。 静态工作点是否合适,对放大器的性能和输出波形都有很大影响。如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时uO 的负半周将被削底,如图2(a)所示;如工作点偏低则易产生截止失真,即uO 的正半周被缩顶(一般截止失真不如饱和失真明显),如图2(b)所示。这些情况都不符合不失真放大的要求。所以在选定工作点以后还必须进行动态调试,即在放大器的输入端加入一定的输入电压ui ,检查输出电压uO 的大小和波形是否满足要求。如不满足,则应调节静态工作点的位置。 (a) (b) 图2 静态工作点对uO 波形失真的影响 改变电路参数UCC 、RC 、RB (RB1、RB2)都会引起静态工作点的变化,如图3所示。但通常多采用调节偏置电阻RB2的方法来改变静态工作点,如减小RB2,则可使静态工作点提高等。

TTL与非门参数测试

一. 实验目的 1)熟悉TTL与非门集成电路的外形和管脚引线排列。 2)通过测试了解与非门的直流参数 3)加深对与非门逻辑功能的认识 二. 实验仪器(点击可看到图片) 1. xst-6D电子技术综合实验装置 2. 500型万用表 3. DS1052E (点击可阅读使用手册) 4. 元件:74LS20 三. 预习要求 1. 复习《数字电子技术基础》相关内容 2. 了解74ls20的逻辑功能和管脚排列; 3.ICCL, IIL, IIH, IOL, No,tpd是什么? 4. 与非门在什么条件下输出高电平?什么情况下输出低电平?不用的输入端怎么处理? 5. TTL电路,如果某输入端悬空,则相当于给该输入端输入了什么电平的信号? 6. 请说明用直流电流表测电路的某个支路电流时关键步骤和应注意的事项? 四. 实验原理、步骤 首先,根据逻辑功能检查与非门是否良好。 1. 测量下列各直流参数: 1)低电平输出时的电源电流ICCL。 门电路的信号输入、输出脚悬空,这时门电路的输出处在低电平状态,这时,用直流电流表测出IC的Vcc脚的电流。 2)低电平输入电流IIL。

3)高电平输入电流IIH。 4)电压传输特性。 Uon:表示与非门输出低电平时,允许输入的高电平的电压值的最小值,在图上求出。(即在VOL=0.4V时,求Vi) Uoff:表示与非门输出高电平时,允许输入的低电平的电压值的最大值,在图上求出。(即在VoH=2.4V时,求Vi) 5)扇出系数No

得出的小数要圆整 6)平均传输延迟时间tpd。 我们把输出电压波形滞后于输入电压波形的时间叫传输延迟时间(见《数字电子技术基础》门电路)。有两个重要参数tPHL,tPLH, 五. 报告要求 1)列出直流参数的实测数据表格,,与出厂参数相比,判断参数是否合格。 2) 一个该非门能驱动多少个TTL门电路?假设LED的工作电流是20mA,他可以用该门电路直接驱动吗(画出该电路)? 3) 画出传输特性,确定VOFF、VON、VOL、VOH值 4)列出与非门的实测数据表格,看逻辑关系是否相符。 5)什么是集成电路?74LS20、CD4007(下次实验用)各属于哪种类型的集成电路? 6)PCB是什么?列出英文全称。

信号与系统实验总结及心得体会

信号与系统实验总结及心得体会 2011211204 刘梦颉2011210960 信号与系统是电子信息类专业的一门重要的专业核心基础课程,该课程核心的基本概念、基本理论和分析方法都非常重要,而且系统性、理论性很强,是将学生从电路分析领域引入信号处理与传输领域的关键性课程,为此开设必要的实验对我们加强理解深入掌握基本理论和分析方法,以及对抽象的概念具体化有极大的好处,而且为后续专业课程的学习提供了理论和大量实验知识储备,对以后的学术科研和创新工作都是十分重要的。下面我将从实验总结、心得体会、意见与建议等三方面作以总结。 一.实验总结 本学期我们一共做了四次实验,分别为:信号的分类与观察、非正弦周期信号的频谱分析、信号的抽样与恢复(PAM)和模拟滤波器实验。 1.信号的分类与观察 主要目的是:观察常用信号的波形特点以及产生方法,学会用示波器对常用波形参数进行测量。主要内容是:利用实验箱中的S8模块分别产生正弦信号、指数信号和指数衰减正弦信号,并用示波器观察输出信号的波形,测量信号的各项参数,根据测量值计算信号的表达式,并且与理论值进行比较。 2.非正弦信号的频谱分析 主要目的是:掌握频谱仪的基本工作原理和正确使用方法,掌握非正弦周期信好的测试方法,理解非正弦周期信号频谱的离散性、谐波性欲收敛性。主要内

容是:通过频谱仪观察占空比为50%的方波脉冲的频谱,和占空比为20%的矩形波的频谱,并用坐标纸画图。 3.信号的抽样与恢复 主要目的是:验证抽样定理,观察了解PAM信号的形成过程。主要内容是:通过矩形脉冲对正弦信号进行抽样,再把它恢复还原过来,最后用还原后的图形与原图形进行对比,分析实验并总结。 4.模拟滤波器实验 主要目的是:了解RC无源和有源滤波器的种类、基本结构及其特性,比较无源和有源滤波器的滤波特性,比较不同阶数的滤波器的滤波效果。主要内容:利用点频法通过测试无源低通、高通、带通和有源带阻,以及有源带通滤波器的幅频特性,通过描点画图形象地把它们的特点表现出来。 通过对信号与实验课程的学习,我掌握了一些基本仪器的使用方法,DDS 信号源、实验箱、示波器、频谱仪等四种实验仪器。初步了解了对信号的测试与分析方法对以前在书本上看到的常见信号有了更加具体的认识,使得书本上的知识不再那么抽象。 DDS信号源,也就是函数发生器,可以产生固定波形,如正弦波、方波或三角波,频率和幅度可以调节。实验箱是很多个信号实验装置的集合,可谓集多种功能于一身,其中包括函数发生器、模拟滤波器、函数信号的产生与测量、信号的抽样与恢复等模块。示波器能把抽象的电信号转换成具体的图像,便于人们研究各种电现象的变化过程。利用示波器能观察各种不同的信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、

《测试信号分析与处理》实验报告

测控1005班齐伟0121004931725 (18号)实验一差分方程、卷积、z变换 一、实验目的 通过该实验熟悉 matlab软件的基本操作指令,掌握matlab软件的使用方法,掌握数字信号处理中的基本原理、方法以及matlab函数的调用。 二、实验设备 1、微型计算机1台; 2、matlab软件1套 三、实验原理 Matlab 软件是由mathworks公司于1984年推出的一套科学计算软件,分为总包和若干个工具箱,其中包含用于信号分析与处理的sptool工具箱和用于滤波器设计的fdatool工具箱。它具有强大的矩阵计算和数据可视化能力,是广泛应用于信号分析与处理中的功能强大且使用简单方便的成熟软件。Matlab软件中已有大量的关于数字信号处理的运算函数可供调用,本实验主要是针对数字信号处理中的差分方程、卷积、z变换等基本运算的matlab函数的熟悉和应用。 差分方程(difference equation)可用来描述线性时不变、因果数字滤波器。用x表示滤波器的输入,用y表示滤波器的输出。 a0y[n]+a1y[n-1]+…+a N y[n-N]=b0x[n]+b1x[n-1]+…+b M x[n-M] (1) ak,bk 为权系数,称为滤波器系数。 N为所需过去输出的个数,M 为所需输入的个数卷积是滤波器另一种实现方法。 y[n]= ∑x[k] h[n-k] = x[n]*h[n] (2) 等式定义了数字卷积,*是卷积运算符。输出y[n] 取决于输入x[n] 和系统的脉冲响应h[n]。 传输函数H(z)是滤波器的第三种实现方法。 H(z)=输出/输入= Y(z)/X(z) (3)即分别对滤波器的输入和输出信号求z变换,二者的比值就是数字滤波器的传输函数。 序列x[n]的z变换定义为 X (z)=∑x[n]z-n (4) 把序列x[n] 的z 变换记为Z{x[n]} = X(z)。

信号与检验测试实验一

实验一、基本信号分析 一、实验目的 1. 掌握基本信号的时域和频域分析方法 2. 掌握信号的自相关和互相关分析,了解其应用 二、实验原理 (1)信号的时域和频域转换 目的:研究分析信号的时域特征(如持续时间、幅值、周期等)和信号的频域特征(如是否含有周期性信号、信号的频率带宽等) 转换方法:时域有限长序列 频域有限长序列: 离散傅里叶变换 (2)信号相关性 相关是用来描述一个随机过程自身在不同时刻的状态间,或者两个随机过程在某个时刻状态间线性依从关系的数字特征。 自相关函数定义为: xx 01()lim ()()T T R x t x t dt T ττ→∞ =+? 互相关函数定义为: xx 0 1()lim ()()T T R x t x t dt T ττ→∞=+?

三、实验内容与步骤 (1)产生不同的周期信号,包括正弦信号、方波信号、锯齿波信号,在时域分析这些波形特征(幅值、频率(周期))。 上图为幅值为2频率为20Hz的正弦信号时域图,下图为快速傅里叶变换之后获得的频谱图。从频谱图上看出,f=20Hz时频域的幅值最大,和时域图吻合。

上图为幅值为3频率为5Hz的方波信号时域图,下图为快速傅里叶变换之后获得的频谱图。从频谱图上看出,方波信号傅里叶分解后由一个频率为5Hz 的基波和无数个高次谐波组成。以幅值衰减十倍为带宽,由图可知此方波信号带宽约为35Hz

上图为幅值为4频率为10Hz的三角波信号时域图,下图为快速傅里叶变换之后获得的频谱图。从频域图看出,在10Hz的整数倍频率上,频域幅值出现了峰值,其后有无数个谐波和基波一起组成了三角波。以幅值衰减十倍为带宽,由图可知此三角波信号带宽约为80Hz (2)在Matlab中产生随机噪声、阶跃信号(选作)、矩形脉冲(选作)

ttl与非门的静态参数测试

实验一TTL 与非门的静态参数测试实验报告 By kqh from SYSU 一、实验数据及数据分析 1.低电平输出电源电流I CCL和高电平输出电源电流I CCH及静态平均功耗P: I CCL: 测试电路如图1(a)所示,测得I CCL为 I CCH: 测试电路如图1(b)所示,测得I CCH为mA P: P===W= 图1(a) 图1(b) 数据分析:低电平输出电源电流I CCL比高电平输出电源电流I CCH高,符合理论预测。 2.输入短路电流I IS和输入漏电流I IH: I IS(或I IL): 测试电路如图2(a)所示,测得I IS为 I IH: 测试电路如图2(b)所示,电流过小,多用电表无测量示数 图2(a) 图2(b) 数据分析:输入短路电流I IS和输入漏电流I IH分别是和无示数,均比较小,说明前级门电路带负载的个数较多。

3.输出高电平U OH及关门电平U off 测试电路如图3所示,测得U OH为 则当输出电压为90%U OH()时,测得输入电压(即关门电压)为 图3 4.输出低电平U OL及开门电平U on 测试电路如图4所示,测得U OL为 调整输入电压,测得开门电平U on为 图4 数据分析:综合实验3、4可知,74LS00 的跳变电压在在之间,高电平为,低电 平为。 5. u i(V) 0 U0(V) u i(V) U0(V)

u i (V) 2 3 4 U 0(V) 用MATLAB 拟合,u 0关于u i 的函数图像,如图5所示 0.511.522.533.54TTL 与非门的电压传输特性 v o v i 图5 图像分析:在高电平输出范围内,随输入电平增大,输出电平轻微减小;在低电平输出范围内,输出电平基本不随输入电平变化而变化。输入电平在左右时,输出电平出现跳跃,与实验3、4结果基本相符 6. 平均传输延迟时间t pd 测试电路如图6(a)所示,输出波形如图6(b)所示。 图6(a)

TTL集成与非门主要参数的测试

实验一TTL与非门的静态参数测试 一、实验目的 1. 掌握TTL与非门电路主要参数和电压传输特性的测试方法。 2. 熟悉数字电路试验箱、数字万用表的使用。 二、实验仪器及器件 1.数字电路试验箱、万用表、示波器 2.器件:74LS00X 2.电阻:560Ω X1,1OkXI 三、实验内容和结果 1.低电平输出电源电流I CCL和高电平输出电源电流I CCH及静态平均功耗P?: 与非门处于不同的工作状态,电源提供的电流是不同的。 I CCL:指所有输入端悬空,输出端空载时,电源提供器件的电流.也称空 载导通电流.测试电路如图(一)(a)所示。 I CCH:指输出端空载,每个门各有一个以上的输入端接地,其余输入端悬 空,电源提供器件的电流。也称空载截止电流,电路如图(二)(b)所示。 P?:为电路空载导通功耗P on和空载截止功耗P off的平均值,其值为: p?=pp oooo+pp oooo2=VV CCCC II CCCCCC+VV CCCC II CCCCCC2(通常P on>P off) (a)(b) 图(一) 2.输入短路电流I IS和输入漏电流I IH: I IS:(或I IL)指被测输入端接地,其余输入端和输出端悬空时.由被测输 入端流出的电流。也称低电平输入电流。在由多级门构成的电路中,I IS 相当前级门输出低电平时,后级向前级门灌入的电流。因此.I IS越小, 前级门带负载的个数就越多。测试电路如图(二)(a)所示。 I IH:指被测输入端接高电平,其余输入端接地,输出端悬空时,流入 被测输入端的电流。也称高电平输入电流。在由多级门构成的电路中, 它相当于前级门输出高电平时,前级门的拉电流负载。I IH越小,前级门

信号与系统实验一

实验一 基本运算单元 一、 实验目的 1.熟悉由运算放大器为核心元件组成的基本运算单元; 2.掌握基本运算单元的测试方法。 二、 实验设备与仪器 1.THKSS-A/B/C/D/E 型信号与系统实验箱; 2.实验模块SS12; 3.双踪示波器。 三、 实验内容 1.设计加法器、比例运算器、积分器、微分器四种基本运算单元电路; 2.测试基本运算单元特性。 四、 实验原理 1.运算放大器 运算放大器实际就是高增益直流放大器,当它与反馈网络连接后,就可实现对输入信号的求和、积分、微分、比例放大等多种数学运算,运算放大器因此而得名。运算放大器的电路符号如图1-1所示: 图1-1 运算放大器的电路符号 由图可见,它具有两个输入端和一个输出端:当信号从“-”端输入时,输出信号与输入信号反相,因此称“-”端为反相输入端;而从“+”端输入时,输出信号与输入信号同相,因此称“+”端为同相输入端。运算放大器有以下的特点: (1)高增益 运算放大器的电压放大倍数用下式表示: )1(0 + --= u u u A 式中,u o 为运放的输出电压;u +为“+”输入端对地电压;u -为“-”输入端对地电压。不加反馈(开环)时,直流电压放大倍数高达104~106。 (2)高输入阻抗 运算放大器的输入阻抗一般在106Ω~1011Ω范围内。 (3)低输出阻抗 运算放大器的输出阻抗一般为几十到一、二百欧姆。当它工作于深度负反馈状态时,其闭环输出阻抗更小。 为使电路的分析简化,人们常把上述的特性理想化,即认为运算放大器的电压放大倍数和输入阻抗均为无穷大,输出阻抗为零。据此得出下面两个结论: 1)由于输入阻抗为无穷大,因而运放的输入电流等于零。

单级放大电路静态参数测试实验报告

单级放大电路静态参数测试实验报告

单级放大电路静态参数测试 一、实验目的 1、熟悉模拟电子技术实验箱的结构,学习电子线路的搭接方法。 2、学习测量和调整放大电路的静态工作点,观察静态工作点设置对输出波形的影响。 二、实验说明 图6-1为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号u i 后,在放大器的输出端便可得到一个与u i 相位相反,幅值被放大了的输出信号u 0,从而实现了电压放大。 图6-1 共射极单管放大器实验电路 在图6-1电路中,旁路电容C E 是使R E 对交流短路,而不致于影响放大倍数,耦合电容C 1和 C 2 起隔直和传递交流的作用。当流过偏置电阻R B1和R B2 的电流远大于晶体管T 的基极电流I B 时(一般5~10倍),则它的静态工作点可用下式估算: CC B2 B1B1 B U R R R U +≈ -≈≈B BE E C E U U I I R ()CE CC C C E U U I R R =-+ 电压放大倍数 be L C V r R R βA // -= 输入电阻 12////i B B be R R R r = 输出电阻 O C R R ≈ 由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量和调试技术。在设计前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点 和各项性能指标。一个优质放大器,必定是理论设计与实验调整相结合的产物。

单级放大电路静态参数测试实验报告

单级放大电路静态参数测试实验报告 单级放大电路静态参数测试 一、实验目的 1、熟悉模拟电子技术实验箱的结构,学习电子线路的搭接方法。 2、学习测量和调整放大电路的静态工作点,观察静态工作点设置对输出波形的影响。 二、实验说明 图6-1为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻R E,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号u i后,在放大器的输出端便可得到一个与u i相位相反,幅值被放大了的输出信号u0,从而实现了电压放大。 图6-1共射极单管放大器实验电路 在图6-1电路中,旁路电容C E是使R E对交流短路,而不致于影响放大倍数,耦合电容C1和C2起隔直和传递交流的作

用。当流过偏置电阻R B1和R B2的电流远大于晶体管T的基极电流I B时(一般5~10倍),则它的静态工作点可用下式估算: CC B2B1B1 B U R R R U+≈ -≈≈B BE E C E U U I I R ()CE CC C C E U U I R R=-+ 电压放大倍数be L C V r R RβA//-=输入电阻12////i B B be R R R r=输出电阻O C R R≈ 由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量和调试技术。在设计前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。一个优质放大器,必定是理论设计与实验调整相结合的产物。 因此,除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。放大器的测量和调试一般包括:放大器静态工作点的测量与调试,消除干扰与自激振荡及放大器各项动

相关主题
文本预览
相关文档 最新文档