专升本高数复习资料(超新超全)
- 格式:doc
- 大小:504.50 KB
- 文档页数:16
完整版)专升本高等数学知识点汇总常用的高等数学知识点汇总如下:一、常见函数的定义域总结如下:1) y=kx+b,y=ax^2+bx+c,一般形式的定义域为x∈R。
2) y=1/x,分式形式的定义域为x≠0.3) y=sqrt(x),x根式的形式定义域为x≥0.4) y=log_a(x),对数形式的定义域为x>0.二、函数的性质1、函数的单调性:当x1<x2时,恒有f(x1)<f(x2),f(x)在x1,x2所在的区间上是增加的。
当x1<x2时,恒有f(x1)>f(x2),f(x)在x1,x2所在的区间上是减少的。
2、函数的奇偶性:定义函数y=f(x)的定义区间D关于坐标原点对称,若x∈D,则有- x∈D:1) 偶函数f(x)——对于任意x∈D,恒有f(-x)=f(x)。
2) 奇函数f(x)——对于任意x∈D,恒有f(-x)=-f(x)。
三、基本初等函数1、常数函数:y=c,定义域为(-∞,+∞),图形是一条平行于x轴的直线。
2、幂函数:y=x^u,(u是常数)。
它的定义域随着u的不同而不同。
图形过原点。
3、指数函数:定义y=f(x)=a^x,(a是常数且a>0,a≠1)。
图形过(0,1)点。
4、对数函数:定义y=f(x)=log_a(x),(a是常数且a>0,a≠1)。
图形过(1,0)点。
5、三角函数:1) 正弦函数:y=sin(x),T=2π,D(f)=(-∞,+∞),f(D)=[-1,1]。
2) 余弦函数:y=cos(x),T=2π,D(f)=(-∞,+∞),f(D)=[-1,1]。
3) 正切函数:y=tan(x),T=π,D(f)={x|x∈R,x≠(2k+1)π/2,k∈Z},f(D)=(-∞,+∞)。
4) 余切函数:y=cot(x),T=π,D(f)={x|x∈R,x≠kπ,k∈Z},f(D)=(-∞,+∞)。
四、极限一、求极限的方法:1、代入法:将x的值代入函数中求得对应的y值。
改写后的文章:高等数学中常用的知识点汇总如下:一、常见函数的定义域总结如下:1) y=kx+b,y=ax^2+bx+c,一般形式的定义域为x∈R。
专升本高数复习资料整理人:周永强 一、函数、极限和连续 1.函数)(x f y =的定义域是( )A .变量x 的取值范围B .使函数)(x f y =的表达式有意义的变量x 的取值范围C .全体实数D .以上三种情况都不是 2.以下说法不正确的是( )A .两个奇函数之和为奇函数B .两个奇函数之积为偶函数C .奇函数与偶函数之积为偶函数D .两个偶函数之和为偶函数 3.两函数相同则( )A .两函数表达式相同B .两函数定义域相同C .两函数表达式相同且定义域相同D .两函数值域相同4.函数y =的定义域为( )A .(2,4)B .[2,4]C .(2,4]D .[2,4) 5.函数3()23sin f x x x =-的奇偶性为( )A .奇函数B .偶函数C .非奇非偶D .无法判断6.设,121)1(-+=-x xx f 则)(x f 等于( )A .12-x xB .x x 212--C .121-+x xD .xx212--7. 分段函数是( )A .几个函数B .可导函数C .连续函数D .几个分析式和起来表示的一个函数 8.下列函数中为偶函数的是( ) A .x e y -= B .)ln(x y -= C .x x y cos 3= D .x y ln =9.以下各对函数是相同函数的有( ) A .x x g x x f -==)()(与 B .xx g x x f cos )(sin 1)(2=-=与C .1)()(==x g x xx f 与 D .⎩⎨⎧<->-=-=2222)(2)(x xx x x g x x f 与10.下列函数中为奇函数的是( )A .)3cos(π+=x y B .x x y sin = C .2xx e e y --=D .23x x y +=11.设函数)(x f y =的定义域是[0,1],则)1(+x f 的定义域是( )A .]1,2[--B .]0,1[- C .[0,1] D . [1,2]12.函数⎪⎩⎪⎨⎧≤<+=<<-+=20200022)(2x x x x x x f 的定义域是( )A .)2,2(-B .]0,2(-C .]2,2(-D . (0,2]13.若=---+-=)1(,23321)(f xx x x x f 则( )A .3-B .3C .1-D .1 14.若)(x f 在),(+∞-∞内是偶函数,则)(x f -在),(+∞-∞内是( )A .奇函数B .偶函数C .非奇非偶函数D .0)(≡x f15.设)(x f 为定义在),(+∞-∞内的任意不恒等于零的函数,则)()()(x f x f x F -+=必是( )A .奇函数B .偶函数C .非奇非偶函数D .0)(≡x F16. 设⎪⎩⎪⎨⎧<<≤<-≤<--=42,021,1211,1)(2x x x x x x f 则)2(πf 等于 ( ) A .12-π B .182-π C . 0 D .无意义17.函数x x y sin 2=的图形( )A .关于ox 轴对称B .关于oy 轴对称C .关于原点对称D .关于直线x y =对称18.下列函数中,图形关于y 轴对称的有( )A .x x y cos = B .13++=x x yC .2xx e e y -+=D .2xx e e y --=19.函数)(x f 与其反函数)(1x f -的图形对称于直线( )A .0=y B .0=x C .x y = D .x y -= 20. 曲线)1,0(log ≠>==a a x y a y a x 与在同一直角坐标系中,它们的图形( )A .关于x 轴对称B .关于y 轴对称C .关于直线x y =轴对称D .关于原点对称21.对于极限)(limx f x →,下列说法正确的是( ) A .若极限)(lim 0x f x →存在,则此极限是唯一的 B .若极限)(limx f x →存在,则此极限并不唯一C .极限)(limx f x →一定存在D .以上三种情况都不正确 22.若极限A )(lim 0=→x f x 存在,下列说法正确的是( )A .左极限)(lim 0x f x -→不存在 B .右极限)(lim 0x f x +→不存在C .左极限)(lim 0x f x -→和右极限)(lim 0x f x +→存在,但不相等D .A )(lim )(lim )(lim 00===→→→-+x f x f x f x x x23.极限ln 1limx e x x e→--的值是( )A .1B .1eC .0D .e24.极限ln cot lim ln x xx→+0的值是( ).A . 0B . 1C .∞D . 1-25.已知2sin lim20=+→xx bax x ,则( ) A .0,2==b aB .1,1==b aC .1,2==b aD .0,2=-=b a26.设b a<<0,则数列极限l i m n n n n a b →+∞+是A .aB .bC .1D .b a + 27.极限xx 1321lim+→的结果是A .0B .21C .51D .不存在28.∞→x lim xx 21sin 为( )A .2B .21C .1D .无穷大量29. n m nxmxx ,(sin sin lim0→为正整数)等于( ) A .nm B .mn C .n m nm --)1( D .mn m n --)1( 30.已知1tan lim230=+→xx bax x ,则( ) A .0,2==b aB .0,1==b aC .0,6==b aD .1,1==b a31.极限xx xx x cos cos lim+-∞→( )A .等于1B .等于0C .为无穷大D .不存在32.设函数⎪⎩⎪⎨⎧>-=<+=010001sin )(x e x x x x f x 则=→)(limx f x ( )A .1B .0C .1-D .不存在 33.下列计算结果正确的是( )A .e x x x =+→10)41(lim B .410)41(lim e xx x =+→ C .410)41(lim --→=+e x x x D .4110)41(lim e x x x =+→34.极限x x xtan 0)1(lim +→等于( ) A . 1 B .∞ C .0 D .21 35.极限⎪⎭⎫⎝⎛-→x x x x x sin 11sinlim 0的结果是 A .1- B .1 C .0 D .不存在36.()01sinlim≠∞→k kxx x 为 ( )A .kB .k1C .1D .无穷大量37.极限xx sin lim 2π-→=( )A .0B .1C .1-D .2π- 38.当∞→x时,函数x x)11(+的极限是( )A .eB .e -C .1D .1-39.设函数⎪⎩⎪⎨⎧>-=<+=01cos 001sin )(x x x x x x f ,则=→)(lim 0x f xA .1B .0C .1-D .不存在40.已知a xax x x 则,516lim21=-++→的值是( ) A .7 B .7- C . 2 D .341.设⎪⎩⎪⎨⎧≥+<=020tan )(x x x xaxx f ,且)(limx f x →存在,则a 的值是( )A .1B .1-C .2D .2- 42.无穷小量就是( )A .比任何数都小的数B .零C .以零为极限的函数D .以上三种情况都不是 43.当0→x 时,)2sin(3x x +与x 比较是( )A .高阶无穷小B .等价无穷小C .同阶无穷小 ,但不是等价无穷小D .低阶无穷小 44.当0→x 时,与x 等价的无穷小是( ) A .xx sin B .)1ln(x + C .)11(2x x -++ D .)1(2+x x45.当0→x 时,)3tan(3x x +与x 比较是( )A .高阶无穷小B .等价无穷小C .同阶无穷小 ,但不是等价无穷小D .低阶无穷小 46.设,1)(,)1(21)(x x g x xx f -=+-=则当1→x 时( )A .)(x f 是比)(x g 高阶的无穷小B .)(x f 是比)(x g 低阶的无穷小C .)(x f 与)(x g 为同阶的无穷小 D .)(x f 与)(x g 为等价无穷小 47.当+→0x 时, 11)(-+=a x x f 是比x 高阶的无穷小,则( )A .1>aB .0>aC .a 为任一实常数D .1≥a48.当0→x 时,x 2tan 与2x 比较是( )A .高阶无穷小B .等价无穷小C .同阶无穷小 ,但不是等价无穷小D .低阶无穷小 49.“当0x x→,A x f -)(为无穷小”是“A x f x x =→)(lim 0”的( )A .必要条件,但非充分条件B .充分条件,但非必要条件C .充分且必要条件D .既不是充分也不是必要条件 50. 下列变量中是无穷小量的有( ) A .)1ln(1lim0+→x x B .)1)(2()1)(1(lim 1-+-+→x x x x xC .x x x 1cos 1lim ∞→D .x x x 1sin cos lim 0→ 51.设时则当0,232)(→-+=x x f x x ( )A .)(x f 与x 是等价无穷小量B .)(x f 与x 是同阶但非等价无穷小量C .)(x f 是比x 较高阶的无穷小量 D .)(x f 是比x 较低阶的无穷小量 52. 当+→0x时,下列函数为无穷小的是( )A .x x 1sinB .x e 1C .x lnD .x xsin 153. 当0→x 时,与2sin x 等价的无穷小量是 ( ) A .)1ln(x + B .x tan C .()x cos 12- D .1-x e54. 函数,1sin )(xx x f y ==当∞→x 时)(x f ( )A .有界变量B .无界变量C .无穷小量D .无穷大量55. 当0→x 时,下列变量是无穷小量的有( )A .xx 3B .xx cos C .x ln D .xe - 56. 当0→x 时,函数xxy sec 1sin +=是( )A .不存在极限的B .存在极限的C .无穷小量D .无意义的量 57.若0x x→时, )(x f 与)(x g 都趋于零,且为同阶无穷小,则( )A .0)()(lim=→x g x f x x B .∞=→)()(lim 0x g x f x xC .)1,0()()(lim≠=→c c x g x f x x D .)()(lim 0x g x f x x →不存在58.当0→x 时,将下列函数与x 进行比较,与x 是等价无穷小的为( )A .x 3tan B .112-+x C .x x cot csc - D .xx x 1sin2+ 59.函数)(x f 在点0x 有定义是)(x f 在点0x 连续的( )A .充分条件B .必要条件C .充要条件D .即非充分又非必要条件 60.若点0x 为函数的间断点,则下列说法不正确的是( )A .若极限A )(lim 0=→x f x x 存在,但)(x f 在0x 处无定义,或者虽然)(x f 在0x 处有定义,但)(A 0x f ≠,则0x 称为)(x f 的可去间断点B .若极限)(lim 0x f x x +→与极限)(lim 0x f x x -→都存在但不相等,则0x 称为)(x f 的跳跃间断点C .跳跃间断点与可去间断点合称为第二类的间断点D .跳跃间断点与可去间断点合称为第一类的间断点 61.下列函数中,在其定义域内连续的为( )A .x x x f sin ln )(+= B .⎩⎨⎧>≤=00sin )(x ex xx f xC .⎪⎩⎪⎨⎧>-=<+=01011)(x x x x x x f D .⎪⎩⎪⎨⎧=≠=001)(x x xx f62.下列函数在其定义域内连续的有( ) A .x x f 1)(=B .⎩⎨⎧>≤=0cos 0sin )(x xx x x fC .⎪⎩⎪⎨⎧>-=<+=01001)(x x x x x x f D .⎪⎩⎪⎨⎧=≠=001)(x x xx f63.设函数⎪⎩⎪⎨⎧=-≠=021arctan )(x x x x f π 则)(x f 在点0=x 处( )A .连续B .左连续C .右连续D .既非左连续,也非右连续 64.下列函数在0=x处不连续的有( )A .⎪⎩⎪⎨⎧=≠=-00)(2x x e x f xB .⎪⎩⎪⎨⎧=≠=010sin )(21x x xx x f C .⎩⎨⎧≥<-=00)(2x xx xx f D .⎩⎨⎧≤->+=00)1ln()(2x xx x x f65.设函数⎪⎩⎪⎨⎧=≠--=12111)(2x x x x x f , 则在点)(1x f x 处函数=( ) A .不连续 B .连续但不可导 C .可导,但导数不连续 D .可导,且导数连续 66.设分段函数⎩⎨⎧<+≥+=011)(2x x x x x f ,则)(x f 在0=x 点( )A .不连续B .连续且可导C .不可导D .极限不存在 67.设函数)(x f y =,当自变量x 由0x 变到y x x ∆∆+相应函数的改变量时,0=( )A .)(0x x f ∆+ B .x x f ∆)('0 C .)()(00x f x x f -∆+ D .x x f ∆)(068.已知函数⎪⎩⎪⎨⎧>+=<=012000)(x x x x e x f x ,则函数)(x f ( )A .当0→x 时,极限不存在B .当0→x 时,极限存在C .在0=x 处连续D .在0=x 处可导69.函数)1ln(1-=x y 的连续区间是( )A .),2[]2,1[+∞⋃B .),2()2,1(+∞⋃C .),1(+∞D .),1[+∞ 70.设nxnxx f x -=∞→13lim)(,则它的连续区间是( )A .),(+∞-∞B .处为正整数)(1n nx ≠C .)0()0,(∞+⋃-∞D .处及n x x 10≠≠71.设函数⎪⎪⎩⎪⎪⎨⎧=≠-+=031011)(x x x x x f , 则函数在0=x 处( )A .不连续B .连续不可导C .连续有一阶导数D .连续有二阶导数72.设函数⎪⎩⎪⎨⎧=≠=00x x xx y ,则)(x f 在点0=x 处( )A .连续B .极限存在C .左右极限存在但极限不存在D .左右极限不存在 73.设11cot)(2-+=x arc x x f ,则1=x 是)(x f 的( )A .可去间断点B .跳跃间断点C .无穷间断点D .振荡间断点74.函数2x y e x z y-+=的间断点是( )A .)1,1(),1,1(),0,1(--B .是曲线y e y -=上的任意点C .)1,1(),1,1(),0,0(-D .曲线2x y =上的任意点75.设2)1(42-+=xx y ,则曲线( ) A .只有水平渐近线2-=y B .只有垂直渐近线0=x C .既有水平渐近线2-=y ,又有垂直渐近线0=x D .无水平,垂直渐近线76.当0>x时, xx y 1sin=( ) A .有且仅有水平渐近线 B .有且仅有铅直渐近线C .既有水平渐近线,也有铅直渐近线D .既无水平渐近线,也无铅直渐近线 二、一元函数微分学 77.设函数)(x f 在点0x 处可导,则下列选项中不正确的是( )A .x yx f x ∆∆=→∆00lim)(' B .xx f x x f x f x ∆-∆+=→∆)()(lim )('0000C .00)()(lim)('0x x x f x f x f x x --=→ D .hx f h x f x f h )()21(lim)('0000--=→ 78.若e cos x y x =,则'(0)y =( )A .0B .1C .1-D .2 79.设x x g e x f x sin )(,)(==,则=)]('[x g f ( )A .xe sin B .xecos - C .xecos D .xesin -80.设函数)(x f 在点0x 处可导,且2)('0=x f ,则h x f h x f h )()21(lim 000--→等于( )A .1-B .2C .1D .21-81.设)(x f 在a x =处可导,则xx a f x a f x )()(lim 0--+→=( )A .)('a fB .)('2a fC .0D .)2('a f 82.设)(x f 在2=x 处可导,且2)2('=f ,则=--+→hh f h f h )2()2(lim( )A .4B .0C .2D .3 83.设函数)3)(2)(1()(---=x x x x x f ,则)0('f 等于( )A .0B .6-C .1D .3 84.设)(x f 在0=x 处可导,且1)0('=f ,则=--→hh f h f h )()(lim( )A .1B .0C .2D .385.设函数)(x f 在0x 处可导,则0lim→h hx f f )()h - x (00-( )A .与0x ,h 都有关B .仅与0x 有关,而与h 无关C .仅与h 有关,而与0x 无关D .与0x ,h 都无关 86.设)(x f 在1=x 处可导,且21)1()21(lim0=--→h f h f h ,则=)1('f ( )A .21B . 21-C . 41D .41-87.设==-)0('')(2f e x f x 则( )A .1-B .1C .2-D .2 88.导数)'(log x a等于( )A .a x ln 1B .a x ln 1 C .x x a log 1 D .x 1 89.若),1()2(249102+-++=x x x x y 则)29(y =( )A .30B .29!C .0D .30×20×10 90.设',)(',)()(y x f e e f y x f x 则存在且==( )A .)()()()('x f x x f x e e f e e f +B .)(')(')(x f e e f x f x ⋅C .)(')()(')()(x f e e f e e f x f x x f x x ⋅++D .)()('x f x e e f91.设=---=)0('),100()2)(1()(f x x x x x f 则 ( )A .100B .100!C .!100-D .100- 92.若==',y x y x 则( )A .1-⋅x x x B .x xxln C .不可导 D .)ln 1(x x x +93.处的导数是在点22)(=-=x x x f ( )A .1B .0C .1-D .不存在 94.设==-',)2(y x y x 则( )A .)1()2(x x x +--B .2ln )2(x x -C .)2ln 21()2(x x x+- D .)2ln 1()2(x x x +-- 95.设函数)(x f 在区间],[b a 上连续,且,0)()(<b f a f 则 ( )A .)(x f 在),(b a 内必有最大值或最小值B .)(x f 在),(b a 内存在唯一的0)(,=ξξf 使C .)(x f 在),(b a 内至少存在一个0)(,=ξξf 使D .)(x f 在),(b a 内存在唯一的0)(',=ξξf 使96.设,)()(x g x f y =则=dx dy ( ) A .])()(')()('[2x g x g x f x f y - B .])(1)(1[2x g x f y - C .)()('21x g x f y ⋅ D .)()('2x g x f y ⋅ 97.若函数)(x f 在区间)b a,(内可导,则下列选项中不正确的是( )A .若在)b a,(内0)('>x f ,则)(x f 在)b a,(内单调增加B .若在)b a,(内0)('<x f ,则)(x f 在)b a,(内单调减少C .若在)b a,(内0)('≥x f ,则)(x f 在)b a,(内单调增加D .)(x f 在区间)b a,(内每一点处的导数都存在98.若)(y x f =在点0x 处导数存在,则函数曲线在点))(,(00x f x 处的切线的斜率为( )A .)('0x f B .)(0x f C .0 D .199.设函数)(yx f =为可导函数,其曲线的切线方程的斜率为1k ,法线方程的斜率为2k ,则1k 与2k 的关系为( ) A .211k k =B .121-=⋅k k C .121=⋅k k D .021=⋅k k100.设0x 为函数)(x f 在区间()b a ,上的一个极小值点,则对于区间()b a ,上的任何点x ,下列说法正确的是( )A .)()(0x f x f >B .)()(0x f x f <。
专升本《高等数学》复习题对于准备专升本考试的同学来说,《高等数学》是一门重要且具有一定难度的学科。
想要在考试中取得好成绩,系统而有效的复习至关重要。
以下为大家整理了一份专升本《高等数学》的复习题,希望能对大家的复习有所帮助。
一、函数与极限1、求函数\(f(x) =\frac{x^2 4}{x 2}\)的定义域。
这道题主要考查函数定义域的概念。
要使分式有意义,分母不能为零。
所以\(x 2 \neq 0\),即\(x \neq 2\)。
因此,函数的定义域为\(x \in (\infty, 2) \cup (2, +\infty)\)。
2、计算\(\lim_{x \to 2} \frac{x^2 4}{x 2}\)这是一个极限问题。
我们可以将分子进行因式分解:\(x^2 4 =(x + 2)(x 2)\),然后约分得到\(x + 2\)。
当\(x \to 2\)时,极限值为\(2 + 2 = 4\)。
3、讨论函数\(f(x) =\begin{cases} x + 1, & x < 0 \\ 0, & x = 0 \\ x 1, & x > 0 \end{cases}\)在\(x = 0\)处的连续性。
要判断函数在某一点的连续性,需要判断函数在该点的极限值是否等于函数值。
左极限为\(\lim_{x \to 0^} f(x) =\lim_{x \to 0^}(x + 1) = 1\),右极限为\(\lim_{x \to 0^+} f(x) =\lim_{x \to 0^+}(x 1) =-1\),函数值为\(f(0) = 0\)。
因为左极限、右极限和函数值都不相等,所以函数在\(x = 0\)处不连续。
二、导数与微分1、求函数\(y = x^3 3x^2 + 2\)的导数。
根据求导公式\((X^n)^\prime = nX^{n 1}\),对函数求导可得:\(y^\prime = 3x^2 6x\)2、求函数\(y =\ln(x +\sqrt{1 + x^2})\)的导数。
《高等数学》(专科升本科)复习资料一、复习参考书:全国各类专科起点升本科教材高等数学(一)第3版 本书编写组 高等教育出版社 二、复习内容及方法:第一部分 函数、极限、连续复习内容函数的概念及其基本性质,即单调性、奇偶性、周期性、有界性。
数列的极限与函数的极限概念。
收敛数列的基本性质及函数极限的四则运算法则。
数列极限的存在准则与两个重要的函数极限。
无穷小量与无穷大量的概念及其基本性质。
常见的求极限的方法。
连续函数的概念及基本初等函数的连续性。
函数的间断点及其分类与连续函数的基本运算性质,初等函数的连续性。
闭区间上连续函数的基本性质,即最值定理、介值定理与零点存在定理。
复习要求会求函数的定义域与判断函数的单调性、奇偶性、周期性、有界性。
掌握数列极限的计算方法与理解函数在某一点极限的概念,同时会利用恒等变形、四则运算法则、两个重要极限等常见方法计算函数的极限。
掌握理解无穷小量与无穷大量的概念及相互关系,在求函数极限的时候能使用等价代换。
理解函数连续性的定义,会求给定函数的连续区间及间断点;;能运用闭区间上连续函数的性质证明一些基本的命题。
重要结论1. 两个奇(偶)函数之和仍为奇(偶)函数;两个奇(偶)函数之积必为偶函数;奇函数与偶函数之积必为奇函数;奇(偶)函数的复合必为偶函数; 2. 单调有界数列必有极限;3. 若一个数列收敛,则其任一个子列均收敛,但一个数列的子列收敛,该数列不一定收敛;4. 若一个函数在某点的极限大于零,则一定存在该点的一个邻域,函数在其上也大于零;5. 无穷小(大)量与无穷小(大)量的乘积还是无穷小(大)量,但无穷小量与无穷大量的乘积则有多种可能6. 初等函数在其定义域内都是连续函数;7. 闭区间上的连续函数必能取到最大值与最小值。
重要公式1. 若,)(lim ,)(lim 0B x g A x f x x x x ==→→则AB x g x f x g x f x x x x x x =⋅=⋅→→→)(lim )(lim )]()([lim 0;BA x g x f x g x f x x x x x x ==→→→)(lim )(lim )()(lim 000。
第一章函数、极限、连续第一节函数考点1:判断函数是否为同一函数方法:定义域和对应法则都相同的函数为同一函数。
1.下列函数()f x 与()g x 为同一函数的是().A ()f x x =,()g x x =.B ()f x x =,()g x =.C ()f x =()g x =D.()()3ln ,3ln f x x g x x==【答案】D【考点】函数的三要素:定义域、值域、解析式【解析】解:判断函数是否是同一函数,需要定义域与解析式一样,D 选项定义域和解析式都一样,是同一函数。
A 选项解析式不一样。
考点2:求函数定义域(1)具体函数求定义域,00log ,0arcsin ,arccos ,11a ax x x x x x x x ⎧≠⎪⎪⎪≥⎨⎪>⎪-≤≤⎪⎩(2)抽象函数求定义域:()(),,f g x f h x ⎡⎤⎡⎤⎣⎦⎣⎦要使得()(),g x h x 值域要相同,求出x 的范围即可。
1.函数y =的定义域为.【答案】(][),43,-∞-+∞ 【考点】考察函数的定义域。
【解析】解:()()(][)2120340,,43,x x x x x +-≥-+≥∈-∞-+∞ ,2.设函数()y f x =的定义域为[]2,2-,求函数()24f x -的定义域.【答案】[]1,3x ∈【考点】考察函数的定义域。
【解析】解:[]2242,13,1,3x x x -≤-≤≤≤∈考点3:函数的解析式、反函数的求法函数的解析式:配凑法,换元法反函数:解出()x y ϕ=1.已知()11f x x =-则()f f x =⎡⎤⎣⎦().A 1x -.B 11x -.C 1x -.D 11x-【答案】D【考点】求函数的解析式。
【解析】解:()11111111x f f x x xx=-=-=⎡⎤⎣⎦---2.已知函数y =,求反函数()1f x -.【答案】()21211x fx x --=+【考点】求解反函数。
第一章极限和持续第一节极限[复习考试规定]1.理解极限旳概念(对极限定义等形式旳描述不作规定)。
会求函数在一点处旳左极限与右极限,理解函数在一点处极限存在旳充足必要条件。
2.理解极限旳有关性质,掌握极限旳四则运算法则。
3.理解无穷小量、无穷大量旳概念,掌握无穷小量旳性质、无穷小量与无穷大量旳关系。
会进行无穷小量阶旳比较(高阶、低阶、同阶和等价)。
会运用等价无穷小量代换求极限。
4.纯熟掌握用两个重要极限求极限旳措施。
第二节函数旳持续性[复习考试规定]1.理解函数在一点处持续与间断旳概念,理解函数在一点处持续与极限存在之间旳关系,掌握判断函数(含分段函数)在一点处持续性旳措施。
2.会求函数旳间断点。
3.掌握在闭区间上持续函数旳性质会用它们证明某些简朴命题。
4.理解初等函数在其定义区间上旳持续性,会运用函数持续性求极限。
第二章一元函数微分学第一节导数与微分[复习考试规定]1.理解导数旳概念及其几何意义,理解可导性与持续性旳关系,会用定义求函数在一点处旳导数。
2.会求曲线上一点处旳切线方程与法线方程。
3.纯熟掌握导数旳基本公式、四则运算法则以及复合函数旳求导措施。
4.掌握隐函数旳求导法与对数求导法。
会求分段函数旳导数。
5.理解高阶导数旳概念。
会求简朴函数旳高阶导数。
6.理解微分旳概念,掌握微分法则,理解可微和可导旳关系,会求函数旳一阶微分。
第二节导数旳应用[复习考试规定]1.纯熟掌握用洛必达法则求“0·∞”、“∞-∞”型未定式旳极限旳措施。
2.掌握运用导数鉴定函数旳单调性及求函数旳单调增、减区间旳措施。
会运用函数旳单调性证明简朴旳不等式。
3.理解函数极值旳概念,掌握求函数旳驻点、极值点、极值、最大值与最小值旳措施,会解简朴旳应用题。
4.会判断曲线旳凹凸性,会求曲线旳拐点。
5.会求曲线旳水平渐近线与铅直渐近线第三章一元函数积分学第一节不定积分[复习考试规定]1.理解原函数与不定积分旳概念及其关系,掌握不定积分旳性质。
专升本高等数学复习资料引言高等数学是专升本考试中的重要科目之一,也是很多考生普遍认为较为困难的科目。
为了帮助考生更好地复习高等数学,本文整理了一些复习资料,并提供了一些复习建议和学习方法,以便考生有效提高复习的效果。
知识点梳理1.集合与函数2.极限与连续3.导数与微分4.积分与不定积分5.一元函数微分学应用6.函数积分学应用7.无穷级数8.空间解析几何与向量代数9.多元函数微分学10.重积分11.曲线与曲面积分12.常微分方程复习建议1.制定合理的学习计划:根据自己的实际情况和时间安排,合理分配每天的学习时间,将高等数学的复习安排在日程中。
2.理解概念,掌握基础知识:高等数学是建立在基础知识上的,要牢固掌握集合与函数、极限与连续、导数与微分等基本概念。
3.多进行例题训练:通过做大量的例题,不仅可以巩固基本知识,还能提高解题能力和应对考试的信心。
4.多与他人讨论、交流:在学习过程中,可以与同学或老师进行讨论,互相交流,共同进步。
5.制作思维导图或总结笔记:通过制作思维导图和总结笔记,可以将知识点整理归纳,增强记忆效果。
学习方法制作复习大纲在开始高等数学的复习前,可以先制作一个复习大纲,列出每个章节的主要内容和重点,有助于将知识点整理清楚并有条理地复习。
划分优先级根据复习进度和自己的掌握情况,将知识点划分为重点、难点和易点,并根据优先级合理安排时间。
对于重点和难点的内容,可以多花时间和精力进行深入学习和理解。
多做例题做例题是巩固知识和提高解题能力的有效方法。
可以选择一些习题集进行练习,挑选出一些典型的例题进行反复训练,掌握解题方法和思路。
参考教辅资料在复习过程中,可以选择一些高等数学的教辅资料作为参考,学习其中的例题和解题技巧。
同时,可以寻找一些经典的教材和参考书籍进行参考阅读,扩充知识面。
讨论交流在学习过程中,可以与同学或老师进行讨论和交流。
通过讨论和交流,可以互相答疑解惑,发现自己的不足之处,相互学习和进步。
专升本高数复习资料(超新超全)严格依据大纲编写:笔记目录第一章极限和连续第一节极限[复习考试要求]1.了解极限的概念(对极限定义等形式的描述不作要求)。
会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。
2.了解极限的有关性质,掌握极限的四则运算法则。
3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。
会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。
会运用等价无穷小量代换求极限。
4.熟练掌握用两个重要极限求极限的方法。
第二节函数的连续性[复习考试要求]1.理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在之间的关系,掌握判断函数(含分段函数)在一点处连续性的方法。
2.会求函数的间断点。
3.掌握在闭区间上连续函数的性质会用它们证明一些简单命题。
4.理解初等函数在其定义区间上的连续性,会利用函数连续性求极限。
第二章一元函数微分学第一节导数与微分[复习考试要求]1.理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点处的导数。
2.会求曲线上一点处的切线方程与法线方程。
3.熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法。
4.掌握隐函数的求导法与对数求导法。
会求分段函数的导数。
5.了解高阶导数的概念。
会求简单函数的高阶导数。
6.理解微分的概念,掌握微分法则,了解可微和可导的关系,会求函数的一阶微分。
第二节导数的应用[复习考试要求]1.熟练掌握用洛必达法则求“0·∞”、“∞-∞”型未定式的极限的方法。
2.掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法。
会利用函数的单调性证明简单的不等式。
3.理解函数极值的概念,掌握求函数的驻点、极值点、极值、最大值与最小值的方法,会解简单的应用题。
4.会判断曲线的凹凸性,会求曲线的拐点。
5.会求曲线的水平渐近线与铅直渐近线第三章一元函数积分学第一节不定积分[复习考试要求]1.理解原函数与不定积分的概念及其关系,掌握不定积分的性质。
专升本高等数学复习资料一、函数、极限和连续 .函数)(x f y =的定义域是〔 〕.变量的取值范围 .使函数)(x f y =的表达式有意义的变量的取值范围.全体实数 .以上三种情况都不是 .以下说法不正确的选项是〔 〕.两个奇函数之和为奇函数 .两个奇函数之积为偶函数 .奇函数及偶函数之积为偶函数 .两个偶函数之和为偶函数 .两函数一样那么〔 〕.两函数表达式一样 .两函数定义域一样.两函数表达式一样且定义域一样 .两函数值域一样.函数y = 〕.(2,4) .[2,4] .(2,4] .[2,4).函数3()23sin f x x x =-的奇偶性为〔 〕.奇函数 .偶函数 .非奇非偶 .无法判断 .设那么)(x f 等于( ). . . . . 分段函数是( ).几个函数 .可导函数 .连续函数 .几个分析式和起来表示的一个函数 .以下函数中为偶函数的是( ) .x e y -= .)ln(x y -= .x x y cos 3= .x y ln =.以下各对函数是一样函数的有( ) .x x g x x f -==)()(与 .xx g x x f cos )(sin 1)(2=-=与. .⎩⎨⎧<->-=-=2222)(2)(x xx x x g x x f 与.以下函数中为奇函数的是( ) . .x x y sin = . .23x x y +=.设函数)(x f y =的定义域是[],那么)1(+x f 的定义域是( ).]1,2[-- . ]0,1[- .[] . [].函数⎪⎩⎪⎨⎧≤<+=<<-+=20200022)(2x x x x x x f 的定义域是( ).)2,2(- .]0,2(- .]2,2(- . (].假设=---+-=)1(,23321)(f xx x x x f 则( ).3- . .1- . .假设)(x f 在),(+∞-∞内是偶函数,那么)(x f -在),(+∞-∞内是( ).奇函数 .偶函数 .非奇非偶函数 .0)(≡x f.设)(x f 为定义在),(+∞-∞内的任意不恒等于零的函数,那么)()()(x f x f x F -+=必是( ).奇函数 .偶函数 .非奇非偶函数 .0)(≡x F. 设⎪⎩⎪⎨⎧<<≤<-≤<--=42,021,1211,1)(2x x x x x x f 那么)2(πf 等于 ( ) .12-π .182-π . 0 .无意义.函数x x y sin 2=的图形〔 〕.关于ox 轴对称 .关于oy 轴对称 .关于原点对称 .关于直线x y =对称.以下函数中,图形关于y 轴对称的有( ).x x y cos = .13++=x x y. . .函数)(x f 及其反函数)(1x f-的图形对称于直线( ).0=y .0=x .x y = .x y -=. 曲线)1,0(log ≠>==a a x y a y a x 与在同一直角坐标系中,它们的图形( ).关于x 轴对称 .关于y 轴对称 .关于直线x y =轴对称 .关于原点对称.对于极限)(limx f x →,以下说法正确的选项是〔 〕.假设极限)(lim 0x f x →存在,那么此极限是唯一的 .假设极限)(lim 0x f x →存在,那么此极限并不唯一.极限)(limx f x →一定存在.以上三种情况都不正确 .假设极限A )(lim 0=→x f x 存在,以下说法正确的选项是〔 〕.左极限)(lim 0x f x -→不存在 .右极限)(lim 0x f x +→不存在.左极限)(lim 0x f x -→和右极限)(lim 0x f x +→存在,但不相等.A )(lim )(lim )(lim 00===→→→-+x f x f x f x x x.极限的值是( ). .1e. .e .极限的值是( ).. . .∞ . 1-.,那么〔 〕.0,2==b a.1,1==b a .1,2==b a .0,2=-=b a.设b a<<0,那么数列极限l i m n n n n a b →+∞+是.a .b . .b a + .极限的结果是. .21.51 .不存在.∞→x lim 为( ). .21. .无穷大量 . 为正整数〕等于〔 〕.nm .mn . ..,那么〔 〕.0,2==b a.0,1==b a .0,6==b a .1,1==b a.极限( ).等于 .等于 .为无穷大 .不存在.设函数⎪⎩⎪⎨⎧>-=<+=010001sin )(x e x x x x f x 那么=→)(limx f x ( ). . .1- .不存在 .以下计算结果正确的选项是( ) . . . . .极限等于( ) . .∞ . .21 .极限的结果是.1- . . .不存在 .为 ( ) . .k1. .无穷大量 .极限( ). . .1- .2π-.当∞→x时,函数的极限是( ).e .e - . .1-.设函数⎪⎩⎪⎨⎧>-=<+=01cos 001sin )(x x x x x x f ,那么=→)(lim 0x f x. . .1- .不存在.a xax x x 则,516lim21=-++→的值是( ) . .7- . ..设⎪⎩⎪⎨⎧≥+<=020tan )(x x x xaxx f ,且)(limx f x →存在,那么a 的值是( ). .1- . .2- .无穷小量就是〔 〕.比任何数都小的数 .零 .以零为极限的函数 .以上三种情况都不是 .当0→x 时,)2sin(3x x +及x 比拟是( ).高阶无穷小 .等价无穷小 .同阶无穷小 ,但不是等价无穷小 .低阶无穷小 .当0→x 时,及x 等价的无穷小是〔 〕 .xx sin .)1ln(x + .)11(2x x -++ .)1(2+x x.当0→x 时,)3tan(3x x +及x 比拟是〔 〕.高阶无穷小 .等价无穷小 .同阶无穷小 ,但不是等价无穷小 .低阶无穷小 .设,1)(,)1(21)(x x g x xx f -=+-=那么当1→x 时〔 〕.)(x f 是比)(x g 高阶的无穷小 .)(x f 是比)(x g 低阶的无穷小 .)(x f 及)(x g 为同阶的无穷小 .)(x f 及)(x g 为等价无穷小.当+→0x时, 11)(-+=a x x f 是比x 高阶的无穷小,那么( ).1>a .0>a .a 为任一实常数 .1≥a.当0→x 时,x 2tan 及2x 比拟是〔 〕.高阶无穷小 .等价无穷小 .同阶无穷小 ,但不是等价无穷小 .低阶无穷小 .“当0x x→,A x f -)(为无穷小〞是“A x f x x =→)(lim 0〞的〔 〕.必要条件,但非充分条件 .充分条件,但非必要条件 .充分且必要条件 .既不是充分也不是必要条件 . 以下变量中是无穷小量的有( ) . . . ..设时则当0,232)(→-+=x x f x x ( ).)(x f 及x 是等价无穷小量 .)(x f 及x 是同阶但非等价无穷小量 .)(x f 是比拟x 高阶的无穷小量 .)(x f 是比拟x 低阶的无穷小量. 当+→0x时,以下函数为无穷小的是( ). .xe 1 .x ln.. 当0→x 时,及2sin x 等价的无穷小量是 ( ) .)1ln(x + .x tan .()x cos 12- .1-x e . 函数当∞→x时)(x f ( ).有界变量 .无界变量 .无穷小量 .无穷大量. 当0→x 时,以下变量是无穷小量的有( ).xx 3 . .x ln.x e -. 当0→x 时,函数是( ).不存在极限的 .存在极限的 .无穷小量 .无意义的量 .假设0x x→时, )(x f 及)(x g 都趋于零,且为同阶无穷小,那么( ). . . .不存在.当0→x 时,将以下函数及x 进展比拟,及x 是等价无穷小的为( ).x 3tan .112-+x .x x cot csc - ..函数)(x f 在点0x 有定义是)(x f 在点0x 连续的〔 〕.充分条件 .必要条件 .充要条件 .即非充分又非必要条件 .假设点0x 为函数的连续点,那么以下说法不正确的选项是〔 〕.假设极限A )(lim 0=→x f x x 存在,但)(x f 在0x 处无定义,或者虽然)(x f 在0x 处有定义,但)(A 0x f ≠,那么0x 称为)(x f 的可去连续点.假设极限)(lim 0x f x x +→及极限)(lim 0x f x x -→都存在但不相等,那么0x 称为)(x f 的跳跃连续点.跳跃连续点及可去连续点合称为第二类的连续点 .跳跃连续点及可去连续点合称为第一类的连续点 .以下函数中,在其定义域内连续的为( ).x x x f sin ln )(+= .⎩⎨⎧>≤=0sin )(x ex xx f x.⎪⎩⎪⎨⎧>-=<+=01011)(x x x x x x f .⎪⎩⎪⎨⎧=≠=001)(x x xx f.以下函数在其定义域内连续的有( ) . .⎩⎨⎧>≤=0cos 0sin )(x xx xx f.⎪⎩⎪⎨⎧>-=<+=01001)(x x x x x x f . .设函数⎪⎩⎪⎨⎧=-≠=021arctan )(x x x x f π 那么)(x f 在点0=x 处( ).连续 .左连续 .右连续 .既非左连续,也非右连续 .以下函数在0=x处不连续的有( ).⎪⎩⎪⎨⎧=≠=-00)(2x x e x f x .⎪⎩⎪⎨⎧=≠=010sin )(21x x xx x f . .⎩⎨⎧≤->+=0)1ln()(2x xx x x f .设函数⎪⎩⎪⎨⎧=≠--=12111)(2x x x x x f , 那么在点)(1x f x 处函数=( ) .不连续 .连续但不可导 .可导,但导数不连续 .可导,且导数连续 .设分段函数⎩⎨⎧<+≥+=011)(2x x x x x f ,那么)(x f 在0=x 点( ).不连续 .连续且可导 .不可导 .极限不存在 .设函数)(x f y =,当自变量x 由0x 变到y x x ∆∆+相应函数的改变量时,0( ).)(0x x f ∆+ .x x f ∆)('0 .)()(00x f x x f -∆+ .x x f ∆)(0.函数⎪⎩⎪⎨⎧>+=<=01200)(x x x x e x f x ,那么函数)(x f ( ) .当0→x 时,极限不存在 .当0→x 时,极限存在 .在0=x处连续 .在0=x 处可导.函数的连续区间是( ).),2[]2,1[+∞⋃ .),2()2,1(+∞⋃ .),1(+∞ .),1[+∞ .设,那么它的连续区间是( ).),(+∞-∞ . .)0()0,(∞+⋃-∞ . .设函数⎪⎪⎩⎪⎪⎨⎧=≠-+=031011)(x x x x x f , 那么函数在0=x 处( ).不连续 .连续不可导 .连续有一阶导数 .连续有二阶导数 .设函数 ,那么)(x f 在点0=x 处( ).连续 .极限存在 .左右极限存在但极限不存在 .左右极限不存在 .设11cot)(2-+=x arc x x f ,那么1=x 是)(x f 的〔 〕.可去连续点 .跳跃连续点 .无穷连续点 .振荡连续点 .函数的连续点是( ).)1,1(),1,1(),0,1(-- .是曲线y e y -=上的任意点.)1,1(),1,1(),0,0(- .曲线2x y =上的任意点.设,那么曲线( ).只有水平渐近线2-=y .只有垂直渐近线0=x .既有水平渐近线2-=y ,又有垂直渐近线0=x .无水平,垂直渐近线.当0>x时, ( ).有且仅有水平渐近线 .有且仅有铅直渐近线.既有水平渐近线,也有铅直渐近线 .既无水平渐近线,也无铅直渐近线 二、一元函数微分学 .设函数)(x f 在点0x 处可导,那么以下选项中不正确的选项是〔 〕. .xx f x x f x f x ∆-∆+=→∆)()(lim)('000.00)()(lim)('0x x x f x f x f x x --=→ .hx f h x f x f h )()21(lim)('0000--=→ .假设e cos x y x =,那么'(0)y =( ). . .1- .2 .设x x g e x f x sin )(,)(==,那么=)]('[x g f ( ).xe sin .xecos - .xecos .xesin -.设函数)(x f 在点0x 处可导,且2)('0=x f ,那么hx f h x f h )()21(lim 000--→等于( ).1- . . .21- .设)(x f 在a x =处可导,那么x x a f x a f x )()(lim0--+→( ) .)('a f .)('2a f . .)2('a f.设)(x f 在2=x 处可导,且2)2('=f ,那么=--+→hh f h f h )2()2(lim〔 〕. . . . .设函数)3)(2)(1()(---=x x x x x f ,那么)0('f 等于〔 〕. .6- . . .设)(x f 在0=x 处可导,且1)0('=f ,那么〔 〕. . . . .设函数)(x f 在0x 处可导,那么0lim→h ( ).及0x 都有关 .仅及0x 有关,而及无关.仅及有关,而及0x 无关 .及0x 都无关 .设)(x f 在1=x 处可导,且21)1()21(lim0=--→h f h f h ,那么=)1('f 〔 〕.21. 21- . 41 .41- .设==-)0('')(2f e x f x 则( ).1- . .2- . .导数)'(log x a等于( ). . . .x1.假设),1()2(249102+-++=x x x x y 那么)29(y ( ). .! . .×× .设',)(',)()(y x f e e f y x f x 则存在且=( ).)()()()('x f x x f x e e f e e f + .)(')(')(x f e e f x f x ⋅ .)(')()(')()(x f e e f e e f x f x x f x x ⋅++ .)()('x f x e e f.设=---=)0('),100()2)(1()(f x x x x x f 则 ( ). .! .!100- .100- .假设==',y x y x 则( ).1-⋅x x x .x xxln .不可导 .)ln 1(x x x +.处的导数是在点22)(=-=x x x f ( ). . .1- .不存在 .设==-',)2(y x y x 则( ).)1()2(x x x +--.2ln )2(x x -. .)2ln 1()2(x x x+--.设函数)(x f 在区间],[b a 上连续,且,0)()(<b f a f 那么 ( ).)(x f 在),(b a 内必有最大值或最小值 .)(x f 在),(b a 内存在唯一的0)(,=ξξf 使 .)(x f 在),(b a 内至少存在一个0)(,=ξξf 使 .)(x f 在),(b a 内存在唯一的0)(',=ξξf 使.设那么=dxdy( ) . . . . .假设函数)(x f 在区间)b a,(内可导,那么以下选项中不正确的选项是〔 〕.假设在)b a,(内0)('>x f ,那么)(x f 在)b a,(内单调增加 .假设在)b a,(内0)('<x f ,那么)(x f 在)b a,(内单调减少 .假设在)b a,(内0)('≥x f ,那么)(x f 在)b a,(内单调增加.)(x f 在区间)b a,(内每一点处的导数都存在.假设)(y x f =在点0x 处导数存在,那么函数曲线在点))(,(00x f x 处的切线的斜率为〔 〕.)('0x f .)(0x f . ..设函数)(yx f =为可导函数,其曲线的切线方程的斜率为1k ,法线方程的斜率为2k ,那么1k 及2k 的关系为〔 〕. .121-=⋅k k .121=⋅k k .021=⋅k k.设0x 为函数)(x f 在区间()b a ,上的一个极小值点,那么对于区间()b a ,上的任何点x ,以下说法正确的选项是〔 〕.)()(0x f x f > .)()(0x f x f < .)()(0x f x f -> .)()(0x f x f -<.设函数)(x f 在点0x 的一个邻域内可导且0)('0=x f 〔或)('0x f 不存在〕,以下说法不正确的选项是〔 〕 .假设0x x <时, 0)('>x f ;而0x x >时, 0)('<x f ,那么函数)(x f 在0x 处取得极大值 .假设0x x<时, 0)('<x f ;而0x x >时, 0)('>x f ,那么函数)(x f 在0x 处取得极小值.假设0x x<时, 0)('<x f ;而0x x >时, 0)('>x f ,那么函数)(x f 在0x 处取得极大值.如果当x 在0x 左右两侧邻近取值时, )('x f 不改变符号,那么函数)(x f 在0x 处没有极值.0)('0=x f ,0)(''0≠x f ,假设0)(''0>x f ,那么函数)(x f 在0x 处取得〔 〕.极大值 .极小值 .极值点 .驻点.b x a <<时,恒有0)(>''x f ,那么曲线)(x f y =在()b a ,内〔 〕.单调增加 .单调减少 .上凹 .下凹 .数()e x f x x =-的单调区间是( ) ..在),(+∞-∞上单增 .在),(+∞-∞上单减 .在(,0)-∞上单增,在(0,)+∞上单减 .在(,0)-∞上单减,在(0,)+∞上单增.数43()2f x x x =-的极值为〔 〕..有极小值为(3)f .有极小值为(0)f .有极大值为(1)f .有极大值为(1)f -.x e y =在点()处的切线方程为( ).x y +=1 .x y +-=1 .x y -=1 .x y --=1.函数x x x x x f 处的切线与的图形在点)1,0(162131)(23+++=轴交点的坐标是( ) . .)0,1(- . .)0,1(.抛物线x y =在横坐标4=x 的切线方程为 ( ).044=+-y x .044=++y x .0184=+-y x .0184=-+y x.线)0,1()1(2在-=x y 点处的切线方程是( ).1+-=x y .1--=x y .1+=x y .1-=x y .曲线)(x f y =在点x 处的切线斜率为,21)('x x f -=且过点(),那么该曲线的方程是( ) .12++-=x x y .12-+-=x x y.12++=x x y .12-+=x x y.线上的横坐标的点0=x 处的切线及法线方程( ).063023=-+=+-y x y x 与 .063023=--=++-y x y x 与 .063023=++=--y x y x 与 .063023=+-=++y x y x 与.函数处在点则0)(,)(3==x x f x x f ( ).可微 .不连续 .有切线,但该切线的斜率为无穷 .无切线.以下结论正确的选项是( ).导数不存在的点一定不是极值点.驻点肯定是极值点.导数不存在的点处切线一定不存在.0)('0=x f 是可微函数)(x f 在0x 点处取得极值的必要条件.假设函数)(x f 在0=x 处的导数,0)0('=f 那么0=x 称为)(x f 的( ).极大值点 .极小值点 .极值点 .驻点.曲线)1ln()(2+=x x f 的拐点是( ).)1ln ,1(及)1ln ,1(- .)2ln ,1(及)2ln ,1(-.)1,2(ln 及)1,2(ln - .)2ln ,1(-及)2ln ,1(--.线弧向上凹及向下凹的分界点是曲线的( ).驻点 .极值点 .切线不存在的点 .拐点.数)(x f y =在区间[]上连续,那么该函数在区间[]上( ).一定有最大值无最小值 .一定有最小值无最大值.没有最大值也无最小值 .既有最大值也有最小值.以下结论正确的有( ).0x 是)(x f 的驻点,那么一定是)(x f 的极值点 .0x 是)(x f 的极值点,那么一定是)(x f 的驻点 .)(x f 在0x 处可导,那么一定在0x 处连续 .)(x f 在0x 处连续,那么一定在0x 处可导.由方程y x e xy +=确定的隐函数)(x y y ==dxdy ( ) . . . ..=+=x y y xe y ',1则( ). . . .y e x )1(+.设x x g e x f x sin )(,)(==,那么=)]('[x g f 〔 〕.x esin .x e cos - .x e cos .x e sin - .设x x g e x f x cos )(,)(-==,那么=)]('[x g f.x esin .x e cos - .x e cos .x e sin - .设)(),(x t t f y φ==都可微,那么=dy.dt t f )(' .)('x φdx .)('t f )('x φdt .)('t f dx.设,2sin x e y =那么=dy 〔 〕.x d e x 2sin .x d e x 2sin sin 2 .xxd e x sin 2sin 2sin .x d e x sin 2sin .假设函数)(x f y =有dy x x x x f 处的微分该函数在时则当00,0,21)('=→∆=是( ) .及x ∆等价的无穷小量 .及x ∆同阶的无穷小量.比x ∆低阶的无穷小量 .比x ∆高阶的无穷小量.给微分式,下面凑微分正确的选项是( ). . . ..下面等式正确的有( ).)(sin sin x x x x e d e dx e e = ..)(222x d e dx xex x -=-- .)(cos sin cos cos x d e xdx e x x = .设)(sin x f y =,那么=dy ( ).dx x f )(sin ' .x x f cos )(sin ' .xdx x f cos )(sin ' .xdx x f cos )(sin '-.设,2sin x e y =那么=dy.x d e x 2sin .x d e x 2sin sin 2 .x xd e x sin 2sin 2sin .x d e x sin 2sin三、一元函数积分学.可导函数)(F x 为连续函数)(x f 的原函数,那么( ) .0)('=x f .)()(F'x f x = .0)(F'=x .0)(=x f.假设函数)(F x 和函数)(x Φ都是函数)(x f 在区间I 上的原函数,那么有( ) .I x x x ∈∀=Φ),(F )(' .I x x x ∈∀Φ=),()(F .I x x x ∈∀Φ=),()(F' .I x C x x ∈∀=Φ-,)()(F.有理函数不定积分等于〔 〕.. .. ..不定积分等于〔 〕..2arcsin x C + .2arccos x C +.2arctan x C + .2cot arc x C +.不定积分等于〔 〕.. .. ..函数x e x f 2)(=的原函数是( ). .x e 22 . .x e 231.⎰xdx 2sin 等于( ). .c x +2sin .c x +-2cos 2 ..假设⎰⎰-=xdx x x dx x xf sin sin )(,那么)(x f 等于〔 〕.x sin .x x sin .x cos .. 设 x e -是)(x f 的一个原函数,那么⎰=dx x xf )('〔 〕.c x e x +--)1( .c x e x ++--)1( .c x e x +--)1(. c x e x ++-)1( .设,)(x e x f -= 那么 ( ). . .c x +-ln .c x +ln.设)(x f 是可导函数,那么()')(⎰dx x f 为〔 〕.)(x f .c x f +)( .)('x f .c x f +)('. 以下各题计算结果正确的选项是( ). ..⎰+-=c x xdx cos sin .⎰+=c x xdx 2sec tan. 在积分曲线族⎰dx x x 中,过点()的积分曲线方程为( ).12+x . .x 2 ..( ).c x +--43 . . ..设)(x f 有原函数x x ln ,那么⎰dx x xf )(( ). .c x x ++)ln 2141(2. ..⎰=xdx x cos sin ( ). . . ..积分( ). . .x tan arg .c x +arctan.以下等式计算正确的选项是( ).⎰+-=c x xdx cos sin .c x dx x +=---⎰43)4(.c x dx x +=⎰32 .c dx x x +=⎰22.极限的值为〔 〕.1- . . ..极限的值为〔 〕.1- . . ..极限( ).41 .31 .21 ..〔 〕.)1(2+x e .ex .ex 2 .12+x e.假设,那么〔 〕.x x f sin )(= .x x f cos 1)(+-=.c x x f +=sin )( .x x f sin 1)(-=.函数在区间]10[,上的最小值为〔 〕 .21.31 .41.0.假设()⎰+==xt x c dt t e x f e x x g 02122213)(,)(,且那么必有〔 〕.0=c .1=c .1-=c .2=c.( ).21x + .41x + . ..( ).2cos x .2cos 2x x .2sin x .2cos t .设函数⎪⎪⎩⎪⎪⎨⎧=≠=⎰00sin )(20x a x x tdtx f x在0=x 点处连续,那么a 等于〔 〕.2 .21 .1 .2-.设)(x f 在区间],[b a 连续, ),()()(b x a dt t f x F x a ≤≤=⎰那么)(x F 是)(x f 的() .不定积分 .一个原函数 .全体原函数 .在],[b a 上的定积分.设则为连续函数其中,)(,)()(2x f dt t f a x x x F xa ⎰-=)(lim x F a x →( ).2a .)(2a f a . .不存在.函数的原函数是( ).c x +tan .c x +cot .c x +-cot ..函数)(x f 在[]上连续, ⎰=xa dt t f x )()(ϕ,那么( ).)(x ϕ是)(x f 在[]上的一个原函数 .)(x f 是)(x ϕ的一个原函数 . )(x ϕ是)(x f 在[]上唯一的原函数 . )(x f 是)(x ϕ在[]上唯一的原函数.广义积分=⎰+∞-0dx e x ( ). . . .发散 .=+⎰dx x π02cos 1( ). . 2 .22 ..设)(x f 为偶函数且连续,又有等于则)(,)()(0x F dt t f x F x-=⎰( ).)(x F .)(x F - . . )(x F.以下广义积分收敛的是〔 〕. . . ..以下广义积分收敛的是〔 〕.⎰+∞13x dx . . . .等于( ).pa e - . . ..( ). .e1 .e .∞+(发散) .积分dx e kx -+∞⎰0收敛的条件为〔 〕 .0>k .0<k .0≥k .0≤k .以下无穷限积分中,积分收敛的有( ) .⎰∞-0dx e x ..⎰∞--0dx e x .⎰∞-0cos xdx.广义积分为( ). .发散 .21 . .以下广义积分为收敛的是( ). .. ..以下积分中不是广义积分的是( ).⎰+∞+0)1ln(dx x .. ..函数()f x 在闭区间[]上连续是定积分⎰b adx x f )(在区间[]上可积的〔 〕. .必要条件 .充分条件.充分必要条件 .既非充分又飞必要条件.定积分等于〔 〕.. . . .1-.定积分⎰-122d ||x x x 等于〔 〕. . . .174 .174- .定积分x x x d e )15(405⎰+等于〔 〕. . .5e .5-e .52e.设)(x f 连续函数,那么〔 〕. . . ..积分〔 〕. . . ..设)(x f 是以为周期的连续函数,那么定积分⎰+=T l l dx x f I )(的值( ) .及l 有关 .及有关 .及l 均有关 .及l 均无关 .设)(x f 连续函数,那么〔 〕 . . . ..设)(x f 为连续函数,那么等于〔 〕.)0()2(f f - . . .)0()1(f f -.数)(x f 在区间[]上连续,且没有零点,那么定积分⎰b adx x f )(的值必定( ) .大于零 .大于等于零 .小于零 .不等于零.以下定积分中,积分结果正确的有( ).c x f dx x f b a +=⎰)()(' .)()()('a f b f dx x f b a +=⎰ .)]2()2([21)2('a f b f dx x f ba-=⎰ .)2()2()2('a f b f dx x f b a -=⎰ .以下定积分结果正确的选项是( ). . .211=⎰-dx .211=⎰-xdx .⎰=adx x 0)'(arccos ( ). . . .0arccos arccos -a.以下等式成立的有( ).0sin 11=⎰-xdx x .011=⎰-dx e x .a b xdx ab tan tan ]'tan [-=⎰ .xdx xdx d x sin sin 0=⎰ .比拟两个定积分的大小( ) .⎰⎰<213212dx x dx x .⎰⎰≤213212dx x dx x .⎰⎰>213212dx x dx x .⎰⎰≥213212dx x dx x .定积分等于( ). . . . .⎰=11-x dx ( ). .2- . .1-.以下定积分中,其值为零的是( ).⎰22-sin xdx x .⎰20cos xdx x .⎰+22-)(dx x e x .⎰+22-)sin (dx x x .积分⎰-=21dx x ( ). .21 .23 .25 .以下积分中,值最大的是( ) .⎰102dx x .⎰103dx x .⎰104dx x .⎰105dx x .曲线x y -=42及y 轴所围局部的面积为〔 〕. . . ..曲线x e y =及该曲线过原点的切线及轴所围形的为面积〔 〕. .. . .曲线2x y x y ==与所围成平面图形的面积( ) .31 .31- . .四、常微分方程.函数y c x =-〔其中c 为任意常数〕是微分方程1x y y '+-=的〔 〕. .通解 .特解 .是解,但不是通解,也不是特解 .不是解.函数23x y e =是微分方程40y y ''-=的〔 〕..通解 .特解 .是解,但不是通解,也不是特解 .不是解.2()sin y y x y x '''++=是〔 〕..四阶非线性微分方程 .二阶非线性微分方程.二阶线性微分方程 .四阶线性微分方程.以下函数中是方程0y y '''+=的通解的是〔 〕..12sin cos y C x C x =+ .x y Ce -= .y C = .12x y C e C -=+专升本高等数学综合练习题参考答案. . .. 在偶次根式中,被开方式必须大于等于零,所以有40x -≥且20x -≥,解得24x ≤≤,即定义域为[2,4].. 由奇偶性定义,因为33()2()3sin()23sin ()f x x x x x f x -=---=-+=-,所以3()23sin f x x x =-是奇函数. .解:令t x -=1,那么tt t t t f 21212211)(--=---+=,所以 ,应选 .解:选 . 解:选 . 解:选 .解:选 . 解:110≤+≤x ,所以01≤≤-x ,应选 . 解:选 . 解:选 . 解:选.解:选 . 解:)(x f 的定义域为)4,1[-,选.解:根据奇函数的定义知选 . 解:选 . 解:选.解:因为函数)1,0(log ≠>==a a x y a y a x 与互为反函数,故它们的图形关于直线x y =轴对称,选 . . .解:这是00型未定式,应选. .解:这是∞∞型未定式 22csc ln cot sin cot lim lim lim lim 11ln sin cos sin cos x x x x xx x x x x x x x x xx→→→→-==-⋅=-=-++++0000 应选..解:因为所以0)(lim 20=+→b ax x ,得0=b ,所以2=a ,应选 .解:b b b b b a b b n n n n n n n n n ==+≤+≤=2选.解:选 .解:因为∞→x lim 2121lim 21sin==∞→x x x x x ,应选 .解:n m nx mx nx mx x x ==→→00lim sin sin lim 应选 .解:因为所以0)(lim 20=+→b ax x ,得0=b ,,所以1=a ,应选 .解:1cos 1cos 1lim cos cos lim =+-=+-∞→∞→xx x xx x x x x x ,选 .解:因为01lim )(lim 00=-=++→→)(x x x e x f ,11sin lim )(lim 00=+=--→→)(x x f x x 所以)(lim 0x f x →不存在,应选 .解:41414010])41(lim [)41(lim e x x x x x x =+=+→→,选 .解:极限0sin lim cotx lnx - lim )1(lim 200tan 0===+++→→→xx x x x x x ,选 .解:110sin 11sin lim 0-=-=⎪⎭⎫ ⎝⎛-→x x x x x ,选.解:kkx x kx x x x 11lim 1sin lim ==∞→∞→选 .解:,选 .解:选 . 解:选.解:06lim 21=++→ax x x ,7-=a ,选 .解:2),2(lim tan lim 00=+=-+→→a x x ax x x ,选 .解:根据无穷小量的定义知:以零为极限的函数是无穷小量,应选 .解:因为22lim )2sin(lim 2020=+=+→→xx x x x x x x ,应选 .解:因为,应选 .解:因为33lim )3tan(lim 2020=+=+→→xx x x x x x x ,应选 .解:因为21)1(21lim 1)1(21lim 11=++=-+-→→x x xx xx x ,应选 .解:因为021lim 11lim 00==-+++→→xx x x a x a x ,所以1>a ,应选 .解:因为,应选.解:由书中定理知选.解:因为,应选 .解:因为6ln 13ln 32ln 2lim 232lim 00=+=-+→→x x x x x x x ,选 .解:选.解:,选.解:因为1)(lim =+∞→x f x ,选.解:选.解:,选.解:选.解:选 .解:根据连续的定义知选..解:选.解:选.解:, ,选.解:选 .解:因为21)1)(1(lim 11lim 21=-+-=--++→→x x x x x x x ,21)1)(1(lim 11lim 21-=-+--=----→→x x x x x x x ,选.解:因为)0(1)(lim 0f x f x ==+→,又)0(1)(lim 0f x f x ==-→,所以)(x f 在0=x 点连续,但111lim )0()(lim )0('00=-+=-=--→→-xx x f x f f x x , 011lim )0()(lim )0('200=-+=-=++→→+xx x f x f f x x 所以)(x f 在0=x 点不可导,选 .解:选.解:因为)0(1)(lim 0f x f x ≠=+→,又)0(1)(lim 0f x f x ≠=-→,所以)(x f 在0=x 点不连续,从而在0=x 处不可导,但当0→x 时,极限存在,选.解:选.解:,选 .解:)0(2111lim0f x x x ≠=-+→,选 .解:选 .解:因为0)11cot (lim )(lim 211=-+=++→→x arc x x f x x , π=-+=--→→)11cot (lim )(lim 211x arc x x f x x 应选 .解:选.解:因为2lim ,lim 0-=∞=∞→→y y x x ,曲线既有水平渐近线2-=y ,又有垂直渐近线0=x ,选 .解:因为,所以有水平渐近线1=y ,但无铅直渐近线,选. . 解:e cos e sin x x y x x '=-,(0)101y '=-=.选. . 解:x x g cos )('=,所以x e x gf cos )]('[=,应选. .解:=--→h x f h x f h )()21(lim 000 1)('21)21(21)()21(lim 0000-=-=----→x f h x f h x f h ,选 .解:)('2])()()()([lim )()(lim 00a f xa f x a f x a f x a f x x a f x a f x x =---+-+=--+→→,选 .解:因为=--+→hh f h f h )2()2(lim 0 )2('2f ,应选 .解:)0('f 6)3)(2)(1(lim )0()(lim 00-=---=-=→→xx x x x x f x f x x ,应选 .解:因为 )0('2f ,应选.解:因为0lim →h )(')()h - x (000x f h x f f -=-,应选 .解:因为 21)1('222)1()21(lim 0=-=----→f h f h f h )( ,应选 .解:222242)('',2)('x x x e x e x f xe x f ---+-=-=,2)0(''-=f 选.解:选 .解:01282829.....a x a x a x y ++++=,所以!29)29(=y ,选.解:)(')()('')()(x f e e f e e f y x f x x f x x ⋅+=+,选 .解:!100)100()2)(1(lim )0()(lim )0('00=---=-=→→xx x x x x f x f f x x ,选 .解:)'('ln x x e y =)ln 1(x x x +=,选 .解:,1202lim 2)2()(lim )2('22=---=--=++→→+x x x f x f f x x ,1202lim 2)2()(lim )2('22-=---=--=--→→-x x x f x f f x x 选 .解:[]]1)2ln([)2('')2ln(--==--x x e y x x x ,选 .解:选 .解:])()(')()('[21,)](ln )([ln 21x g x g x f x f y y e y x g x f -⋅='=-,选 . . . . . . ..解:()1e x f x '=-.令()0f x '=,那么0x =.当)0,(-∞∈x 时0)(>'x f ,当),0(+∞∈x 时0)(<'x f ,因此()e x f x x =-在)0,(-∞上单调递增, 在),0(+∞上单调递减.答案选..解:根据求函数极值的步骤,〔〕关于x 求导,322'()462(3)f x x x x x =-=- 〔〕令'()0f x =,求得驻点0,3x =〔〕求二阶导数2"()121212(1)f x x x x x =-=- 〔〕因为''(3)720f =>,由函数取极值的第二种充分条件知27)3(=f 为极小值. 〔〕因为''(0)0f =,所以必须用函数取极值的第一种充分条件判别,但在0x =左右附近处,)('x f 不改变符号,所以(0)f 不是极值.答案选..1)0('=y ,曲线x e y =在点()处的切线方程为x y =-1,选 .解:函数162131)(23+++=x x x x f 的图形在点)1,0(处的切线为x y 61=-,令0=y ,得,选 .,抛物线x y =在横坐标4=x 的切线方程为,选.,切线方程是1-=x y ,选.1,)(2=+-=c c x x x f ,选 .解:3)0('),121(2'2=++=y x e y x ,切线方程x y 32=- 法线方程,选 .选 .由函数取得极值的必要条件〔书中定理〕知选.解:选.解:,)1(22)1(4)1(2'',12'22222222x x x x x y x x y +-=+-+=+= 422222)1(2)1(2)22()1(4'''x x x x x x y ++--+-= ,)1(124)1(4)1(23233222x x x x x x +-=+-+=令0''=y 得1,1-=x ,0)1('''≠±y , )2ln ,1(及)2ln ,1(-为拐点,选.选 .选 .选.解:)'1()'1('y xy y e xy y y x +=+=++,选 .解:''y xe e y y y +=,选,应选.解:x x g cos )('=,所以x e x g f cos )]('[=,应选 .解:x x g sin )('=,所以x e x g f sin )]('[=,应选.解:选 .解:=dy;sin 2sin 2x d e x 应选 .解:因为)()('0x o x x f dy ∆+∆=,所以,应选.解:选 .解:选 .解:x x f y cos )(sin ''=,选 .解:选. . .解:222111d d (1)d ln 11112x x x x x x x x x C x x x -+⎰=⎰=-+=-++++++⎰. 所以答案为..解:由于(2arccos )x '=,所以答案为. .解:22e 11e (1)d (e )d e x xx x x x C x x x -⎰-=⎰-=++ .解:选.解:因为c x x xd xdx x xdx +===⎰⎰⎰2sin sin sin 2cos sin 22sin ,应选 .解:对⎰⎰-=xdx x x dx x xf sin sin )(两边求导得x x x x x xf sin cos sin )(-+= ,应选.解:c e e x dx x f x xf x xdf dx x xf x x +--=-==--⎰⎰⎰)()()()(',应选 .解:c xc x f dx x x f +=+=⎰1)(ln )(ln ',应选 .解:()')(⎰dx x f )(x f ,应选.解:选 .解:1,5225=+=⎰c c x dx x x ,应选.解:,选.解:x x x x f ln 1)'ln ()(+==,⎰⎰+=dx x x x dx x xf )ln ()(c x x x x x xd x +-+=+=⎰2222241ln 21212ln 21,选 .解:⎰⎰=xdx xdx x 2sin 21cos sin ,选.解:选 .解:选.解:因为 ,应选.解:因为 ,应选 .解:414sin lim sin lim 3304030==→→⎰x x x dt t x x x ,应选 .解:因为,应选.解:因为x sin =,应选 .解:043)21(313)('22>+-=+-=x x x x x x φ,所以)0(φ为 函数在区间]10[,上的最小值 ,应选.解: 所以1=c ,应选 .解:=+=+⎰x x dt t dx d x21)1(214 ,应选 .解:选 .解:212sin lim sin lim 0200===→→⎰x x x tdt a x xx ,应选 .解:由于)()('x f x F =,应选.解:因为=→)(lim x F a x )()(lim lim )(lim 222a f a ax dt t f x dt t f a x x xa a x a x x a a x =-=-⎰⎰→→→,选 .解:选 .解:选 .解:100=∞+-=-∞+-⎰xx e dx e ,选 .解:22cos 2cos 22cos 10020===+⎰⎰⎰dx x dx x dx x πππ,选 .解:,⎰-=-xdt t f x F 0)()(令u t -=,那么)()())(()(00x F du u f du u f x F x x-=-=--=-⎰⎰,选 .解:因为2112311231=∞++-=+-+∞⎰x x x dx ,应选 .解:因为21121213=∞+-=-+∞⎰x xdx ,应选.解:=∞+-=-+∞-⎰a e pdx e px a px 1 ,应选 .解:1ln 1)(ln 2=∞+-=⎰∞+e x x x dx e ,应选 .解:010∞+-=--∞+⎰kx kxe kdx e ,所以积分dx e kx -+∞⎰0收敛,必须0>k 应选 .解:,选 .解:e x dx xx e ∞+=⎰∞+ln ln ln ,发散,选 .解:因为1ln 1)(ln 12=∞+-=⎰∞+e x dx x x e ,选 .解:选 .解:假设〔〕在区间[]上连续,那么〔〕在区间[]上可积。
专升本高等数学复习专升本高等数学复习第一篇六、无穷级数(一)数项级数学问范围(1)数项级数数项级数的概念级数的收敛与发散级数的基本性质级数收敛的必要条件(2)正项级数收敛性的判别法比较判别法比值判别法(3)任意项级数交叉级数肯定收敛条件收敛莱布尼茨判别法要求(1)理解级数收敛、发散的概念。
把握级数收敛的必要条件,了解级数的基本性质。
(2)把握正项级数的比值判别法。
会用正项级数的比较判别法。
(3)把握几何级数、调和级数与级数的收敛性。
(4)了解级数肯定收敛与条件收敛的概念,会使用莱布尼茨判别法。
(二)幂级数学问范围(1)幂级数的概念收敛半径收敛区间(2)幂级数的基本性质(3)将简洁的初等函数展开为幂级数要求(1)了解幂级数的概念。
(2)了解幂级数在其收敛区间内的基本性质(和、差、逐项求导与逐项积分)。
(3)把握求幂级数的收敛半径、收敛区间(不要求商量端点)的方法。
(4)会运用麦克劳林(Maclaurin)公式。
专升本高等数学复习第二篇二、一元函数微分学(一)导数与微分学问范围(1)导数概念导数的定义左导数与右导数函数在一点处可导的充分必要条件导数的几何意义与物理意义可导与连续的关系(2)求导法则与导数的基本公式导数的四则运算反函数的导数导数的基本公式(3)求导方法复合函数的求导法隐函数的求导法对数求导法由参数方程确定的函数的求导法求分段函数的导数(4)高阶导数高阶导数的定义高阶导数的计算(5)微分微分的定义微分与导数的关系微分法则一阶微分形式不变性要求(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,把握用定义求函数在一点处的导数的方法。
(2)会求曲线上一点处的切线方程与法线方程。
(3)娴熟把握导数的基本公式、四则运算法则及复合函数的求导方法,会求反函数的导数。
(4)把握隐函数求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数。
(5)理解高阶导数的概念,会求简洁函数的阶导数。
严格依据大纲编写:笔记目录第一章极限和连续第一节极限[复习考试要求]1.了解极限的概念(对极限定义等形式的描述不作要求)。
会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。
2.了解极限的有关性质,掌握极限的四则运算法则。
3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。
会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。
会运用等价无穷小量代换求极限。
4.熟练掌握用两个重要极限求极限的方法。
第二节函数的连续性[复习考试要求]1.理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在之间的关系,掌握判断函数(含分段函数)在一点处连续性的方法。
2.会求函数的间断点。
3.掌握在闭区间上连续函数的性质会用它们证明一些简单命题。
4.理解初等函数在其定义区间上的连续性,会利用函数连续性求极限。
第二章一元函数微分学第一节导数与微分[复习考试要求]1.理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点处的导数。
2.会求曲线上一点处的切线方程与法线方程。
3.熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法。
4.掌握隐函数的求导法与对数求导法。
会求分段函数的导数。
5.了解高阶导数的概念。
会求简单函数的高阶导数。
6.理解微分的概念,掌握微分法则,了解可微和可导的关系,会求函数的一阶微分。
第二节导数的应用[复习考试要求]1.熟练掌握用洛必达法则求“0·∞”、“∞-∞”型未定式的极限的方法。
2.掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法。
会利用函数的单调性证明简单的不等式。
3.理解函数极值的概念,掌握求函数的驻点、极值点、极值、最大值与最小值的方法,会解简单的应用题。
4.会判断曲线的凹凸性,会求曲线的拐点。
5.会求曲线的水平渐近线与铅直渐近线第三章一元函数积分学第一节不定积分[复习考试要求]1.理解原函数与不定积分的概念及其关系,掌握不定积分的性质。
2.熟练掌握不定积分的基本公式。
3.熟练掌握不定积分第一换元法,掌握第二换元法(仅限三角代换与简单的根式代换)。
4.熟练掌握不定积分的分部积分法。
5.掌握简单有理函数不定积分的计算。
第二节定积分及其应用[复习考试要求]1.理解定积分的概念及其几何意义,了解函数可积的条件2.掌握定积分的基本性质3.理解变上限积分是变上限的函数,掌握对变上限积分求导数的方法。
4.熟练掌握牛顿—莱布尼茨公式。
5.掌握定积分的换元积分法与分部积分法。
6.理解无穷区间的广义积分的概念,掌握其计算方法。
7.掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体的体积。
第四章多元函数微分学[复习考试要求]1.了解多元函数的概念,会求二元函数的定义域。
了解二元函数的几何意义。
2.了解二元函数的极限与连续的概念。
3.理解二元函数一阶偏导数和全微分的概念,掌握二元函数的一阶偏导数的求法。
掌握二元函数的二阶偏导数的求法,掌握二元函数的全微分的求法。
4.掌握复合函数与隐函数的一阶偏导数的求法。
5.会求二元函数的无条件极值和条件极值。
6.会用二元函数的无条件极值及条件极值解简单的实际问题。
第五章概率论初步[复习考试要求]1.了解随机现象、随机试验的基本特点;理解基本事件、样本空间、随机事件的概念。
2.掌握事件之间的关系:包含关系、相等关系、互不相容关系及对立关系。
3.理解事件之间并(和)、交(积)、差运算的意义,掌握其运算规律。
4.理解概率的古典型意义,掌握事件概率的基本性质及事件概率的计算。
5.会求事件的条件概率;掌握概率的乘法公式及事件的独立性。
6.了解随机变量的概念及其分布函数。
7.理解离散性随机变量的意义及其概率分布掌握概率分布的计算方法。
8.会求离散性随机变量的数学期望、方差和标准差。
第一章极限和连续第一节极限[复习考试要求]1.了解极限的概念(对极限定义等形式的描述不作要求)。
会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。
2.了解极限的有关性质,掌握极限的四则运算法则。
3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。
会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。
会运用等价无穷小量代换求极限。
4.熟练掌握用两个重要极限求极限的方法。
[主要知识内容](一)数列的极限1.数列定义按一定顺序排列的无穷多个数称为无穷数列,简称数列,记作{xn},数列中每一个数称为数列的项,第n项xn为数列的一般项或通项,例如(1)1,3,5,…,(2n-1),…(等差数列)(2)(等比数列)(3)(递增数列)(4)1,0,1,0,…,…(震荡数列)都是数列。
它们的一般项分别为(2n-1),。
对于每一个正整数n,都有一个xn与之对应,所以说数列{xn}可看作自变量n的函数xn=f(n),它的定义域是全体正整数,当自变量n依次取1,2,3…一切正整数时,对应的函数值就排列成数列。
在几何上,数列{xn}可看作数轴上的一个动点,它依次取数轴上的点x1,x2,x3,...xn,…。
2.数列的极限定义对于数列{xn},如果当n→∞时,xn无限地趋于一个确定的常数A,则称当n趋于无穷大时,数列{xn}以常数A为极限,或称数列收敛于A,记作比如:无限的趋向0,无限的趋向1否则,对于数列{xn},如果当n→∞时,xn不是无限地趋于一个确定的常数,称数列{xn}没有极限,如果数列没有极限,就称数列是发散的。
比如:1,3,5,…,(2n-1),…1,0,1,0,…数列极限的几何意义:将常数A及数列的项依次用数轴上的点表示,若数列{xn}以A为极限,就表示当n趋于无穷大时,点xn可以无限靠近点A,即点xn与点A之间的距离|xn-A|趋于0。
比如:无限的趋向0无限的趋向1(二)数列极限的性质与运算法则1.数列极限的性质定理1.1(惟一性)若数列{xn}收敛,则其极限值必定惟一。
定理1.2(有界性)若数列{xn}收敛,则它必定有界。
注意:这个定理反过来不成立,也就是说,有界数列不一定收敛。
比如:1,0,1,0,…有界:0,12.数列极限的存在准则定理1.3(两面夹准则)若数列{xn},{yn},{zn}满足以下条件:(1),(2),则定理1.4若数列{xn}单调有界,则它必有极限。
3.数列极限的四则运算定理。
定理1.5(1)(2)(3)当时,(三)函数极限的概念1.当x→x0时函数f(x)的极限(1)当x→x0时f(x)的极限定义对于函数y=f(x),如果当x无限地趋于x0时,函数f(x)无限地趋于一个常数A,则称当x→x0时,函数f(x)的极限是A,记作或f(x)→A(当x→x0时)例y=f(x)=2x+1x→1,f(x)→?x<1x→1x>1x→1(2)左极限当x→x0时f(x)的左极限定义对于函数y=f(x),如果当x从x0的左边无限地趋于x0时,函数f(x)无限地趋于一个常数A,则称当x→x0时,函数f(x)的左极限是A,记作或f(x0-0)=A(3)右极限当x→x0时,f(x)的右极限定义对于函数y=f(x),如果当x从x0的右边无限地趋于x0时,函数f(x)无限地趋于一个常数A,则称当x→x0时,函数f(x)的右极限是A,记作或f(x0+0)=A例子:分段函数,求,解:当x从0的左边无限地趋于0时f(x)无限地趋于一个常数1。
我们称当x→0时,f(x)的左极限是1,即有当x从0的右边无限地趋于0时,f(x)无限地趋于一个常数-1。
我们称当x→0时,f(x)的右极限是-1,即有显然,函数的左极限右极限与函数的极限之间有以下关系:定理1.6当x→x0时,函数f(x)的极限等于A的必要充分条件是反之,如果左、右极限都等于A,则必有。
x→1时f(x)→?x≠1x→1f(x)→2对于函数,当x→1时,f(x)的左极限是2,右极限也是2。
2.当x→∞时,函数f(x)的极限(1)当x→∞时,函数f(x)的极限y=f(x)x→∞f(x)→?y=f(x)=1+x→∞f(x)=1+→1定义对于函数y=f(x),如果当x→∞时,f(x)无限地趋于一个常数A,则称当x→∞时,函数f(x)的极限是A,记作或f(x)→A(当x→∞时)(2)当x→+∞时,函数f(x)的极限定义对于函数y=f(x),如果当x→+∞时,f(x)无限地趋于一个常数A,则称当x →+∞时,函数f(x)的极限是A,记作这个定义与数列极限的定义基本上一样,数列极限的定义中n→+∞的n是正整数;而在这个定义中,则要明确写出x→+∞,且其中的x不一定是正整数,而为任意实数。
y=f(x)x→+∞f(x)x→?x→+∞,f(x)=2+→2例:函数f(x)=2+e-x,当x→+∞时,f(x)→?解:f(x)=2+e-x=2+,x→+∞,f(x)=2+→2所以(3)当x→-∞时,函数f(x)的极限定义对于函数y=f(x),如果当x→-∞时,f(x)无限地趋于一个常数A,则称当x →-∞时,f(x)的极限是A,记作x→-∞f(x)→?则f(x)=2+(x<0)x→-∞,-x→+∞f(x)=2+→2例:函数,当x→-∞时,f(x)→?解:当x→-∞时,-x→+∞→2,即有由上述x→∞,x→+∞,x→-∞时,函数f(x)极限的定义,不难看出:x→∞时f(x)的极限是A充分必要条件是当x→+∞以及x→-∞时,函数f(x)有相同的极限A。
例如函数,当x→-∞时,f(x)无限地趋于常数1,当x→+∞时,f(x)也无限地趋于同一个常数1,因此称当x→∞时的极限是1,记作其几何意义如图3所示。
f(x)=1+y=arctanx不存在。
但是对函数y=arctanx来讲,因为有即虽然当x→-∞时,f(x)的极限存在,当x→+∞时,f(x)的极限也存在,但这两个极限不相同,我们只能说,当x→∞时,y=arctanx的极限不存在。
x)=1+y=arctanx不存在。
但是对函数y=arctanx来讲,因为有即虽然当x→-∞时,f(x)的极限存在,当x→+∞时,f(x)的极限也存在,但这两个极限不相同,我们只能说,当x→∞时,y=arctanx的极限不存在。
(四)函数极限的定理定理1.7(惟一性定理)如果存在,则极限值必定惟一。
定理1.8(两面夹定理)设函数在点的某个邻域内(可除外)满足条件:(1),(2)则有。
注意:上述定理1.7及定理1.8对也成立。
下面我们给出函数极限的四则运算定理定理1.9如果则(1)(2)(3)当时,时,上述运算法则可推广到有限多个函数的代数和及乘积的情形,有以下推论:(1)(2)(3)用极限的运算法则求极限时,必须注意:这些法则要求每个参与运算的函数的极限存在,且求商的极限时,还要求分母的极限不能为零。