周世勋《量子力学教程》配套题库章节题库微扰理论【圣才出品】
- 格式:pdf
- 大小:3.86 MB
- 文档页数:47
周世勋《量子力学教程》(第2版)配套模拟试题及详解(一)一、简答题(每小题5分,共20分。
)1.何谓微观粒子的波粒两象性?答:微观粒子既不是粒子,也不是波。
更确切地说,它既不是经典意义下的粒子,也不是经典意义下的波,但是,它即具有经典粒子的第一条属性(具有确定的质量、电荷与自旋),又具有经典波动的第三条属性(具有干涉与衍射现象)。
严格地说,电子就是电子,粒子与波只是微观粒子的两种不同的属性。
如果硬是要用经典的概念来理解它的话,那么,它既具有经典粒子的属性又具有经典波动的属性,是经典粒子与经典波动这一对矛盾的综合体。
2.波函数和它所描写的粒子之间有什么关系?解:微观粒子的状态可用一个波函数完全描述,从这个波函数可以得出体系的所有性质。
波函数一般应满足连续性、有限性和单值性三个条件。
微观粒子的状态波函数ψ用算符Fˆ的本征函数Φ展开(n n n F Φ=Φλˆ,λλλΦ=ΦF ˆ):∑⎰Φ+Φ=ψn n n d c c λλλ,则在ψ态中测量粒子的力学量F 得到结果为n λ的几率是2n c ,得到结果在λλλd +→范围内的几率为λλd c 2。
3.坐标x 分量算符与动量x 分量算符ˆx p的对易关系是什么?并写出两者满足的测不准关系。
答:对易关系为[]ˆ,x x p i = ,测不准关系为2x x p ∆∆ ≥。
4.什么叫电子自旋?解:电子的内禀特性之一:(1)在非相对论量子力学中。
电子自旋是作为假定由Uhlenbeck 和Goudsmit 提出的:每个电子具有自旋角动量S ,它在空间任何方向上的投影只能取两个数值:2 ±=z s ;每个电子具有自旋磁矩M s ,它和自旋角动量的关系式:μμ2 e M S e M sz s ±=→-=。
(2)在相对论量子力学中,自旋象粒子的其他性质—样包含在波动方程中,不需另作假定。
二、(25分)在时间t=0时,一个线性谐振子处于下列归一化的波函数所描写的状态:式中u n(x)是振子的第n个本征函数。
第5章微扰理论5.1复习笔记一、定态微扰理论1.适用范围及使用条件求分立能级及所属波函数的修正。
适用条件是:一方面要求H 可分成两部分,即'0H H H +=,同时0H 的本征值和本征函数已知或较易计算;另一方面又要求0H 把H 的主要部分尽可能包括进去,使剩下的微扰'H 比较小,以保证微扰计算收敛较快,即'(0)(0)(0)(0)1,mnn mn mH E E E E <<≠-(1)非简并情况微扰作用下的哈密顿量可表示为:'0H H H +=第n 个能级可近似表示为:∑+-++=mmnnmnn nn EEH H E E)0()0(2''')0(相应的波函数可近似表示为:∑+-+=mm mn mn nn E E H )0()0()0('')0(ψψψ(2)简并情况能级的一级修正由久期方程0det )1('=-v k v E H μμδ即)1(''2'1'2)1('22'21'1'12)1('11=---nkk k k knknE H H H H E H H H H E H给出。
个实根,记为有k k f E )1(k k f E ,,2,1,)1( =αα,分别把每一个根)1(αk E 代入方程∑==-kf v v v k va E H 1)1('0)(μαμδ,即可求得相应的解,记为v a α,于是可得出新的零级波函数∑>>=vkv vkv a φα||。
相应的能量为:)1()0(αk k k E E E +=。
2.氢原子的一级斯塔克效应(1)斯塔克(Stark)效应:原子在外电场作用下所产生的谱线分裂的现象。
(2)用简并情况下的微扰论解释氢原子的斯塔克效应:由于电子在氢原子中受到球对称的库仑场的作用,第n 个能级有2n 度简并。
量子力学课后习题详解第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
1量子力学课后习题详解第一章量子理论基础1.1由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λT=b (常量);并近似计算b 的数值,准确到二位有效数字。
解根据普朗克的黑体辐射公式dv ec hvd kThv vv 11833−⋅=πρ,(1)以及c v =λ,(2)λρρd dv v v −=,(3)有,118)()(5−⋅=⋅=⎟⎠⎞⎜⎝⎛−=−=kT hcv v e hc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:201151186'=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−⋅+−−⋅=−kThc kThce kT hc ehc λλλλλπρ⇒115=−⋅+−−kThc ekThc λλ⇒kThc ekThc λλ=−−)1(5如果令x=kThcλ,则上述方程为xe x =−−)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知Km T m ⋅×=−3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e µ<<动),那么ep E µ22=如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0×,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λ3nmm mE c hc E h e e 71.01071.031051.021024.1229662=×=××××===−−µµ在这里,利用了meV hc ⋅×=−61024.1以及eVc e 621051.0×=µ最后,对Ec hc e 22µλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
第8章量子力学若干进展8.1复习笔记一、朗道能级1.能级推导电子在均匀外磁场B(沿z 方向)中,取朗道规范后,得定态薛定谔方程:ψψψE p p y B e p m H z y x =⎥⎥⎦⎤⎢⎢⎣⎡++⎪⎪⎭⎫ ⎝⎛-=22221 鉴于力学量(,,)x z H p p 互相对易,得相应本征态为:)(),,(/)(y e z y x z p x p i zx χψ +=其中,()y χ满足谐振子能量本征值方程(平衡位置在0y ):)()2()()()(2)(22202222y mp E y y y mc eB m y dy d m z χχχ-=-+- 其中,0||x cp y e B =。
由此可得出朗道能级:2,1()22z z p n c p E n m ω=++ 。
2.结果讨论(1)从经典观点出发:电子沿磁场方向做螺旋运动。
从量子观点出发:电子沿磁场方向做自由运动,在垂直磁场方向绕z 轴旋转。
(2)磁场对能量贡献1||(2z e n B B mcμ+=- ,0z μ<称为朗道抗磁性,与电荷正负无关,是自由带电粒子在磁场中的一种量子效应。
(3)二维电子气的朗道能级简并度是外磁场ϕ中含元磁通量子(0||hc e ϕ=)数目。
二、阿哈罗诺夫-玻姆效应在经典电动力学中,场的基本物理量是电场强度E 和电磁感应强度B,势ψ和A 是为了方便引入的,并不是真实的物理量。
但在量子力学中,势ψ和A 具有可观测意义。
图8-11.实验及其现象如图8-1,从电子枪S 出射的电子束流经双缝和两条路径21,P P 到达屏上,在两条路径中放置一个很长的电流螺线管,垂直纸面,管内磁场强度B 垂直纸面向外(取为z 轴)。
当螺线管通以电流时,屏上出现的干涉条纹产生了移动。
2.现象讨论(1)因螺线管的外部并不存在磁场,所以经典电动力学中,磁场的物理效应不能完全用B 来进行描述。
(2)当螺线管内有磁通ϕ时,电子经过的外部空间B=0,但0≠A 时,因为对包围螺线管的任一闭合回路路径积分有⎰=⋅φl d A ,矢势A 可以对电子发生相互作用。
量子力学课后习题详解 第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
量子力学课后习题详解 第五章 微扰理论5.1 如果类氢原子的核不是点电荷,而是半径为0r 、电荷均匀分布的小球,计算这种效应对类氢原子基态能量的一级修正。
解:类氢原子如果核是点电荷,核外电子运动的哈密顿量为00ˆˆ()H T U r =+ 其中,)(0r U 为点电荷库伦势的势能,即2004ze U r rπε=-()在小球核电荷分布情况下,核外电子运动的哈密顿量为ˆˆ()HT U r =+ 球对称核电荷分布只对0r r <的区域有影响,对0r r ≥的区域无影响,即在0r r ≥区域, 200()()4Ze U r U r r πε=-=在0r r <区域,)(r U 可由下式得出,⎰∞-=r Edr e r U )(⎪⎪⎩⎪⎪⎨⎧≥≤=⋅⋅=)( 4 )( ,4344102003003303420r r r Ze r r r r Ze r r Ze r E πεπεπππε⎰⎰∞--=0)(r r rEdr e Edr e r U⎰⎰∞--=002023002144r r rdr r Ze rdr r Ze πεπε)3(84)(82203020022203002r r r Ze r Ze r r r Ze --=---=πεπεπε )( 0r r ≤ 将哈密顿算符形式改写为 0ˆˆˆHH H '=+得 ⎪⎩⎪⎨⎧≥≤+--=-=')( 0 )( 4)3(8)()(ˆ000222030020r r r r r Ze r r r Ze r U r U H πεπε 由于通常0r 相对于电子的典型(平均)运动半径(玻尔半径)很小,所以,可以认为(0)ˆˆHH '<<,视为一种微扰。
对于基态r a Ze a Z 02/1303)0(1)(-=πψ,2422(0)1222e s s m Z e Z e E a =-=-由ˆH '引起的一级修正为 ⎰∞'=τψψd H E )0(1*)0(1)1(1ˆ ⎰-+--=0002202220302334]4)3(8[r r a Zdr r e r Ze r r r Ze a Z ππεπεπ 由于 00r r a ≤<<,故102≈-r a Ze 。
第8章 量子力学若干进展8.1 复习笔记二十世纪初物理学初创量子力学和相对论,它们是当代物理学研究的两大基石,尤其是量子力学,影响着物理学研究的方方面面,也已成为物理学研究工作者的日常工作用语,虽然量子力学自身一直发展着,但还存在着很多未解之谜。
相比于经典物理,量子力学有着令物理学家着迷的事情,却又能与物理实验结果完美符合。
对于量子力学的不可思议之处,物理学家费曼曾经说过:“我可以肯定,在这个世界上没有人真正懂得量子力学。
”的确如此,量子力学是一门美妙的学问,一定不要仅仅把它当做一个考试的科目。
在量子力学的世界,有着很多有趣的问题去思考、去发掘。
本章节选了量子力学中典型的三方面内容(朗道能级、AB 效应和Berry 相位)。
虽然这些都不是考试的重点内容,但值得对量子力学感兴趣的读者认真阅读,进一步体会量子力学不同于经典物理的神奇之处。
一、朗道能级 1.能级推导电子在均匀外磁场B (沿z 方向)中,取朗道规范后,得定态薛定谔方程ψψψE p p y c B e p m H z y x =⎥⎥⎦⎤⎢⎢⎣⎡++⎪⎪⎭⎫ ⎝⎛-=22221鉴于力学量(H ⌒,p ⌒x ,p ⌒z )互相对易,得相应本征态为)(),,(/)(y e z y x z p x p i zxχψ +=其中,χ(y )满足谐振子能量本征值方程(平衡位置在y 0)2222202d ()()()()()()2d 22z p m eB y y y y E y m y mc mχχχ-+-=- 其中,0||xcp y e B=。
由此可得出朗道能级2,1()22z z p nc p E n m ω=++2.结果讨论(1)从经典观点出发:电子沿磁场方向做螺旋运动。
从量子观点出发:电子沿磁场方向做自由运动,在xy 平面内绕z 轴旋转。
(2)磁场对能量贡献1||()2z e n B B mcμ+=-,μz <0称为朗道抗磁性,与电荷正负无关,是自由带电粒子在磁场中的一种量子效应。
量子力学习题及解答第一章 量子理论基础1.1。
解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThc e kT hc ehcλλλλλπρ ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThcλλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λ nmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
量子力学课后习题详解第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
第4章态和力学量的表象4.1求在动量表象中角动量L X ,的矩阵元和L X 2的矩阵元。
解:⎰⋅⋅'-'-=τπd e p z p y e L r p i y z rp i pp x)ˆˆ()21()(3⎰⋅⋅'--=τπd e zp yp e r p i y z rp i)()21(331()()()2i i p r p r z y y zei p p e d p p τπ'-⋅⋅∂∂=--∂∂⎰31()()()2i p p r z y y z i p p e d p p τπ'-⋅∂∂=--∂∂⎰()()()yz z yi p p p p p p δ∂∂'=--∂∂ 。
同理:⎰''=τψψd L x L px p pp x 2*2)()(22()()y z z yp p p p p p δ∂∂'=--∂∂ 。
4.2求一维无限深方势阱中粒子的坐标和动量在能量表象中的矩阵元。
解:能量表象的基矢n 在坐标表象中表示为:x an a x u n πsin 2)(=相应的能量本征值为:22222a n E n μπ =。
坐标在能量表象中表示矩阵的对角元为:2sin 202a xdx a m x a x amm ==⎰π其非对角元为:02(sin )(sin )a mnm n x x x x dx a a aππ=⋅⋅⎰022221()()cos cos 4(1)1()()a m n m n m n x x x dx a a a a mnm n m n πππ+-+⎡⎤=-⎢⎥⎣⎦⎡⎤=--≠⎣⎦-⎰动量算符在坐标表象下可写为:p i x∂=-∂动量在能量表象中表示矩阵的对角元为:202sin 0ann i n n x p dx a a ππ-==⎰ 其非对角元为:2022()()sin sin2(1)1()()a mnm nn m n m n p i x x dx a a ai mn m n m n aπππ++-⎡⎤=-+⎢⎥⎣⎦⎡⎤=--≠⎣⎦-⎰ 4.3求在动量表象中线性谐振子的能量本征函数。
量子力学习题及解答第一章 量子理论基础1.1。
解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThc e kT hc ehcλλλλλπρ ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThcλλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λ nmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。