七年级数学-第十章
- 格式:docx
- 大小:234.49 KB
- 文档页数:4
七年级数学(下)第十章《从数据谈节水》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.某市关心下一代工作委员会为了了解全市七年级学生的视力状况,从全市30000名七年级学生中随机抽取了500人进行视力测试,发现其中视力不良的学生有100人,则可估计全市30000名七年级学生中视力不良的约有A.100人B.500人C.6000人D.15000人【答案】C【解析】100÷500=20%,30000×20%=6000,故选C.2.某学校为了解学生大课间体育活动情况,随机抽取本校100名学生进行调查.整理收集到的数据,绘制成如图的统计图.若该校共有800名学生,估计喜欢“踢毽子”的学生有A.100人B.200人C.300人D.400人【答案】B3.某社区开展“节约每一滴水”活动,为了了解开展活动的一个月以来节约用水的情况,从该小区的1000个家庭中选出20个家庭统计了解一个月的节水情况,见下表:节水量/m30.2 0.25 0.3 0.4 0.5家庭数/个 2 4 6 7 1 请你估计这1000个家庭一个月节约用水的总量大约是A.325 m3 B.330 m3C.400 m3 D.650 m3【答案】A4.为调查某校2000名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况.随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图.根据统计图提供的信息,可估算出该校喜爱动画节目的学生约有A.500名B.600名C.700名D.800名【答案】B【解析】根据扇形统计图可得:该校喜爱动画节目的学生占1-35%-5%-10%-20%=30%,则该校喜爱动画节目的学生约有2000×30%=600(名),故选B.二、填空题:请将答案填在题中横线上.5.小明和小华做抛掷两枚硬币的游戏,确定“发现两个正面”为成功,各抛10次,实验记录如下:则小华的成功率为__________,两人的平均成功率为__________.【答案】30%;20%【解析】小华的成功率为373+=30%;两人的平均成功率为313719++++=20%,故答案为:30%、20%.三、解答题:解答应写出文字说明、证明过程或演算步骤.6.在开展“经典阅读”活动中,某学校为了解全校学生利用课外时间阅读的情况,学校团委随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计表.根据图表信息,解答下列问题:(1)填空:a=__________;b=__________;m=__________;n=__________.(2)将频数分布直方图补充完整(画图后请标注相应的频数);(3)若该校由3000名学生,请根据上述调查结果,估算该校学生一周的课外阅读时间不足三小时的人数.(2)如图所示:(3)3000×(0.12+0.2)=960(人),即估算该校学生一周的课外阅读时间不足三小时的人数为960人.。
七年级下第十章数学知识点本章节主要是讲述七年级学生需要掌握的数学知识点,包括整式的基本概念和运算、二次根式及其运算、平面直角坐标系、函数的基本概念和表示等内容。
整式的基本概念和运算
整式是由常数和字母及它们的乘积之和组成的代数式。
其中,常数是没有字母的代数式,而字母则代表未知数。
整式的加减运算通过去括号、合并同类项的方式实现,而乘法运算则需要使用分配律和结合律。
此外,整式还涉及到反比例函数,其图像关于点(0,0)对称。
二次根式及其运算
二次根式是形如√(n)的代数式,其中n为正实数。
二次根式的加减运算只能在根数相同的情况下进行,而乘法运算可通过将根号前的乘积与根号内的乘积相乘的方式实现。
需要注意的是,二次根式的化简要尽可能将根号内的式子化为最简式。
平面直角坐标系
平面直角坐标系是由横坐标和纵坐标表示的二维坐标系,x轴和y轴分别作为坐标系的横轴和纵轴。
在平面直角坐标系中,点的坐标用有序数对(x, y)表示,其中x为横坐标,y为纵坐标。
此外,本章还介绍了中垂线和斜率对于平面直角坐标系的意义和应用。
函数的基本概念和表示
函数是表示两个数集之间关系的一种数学工具,通常用字母f 表示。
在函数中,一个数集称为定义域,另一个数集称为值域。
通常用f(x)表示函数的值,其中x为定义域中的某一个数。
本章还介绍了种植面积模型和运动时空模型对函数图像的影响。
总结
本章的内容涉及到了整式的基本概念和运算,二次根式及其运算、平面直角坐标系和函数的基本概念和表示等内容。
学生需要
重点掌握这些数学知识点,在实际的数学应用中能够准确地运用这些知识来解决问题。
七年级数学下册第十章数据的收集整理与描述考点总结单选题1、某市有3000名初一学生参加期末考试,为了了解这些学生的数学成绩,从中抽取200名学生的数学成绩进行统计分析.在这个问题中,下列说法:①这3000名初一学生的数学成绩的全体是总体;②每个初一学生的数学成绩是个体;③200名初一学生的数学成绩是总体的一个样本;其中说法正确的是()A.3个B.2个C.1个D.0个答案:A分析:根据总体、个体、样本、样本容量的定义,总体是我们把所要考查的对象的全体,个体是把组成总体的每一个考查对象,样本是从总体中取出的一部分个体叫做这个总体的一个样本;样本容量是一个样本包括的个体数量,样本容量没有单位,判断即可.解:①这3000名初一学生的数学成绩的全体是总体,说法正确;②每个初一学生的数学成绩是个体,说法正确;③200名初一学生的数学成绩是总体的一个样本,说法正确;所以其中说法正确的是3个.故选:A.小提示:本题考查了总体、个体、样本、样本容量的定义,熟练掌握相关定义是解本题的关键.2、如图是某天参观温州数学名人馆的学生人数统计图.若大学生有60人,则初中生有()A.45人B.75人C.120人D.300人答案:C分析:根据大学生的人数与所占的百分比求出总人数为300人,再用初中生所占的百分比乘以总人数即可得到答案.解:总人数=60÷20%=300(人);300×40%=120(人),故选:C.小提示:本题主要考查了根据扇形统计图求总人数和单项的人数,关键在于公式的灵活运用.3、为了解某市七年级15000名学生的体重情况,从中抽取了500名学生进行测量,这500名学生的体重是()A.总体B.个体C.总体的一个样本D.样本容量答案:C分析:总体是指考查的对象的全体;个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.解:A、总体是七年级15000名学生的体重情况,这500名学生的体重是样本,故A错误;B、个体是七年级每一名学生的体重,故B错误;C、这500名学生的体重是总体的一个样本,故C正确;D、样本容量是500,故D错误;故选:C.小提示:解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.4、如图,AB∥CD,∠BED=61°,∠ABE的平分线与∠CDE的平分线交于点F,则∠DFB=()A.149°B.149.5°C.150°D.150.5°答案:B分析:过点E作EG∥AB,根据平行线的性质可得“∠ABE+∠BEG=180°,∠GED+∠EDC=180°”,根据角的计算以∠ABE+∠CDE)”,再依据四边形内角和为360°结合角的计算即可得出及角平分线的定义可得“∠FBE+∠EDF=12结论.如图,过点E作EG∥AB,∵AB∥CD,∴AB∥CD∥GE,∴∠ABE+∠BEG=180°,∠GED+∠EDC=180°,∴∠ABE+∠CDE+∠BED=360°;又∵∠BED=61°,∴∠ABE+∠CDE=299°.∵∠ABE和∠CDE的平分线相交于F,∴∠FBE+∠EDF=1(∠ABE+∠CDE)=149.5°,2∵四边形的BFDE的内角和为360°,∴∠BFD=360°-149.5°-61°=149.5°.故选B.小提示:本题考查了平行线的性质、三角形内角和定理以及四边形内角和为360°,解决该题型题目时,根据平行线的性质得出相等(或互补)的角是关键.5、下列调查中,适合采用全面调查(普查)方式的是()A.调查北京冬奥会开幕式的收视率B.调查某批玉米种子的发芽率C.调查昆仑学校的空气质量情况D.调查疫情期间某超市人员的健康码答案:D分析:根据全面调查得到的调查结果比较准确,但所费人力、物力和时间较多,抽样调查得到的调查结果比较近似进行解答.解:A.调查北京冬奥会开幕式的收视率,适合抽样调查,故选项A不符合题意;B.调查某批玉米种子的发芽率,适合抽样调查,故选项B不符合题意;C.调查昆仑学校的空气质量情况,适合抽样调查,故选项C不符合题意;D.调查疫情期间某超市人员的健康码,适合全面调查,故选项D符合题意;故选:D.小提示:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6、某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是()A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10 %答案:C分析:观察直方图,根据直方图中提供的数据逐项进行分析即可得.观察直方图,由图可知:A. 最喜欢足球的人数最多,故A选项错误;B. 最喜欢羽毛球的人数是最喜欢田径人数的两倍,故B选项错误;C. 全班共有12+20+8+4+6=50名学生,故C选项正确;D. 最喜欢田径的人数占总人数的4×100%=8 %,故D选项错误,50故选C.小提示:本题考查了频数分布直方图,从直方图中得到必要的信息进行解题是关键.7、从某公司3000名职工随机抽取30名职工,每个职工周阅读时间(单位:min)依次为.1800D.2100答案:A分析:依据抽取的样本中周阅读时间超过一个半小时的职工人数所占的百分比,即可估计该公司所有职工中,周阅读时间超过一个半小时的职工人数.=1200(人),解:由题可得,3000×10+230∴该公司所有职工中,周阅读时间超过一个半小时的职工人数约为1200人,故选A.小提示:本题主要考查了用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,对总体的估计也就越精确.8、平顶山某校有3000名学生,随机抽取了300名学生进行睡眠质量调查,下列说法错误的是()A.总体是该校3000名学生的睡眠质量B.个体是每一个学生C.样本是抽取的300名学生的睡眠质量D.样本容量是300答案:B分析:根据题意可得3000名学生的睡眠质量情况,从中抽取了300名学生进行睡眠质量调查,这个问题中的总体是3000名学生的睡眠质量情况,样本是抽取的300名学生睡眠质量情况,个体是每一个学生的睡眠质量情况,样本容量是300,注意样本容量不能加任何单位.解:A.总体是该校3000名学生的睡眠质量,故此选项正确,不合题意;B.个体是每名学生的睡眠质量,故此选项错误,符合题意;C.样本是抽取的300名学生的睡眠质量,故此选项正确,不合题意;D.样本容量是300,故此选项正确,不合题意;故选:B.小提示:本题主要考查了总体、个体、样本、样本容量,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.9、从A地到B地有驾车、公交、地铁三种出行方式,为了选择适合的出行方式,对6:00—10:00时段这三种出行方式不同时刻出发所用时长(从A地到B地)进行调查、记录与整理,数据如图所示.根据统计图提供的信息,下列推断合理的是()A.若7:00前出发,地铁是最快的出行方式B.若选择公交出行且需要30分钟以内到达,则7:00之前出发均可C.驾车出行所用时长受出发时刻影响较小D.在此时段里,地铁出行的所用时长都在30分钟至40分钟之间答案:D分析:根据折线统计图中的信息进行判定即可得出答案.解:A.根据统计图可得,7:00出行,公交快,故A选项说法不正确,不符合题意;B.根据统计图可得,若选择公交出行且需要30分钟以内到达,则6:00之前出发均可,故B选项说法不正确,不符合题意;C.根据统计图可得,地铁出行所用时长受出发时刻影响较小,故C选项说法不正确,不符合题意;D.在此时段里,地铁出行的所用时长都在30分钟至40分钟之间,故D选间说法正确,符合题意.故选:D.小提示:本题主要考查了折线统计图,根据题目要求读懂折线统计图中的信息进行求解是解决本题的关键.10、如图是某种学生快餐的营养成分统计图,若脂肪有30g,则蛋白质有()A.135gB.130gC.125gD.120g答案:A分析:脂肪有30g占总质量的10%,可知总质量为300g,再根据蛋白质所占比例即可求解.由题意可得,30÷10%×45%=300×0.45=135g,即快餐中蛋白质有135克,故选:A.小提示:本题考查了扇形统计图的知识点,数量掌握扇形统计图并正确计算是解答本题的关键.填空题11、下列调查中必须用抽样调查方式来收集数据的有________.①检查一大批灯泡的使用寿命;②调查某大城市居民家庭的收入情况;③了解全班同学的身高情况;④了解NBA各球队在2015-2016赛季的比赛结果.答案:①②分析:根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.解:①检查一大批灯泡的使用寿命采用抽样调查方式;②调查某大城市居民家庭的收入情况采用抽样调查方式;③了解全班同学的身高情况采用全面调查方式;④了解NBA各球队在2015-2016赛季的比赛结果采用全面调查方式,故答案是:①②.小提示:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.12、经调查,我区高中学生上学所用的交通方式中,选择“电瓶车”、“自行车”、“其他”的比例为5:2:5,若该校学生有600人,则选择“电瓶车”的学生人数是___________.答案:250人分析:用总人数600乘以选择“电瓶车”的比例即可.=250人,解:选择“电瓶车”的学生人数是600×55+2+5所以答案是:250人.小提示:此题考查了利用总体中部分的比例求总体中的数量,正确理解题意是解题的关键.13、为了解本校六年级学生数学成绩的分布情况,从中抽取400名学生的数学成绩进行统计分析,在这个调查中,样本是______.答案:抽取400名学生的数学成绩分析:根据样本的定义解答.解:为了解本校六年级学生数学成绩的分布情况,从中抽取400名学生的数学成绩进行统计分析,在这个调查中,样本是抽取400名学生的数学成绩,所以答案是:抽取400名学生的数学成绩.小提示:此题考查了样本的定义:抽取的部分的调查对象是样本,熟记定义是解题的关键.14、某教育网站正在就问题“中小学生对上课拖堂现象的反应”进行在线调查,你认为调查结果________普遍代表性.答案:不具有分析:样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.利用样本的代表性和广泛性即可作出判断.解:在某教育网站正在就问题“中小学生对上课拖堂现象的反应”进行在线调查,范围和人群太集中,不具有代表性.所以答案是:不具有小提示:本题考查了调查的对象的选择,要读懂题意,分清调查的内容所对应的调查对象是什么是解题的关键.注意所选取的对象要具有代表性.15、某校为了了解某个年级的学习情况,在这个年级抽取了50名学生,对某学科进行测试,将所得成绩(成绩均为整数)整理后,列出表格:(2)本次测试这50名学生成绩的及格率是________;(60分以上为及格,包括60分)(3)这个年级此学科的学习情况如何?请在下列三个选项中,选一个填在题后的横线上________.A.好 B.一般 C.不好答案:(1)21;(2) 96% ;(3)A试题分析:(1)根据总人数=频数÷频率计算;(2)得出60分以上的频率和除以总即为本次测试这50名学生成绩的及格率=96%;(3)由及格率很高,故由频数分布表可以看出该年级此学科的成绩较好.试题解析:(1)由题意可知:测试90分以上(包括90分)的人数为50×0.42=21人;=96%;(2)本次测试这50名学生成绩的及格率是0.04+0.16+0.34+0.421(3)由频数分布表可以看出该年级此学科的及格率比较高,优秀人数比较多,成绩较好.故选A.解答题16、某校将举办的“壮乡三月三”民族运动会中共有四个项目:A跳长绳,B抛绣球,C拔河,D跳竹竿舞.该校学生会围绕“你最喜欢的项目是什么?”在全校学生中进行随机抽样调查(四个选项中必选且只选一项),根据调查统计结果,绘制了如下两种不完整的统计图表:舞请结合统计图表,回答下列问题:(1)填空:a=;(2)本次调查的学生总人数是多少?(3)请将条形统计图补充完整;(4)李红同学准备从抛绣球和跳竹竿舞两个项目中选择一项参加,但她拿不定主意,请你结合调查统计结果给她一些合理化建议进行选择.答案:(1)10%(2)100人(3)见解析(4)建议选择跳竹竿舞,因为选择跳竹竿舞的人数比较少,得名次的可能性大分析:(1)用1分别减去A、C、D类的百分比即可得到a的值;(2)用A类学生数除以它所占的百分比即可得到总人数;(3)用35%乘以总人数得到B类人数,再补全条形统计图画树状图;(4)根据选择两个项目的人数得出答案.(1)解:a=1﹣35%﹣25%﹣30%=10%,所以答案是:10%;(2)解:25÷25%=100(人),答:本次调查的学生总人数是100人;(3)解:B类学生人数:100×35%=35,补全条形统计图如图,(4)解:建议选择跳竹竿舞,因为选择跳竹竿舞的人数比较少,得名次的可能性大.小提示:本题考查的是条形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.17、2021年秋季教育部明确提出,要减轻义务教育阶段学生的作业负担,学生的校外培训负担.依据政策要求,初中书面作业平均完成时间不超过90分钟,学生每天的完成作业时长不能超过2小时.某中学为了积极推进教育部的新政策实施,对本校学生的作业情况进行了抽样调查,统计结果如图所示:(1)这次抽样共调查了名学生,并补全条形统计图.(2)计算扇形统计图中表示作业时长为2.5小时对应的扇形圆心角度数.(3)若该中学共有学生3000人,请据此估计该校学生的作业时间不少于2小时的学生人数.答案:(1)500;补全条形统计图见解析(2)扇形统计图中表示作业时长为2.5小时对应的扇形圆心角度数57.6°(3)估计该校学生的作业时间不少于2小时的学生人数为1320人分析:(1)用完成作业时间是2小时的学生人数除以相应的比例即可得到调查总数,然后用总数乘以1.5小时人数所在的比例;(2)作业时长为2.5小时对应的扇形圆心角度数等于80×360°=57.6°;500(3)不少于2小时的学生人数为总数乘以不少于2小时的学生所占比例.(1)140÷28%=500;500×36%=180(人),(2)作业时长为2.5小时对应的扇形圆心角度数为80×360°=57.6°;500=1320 (人)(3)3000×140+80500小提示:本题考查了条形统计图和扇形统计图的知识,从图中获取正确的信息是本题的解题关键.18、某中学初二年级抽取部分学生进行跳绳测试.并规定:每分钟跳90次以下的为不及格;每分钟跳90~99次的为及格;每分钟跳100~109次的为中等;每分钟跳110~119次的为良好;每分钟跳120次及以上的为优秀.测试结果整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列各题:(1)参加这次跳绳测试的共有________人;(2)补全条形统计图;(3)在扇形统计图中,“中等”部分所对应的圆心角的度数是________;(4)如果该校初二年级的总人数是450人,根据此统计数据,请你估算该校初二年级跳绳成绩为“优秀”的人数.答案:(1)50(2)见解析(3)72°(4)该校初二年级跳绳成绩为“优秀”的人数为90人分析:(1)利用条形统计图以及扇形统计图得出良好的人数和所占比例,即可得出全班人数;(2)利用(1) 中所求,结合条形统计图得出优秀的人数,进而求出答案;(3)利用中等的人数,进而得出“中等”部分所对应的圆心角的度数;(4)利用样本估计总体进而利用“优秀”所占比例求出即可.(1)解:由扇形统计图和条形统计图可得:参加这次跳绳测试的共有:20÷40%=50(人);所以答案是:50;(2)由(1)的优秀的人数为:50-3-7-10-20=10,如图所示:;(3)×360°=72°,“中等”部分所对应的圆心角的度数是:1050所以答案是:72°;(4)该校初二年级跳绳成绩为“优秀”的人数为:450×10=90(人).50答:该校初二年级跳绳成绩为“优秀”的人数为90人.小提示:此题主要考查了扇形统计图以及条形统计图和利用样本估计总体等知识,利用已知图形得出正确信息是解题关键.。
第十章数据的收集与整理【知识梳理】一、调查与收集数据想知道“喜欢哪种动物的同学最多”,要通过调查来收据数据.其过程主要有如下步骤:1、明确调查问题——喜欢哪种动物的同学最多;2、明确调查对象——全班每个同学;3、选择调查方法——采用问卷调查;4、展开调查——每位同学将自己最喜欢的动物写在调查问卷上,收集每位同学最喜欢的动物,进行编号;5、整理数据——用“划记法”记录数据;6、得出结论——划记最多的动物,即为同学们喜欢的最多的动物;7、描述数据——统计表是描述数据最常用的方式,为了更直观地获取信息,还可以用条形统计图和扇形统计图来描述数据.二、调查方式的有关概念统计调查是收集数据常用的方法,一般有全面调查和抽样调查两种方式.实际上最常用的调查方式是抽样调查.1、全面调查:在“喜欢哪种动物的同学最多”调查活动中,全班同学都是考察对象。
像这样考察全体对象的调查属于全面调查,又称为“普查”.2、抽样调查:在“调查中小学生的视力情况”调查活动中,采用了调查部分学生的方式来收集数据,根据部分学生的视力来估计整个地区学生的视力情况.这种调查称为抽样调查.这里,整个地区的中小学生的视力情况是要考察的全体对象,称为总体;所有实际被调查的小学生、初中生和高中生的视力组成一个样本.注意:(1)抽样调查只考虑总体中的一个样本,因此其优点是调查范围小,节省时间、人力、物力,但其调查结果往往不如全面调查得到的结果准确.(2)抽样调查时一般应注意:被调查的对象不能太少,被调查的对象应是随意抽取的,调查的对象应是真实的.因此,抽样调查时既要关注样本的广泛性又要关注其代表性.方法点拨:(1)全面调查是对总体中每个对象进行调查,调查范围广,数据详细;而调查样本有局限性,数据不全面;(2)当受客观条件限制,无法对所有对象进行全面调查时,往往采用抽样调查;(3)当调查具有破坏性时,不允许进行全面调查;4. ⑴总体:把所要考察对象的①叫总体.⑵个体:②考察对象叫做个体.⑶样本:从总体中所抽取的一部分③叫做总体的一个样本.⑷样本容量:样本中个体的④叫做样本容量.规律总结:①弄清考察对象是明确总体、个体、样本的关键;②总体或样本中的每一个数据表示个体,不同的个体在数值上是可以相同的,样本中有多少个体,样本容量就是多少,样本容量没有单位.三、统计图的选择——条形统计图、扇形统计图和折线统计图,它们各具特色:条形统计图能清晰地展现出每个项目的具体数目,扇形统计图能清晰地展现出各部分在总体中所占的百分比,折线统计图能清晰地展现出事物变化的情形。
人教版七年级数学下册《第十章-数据的收集、整理与描述》知识点归纳第十章数据的收集、整理与描述
二、知识定义
全面调查:考察全体对象的调查方式叫做全面调查。
抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。
总体:要考察的全体对象称为总体。
个体:组成总体的每一个考察对象称为个体。
样本:被抽取的所有个体组成一个样本。
样本容量:样本中个体的数目称为样本容量。
频数:一般地,我们称落在不同小组中的数据个数为该组的频数。
频率:频数与数据总数的比为频率。
七年级数学下册第十章数据的收集整理与描述必须掌握的典型题单选题1、中国地势西高东低,复杂多样,据统计,各类地形所占比例大致是:山地33%,高原26%,盆地19%,丘陵10%,平原12%.为直观地表示出各类地形所占比例,最合适的统计图是()A.折线统计图B.扇形统计图C.条形统计图D.频数分布直方图答案:B分析:根据统计图的特点判断选择即可.因为已知的是各数据所占的百分比,符合扇形统计图的特点,故选B.小提示:本题考查了统计图的意义,正确理解统计图的意义是解题的关键.2、下面各种情况中,比较适合选用扇形统计图的是()A.小慧家下半年电费支出情况B.小慧身高变化和年龄增长之间的关系C.比较小慧和五个好朋友之间的身高情况D.小慧一天时间分配情况答案:D分析:根据扇形统计图的特点:易于显示每组数据相对于总数的大小,来进行判断即可.解:A、小慧家下半年电费支出情况,适用于条形图,不符合题意;B、小慧身高变化和年龄增长之间的关系,适用于折线图,不符合题意;C、比较小慧和五个好朋友之间的身高情况,适用于折线图,不符合题意;D、小慧一天时间分配情况适用于扇形图,符合题意.故选D.小提示:本题考查统计图的选择,掌握各种统计图的特点是解题的关键.3、为了调查疫情对青少年人生观、价值观产生的影响,某学校团委对七年级学生进行了问卷调查,其中一项是:疫情期间出现的哪一个高频词汇最触动你的内心?针对该项调查结果制作的两个统计图(不完整)如图.由图中信息可知,下列结论错误的是()A.本次调查的样本容量是600B.选“责任”的有120人C.扇形统计图中“生命”所对应的扇形圆心角度数为79.2°D.选“感恩”的人数比选“敬畏”的人数多50人答案:D分析:根据条形统计图和扇形统计图中的数据,可以判断各个选项中的说法是否正确,从而可以解答本题.解:本次调查的样本容量为:108÷18%=600,故选项A中的说法正确,不符合题意;=120(人),故选项B中的说法正确,不符合题意;选“责任”的有600×72°360°=79.2°,故选项C中的说法正确,不符合题意;扇形统计图中“生命”所对应的扇形圆心角度数为360°×132600选“敬畏”的人数为:600×16%=96(人),选“感恩”的人数为:600﹣132﹣﹣96﹣108﹣120=144(人),144﹣96=48(人),故选“感恩”的人数比选“敬畏”的人数多48人,故选项D中的说法错误,符合题意;故选:D.小提示:本题考查条形统计图、扇形统计图、样本容量,解答本题的关键是明确题意,利用数形结合的思想解答.4、为了了解某县20-30岁青年的文化水平,下列收集数据的方式合理的是()A.抽查该县20-30岁的在职干部B.抽查该县县城20-30岁的青年C.随机抽查该县500名20-30岁青年D.抽查该县农村某镇的所有20-30岁青年答案:C分析:抽样调查只考查总体中的一部分个体,因此它的优点是调查范围小,节省人力、物力、财力,但结果往往不如全面调查得到的结果准确,为了获得较为准确的调查结果,抽样时要注意样本的代表性和广泛性,据此判断即可.A、抽查该县20-30岁的在职干部,在职干部不能代表全县的青年,故不符合题意;B、抽查该县县城20-30岁的青年,缺乏代表性和广泛性,故不符合题意;C、随机抽查该县500名20-30岁青年,样本有代表性和随机性,故符合题意;D、抽查该县农村某镇的所有20-30岁青年,缺乏代表性和广泛性,故不符合题意,故选C.小提示:本题主要考查抽样调查的数据收集方法,属于基础题,抽样时要注意样本的代表性和广泛性,这是解题关键.5、下列调查中,适合采用全面调查(普查)方式的是()A.调查北京冬奥会开幕式的收视率B.调查某批玉米种子的发芽率C.调查汾河中的水质情况D.调查疫情期间某超市人员的健康码答案:D分析:根据抽样调查与全面调查的特点求解即可.解:A、人数多,不易全面调查,因而适合抽样调查,不符合题意;B、数量较多,不易全面调查,适合抽样调查,不符合题意;C、数量较多,不易全面调查,适合抽样调查,不符合题意;D、调查疫情期间某超市人员的健康码,涉及安全问题,要全面调查,符合题意.故选D.小提示:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6、荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是()A.本次抽样调查的样本容量是5000B.扇形图中的m为10%C.样本中选择公共交通出行的有2500人D.若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有25万人答案:D分析:结合条形图和扇形图,求出样本人数,进而进行解答.解:A、本次抽样调查的样本容量是2000=5000,正确;40%B、扇形图中的m为10%,正确;C、样本中选择公共交通出行的有5000×50%=2500人,正确;D、若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有50×40%=20万人,错误,故选D.小提示:本题考查了条形统计图、扇形统计图,熟悉样本、用样本估计总体等知识是解题的关键,另外注意学会分析图表.7、去年某市有5.6万名学生参加联招考试,为了了解他们的数学成绩,从中抽取2 000名考生的数学成绩进行统计分析,下列说法错误的是( )A.这种调查方式是抽样调查B.5.6万名考生的数学成绩是总体C.2 000名考生是样本容量D.2 000名考生的数学成绩是总体的一个样本答案:C分析:总体是指考察的对象的全体,个体是总体中的每一个考察的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考察的对象.从而找出总体、个体.A、为了了解这5.6万名考生的数学成绩,从中抽取了2000名考生的数学成绩进行统计分析,这种调查采用了抽样调查的方式,故说法正确;B、5.6万名考生的数学成绩是总体,故说法正确;C、2000是样本容量,故原说法错误;D、2000名考生的数学成绩是总体的一个样本,故说法正确.故选C.小提示:考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.8、记录一个病人体温的变化情况,选用的统计图最好是()A.扇形统计图B.条形统计图C.折线统计图D.都可以答案:C分析:根据各统计图的特点分析可得.解:记录一个病人体温的变化情况,选用的统计图最好是折线统计图,故选:C.小提示:此题考查了统计图的选择,正确掌握各统计图所表示的不同的数量是解题的关键.9、下列调查中,调查方式选择错误的是()A.为了解全市中学生的课外阅读情况,选择全面调查B.旅客上飞机前的安检,选择全面调查C.为了了解《人民的名义》的收视率,选择抽样调查D.为保证“神舟十一号”载人飞船的成功发射,对其零部件的检查,选择全面调查.答案:A分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解:A、为了解全市中学生的课外阅读情况,应选择抽样调查,故此选项符合题意;B、旅客上飞机前的安检,选择全面调查,故此选项不符合题意;C、为了了解《人民的名义》的收视率,选择抽样调查,故此选项不符合题意;D、为保证“神舟十一号”载人飞船的成功发射,对其零部件的检查,选择全面调查,故此选项不符合题意.故选:A.小提示:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10、某校为了了解全校2000名学生的视力情况,从中随机抽取了200名学生进行视力调查.在这个问题中,下列说法正确的是()A.本次调查是全面调查B.总体是2000名学生的视力情况C.个体是200名学生的视力情况D.样本容量是2000答案:B分析:了解抽样调查,总体,个体,样本和样本容量的定义,即可得到正确选项.A.本次调查是抽样调查,选项错误,不符合题意;B.总体是2000名学生的视力情况,选项正确,符合题意;C.个体是每名学生的视力情况,200名学生的视力情况是样本,选项错误,不符合题意;D.样本容量是200,选项错误,不符合题意.故选B.小提示:本题考查了抽样调查中,总体,个体,样本和样本容量的定义,准确掌握和知识点是本题的关键.填空题11、某商场准备进400双滑冰鞋,了解了某段时间内销售的40双滑冰鞋的鞋号,数据如下:________双.答案:120分析:根据题意得:39码的鞋销售量为12双,再用400乘以其所占的百分比,即可求解.解:根据题意得:39码的鞋销售量为12双,销售量最高,∴该商场进鞋号需求最多的滑冰鞋的数量为400×12=120双.40所以答案是:120小提示:本题主要考查了用样本估计总体,根据题意得到39码的鞋销售量为12双,销售量最高是解题的关键.12、如图是30名学生数学成绩的频数分布直方图,如图可知40.5~50.5这一分数段的频数为2,组距是__________,组数是__________,70.5~80.5分数段的频数是____________.答案: 10 6 8分析:根据组距的定义求出组距、数出组数、读出70.5~80.5分数段的频数即可.解:该频数分布直方图的组距为:50.5-40.5=10;组数为6;70.5~80.5分数段的频数为8.故填:10,6,8.小提示:本题主要考查了频数分布直方图的要素,理解频数分布直方图各要素的定义成为解答本题的关键.13、红树林中学共有学生1600人,为了解学生最喜欢的课外体育运动项目的情况,学校随机抽查了200名学生,其中有85名学生表示最喜欢的项目是跳绳,则可估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有_____人.答案:680解:由于样本中最喜欢的项目是跳绳的人数所占比例为85,200∴估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有1600×85=680,200故答案为680.14、如图是甲、乙两名同学的8次射击训练成绩的折线统计图,他们的平均成绩相同,若要从这两位同学中选一名成绩较为稳定的同学参加学校运动会的射击项目,则应选______.答案:乙分析:根据图形波动的大小可直接得出答案.解:由图象看作,乙的波动比甲小,即乙的方差小于甲.所以乙的成绩比甲稳定,所以若要从这两位同学中选一名成绩较为稳定的同学参加学校运动会的射击项目,则应选乙.所以答案是:乙.小提示:本题考查折线统计图判断成绩波动的大小,结合图象求解是解题关键.15、根据下列统计图,回答问题:该超市10月份的水果类销售额___________11月份的水果类销售额(请从“>”“=”或“<”中选一个填空).答案:>分析:根据统计图,分别求出该超市10月份的水果类销售额与11月份的水果类销售额,比较大小即可.∵10月份的水果类销售额为60×20%=12(万元),11月份的水果类销售额为70×15%=10.5(万元),∴10月份的水果类销售额>11月份的水果类销售额.故答案是:>小提示:本题主要考查从统计图种提取信息,通过观察统计图,得到有用的信息,是解题的关键.解答题16、“风华中学”计则在劳动技术课中增设剪纸、陶艺,厨艺、刺绣、养殖等五类选择性“技能课程”,加大培养学生的劳动习惯和实践操作能力,为了解学生选择各“技能课程”的意向,从全校随机抽取了部分学生进行问卷调查,将调查结果整理并绘制如下不完整统计图表:样本中选择各技能课程的人数统计表请根据上述统计数据解决下列问题:(1)扇形统计图中m=______.(2)厅抽取样本的样本容量是______.频数统计表中a=______.(3)若该校有2000名学生,请你估计全校有意向选择“养殖”技能课程的人数.答案:(1)20(2)200 50(3)400分析:(1)根据扇形统计图的数据求解即可;(2)先求出样本总量,再计算a的值;(3)用2000乘以选择“养殖”学生人数所占比即可;(1)解:m%=1−(10%+25%+10%+35%)=20%,∴m=20故答案案为:20(2)抽取样本的样本容量是:20÷10%=200(人);a=200×25%=50;所以答案是:200,50 (3)2000×20%=400(人)答:若该校有2000名学生,则全校有意向选择“养殖”技能课程的人数为400人.小提示:本题主要考查扇形统计图、由样本所占比估计总体,掌握相关知识并正确计算是解题的关键.17、“双减”政策实施后,某校为了解本校学生每天课后进行体育锻炼的时间情况,在5月份某天随机抽取了若干名学生进行调查,现将调查结果绘制成两幅尚不完整的统计图表.请根据统计图表提供的信息,回答下列问题:D x>90n15%(1)表中m= ,n= ,p= ;(2)将条形图补充完整;(3)若制成扇形图,则C组所对应的圆心角为 °;(4)若该校学生有2000人,请根据以上调查结果估计:该校每天课后进行体育锻炼的时间超过60分钟的学生约有多少人?答案:(1)80,30,20%(2)见解析(3)72°(4)估计该校每天课后进行体育锻炼的时间超过60分钟的学生大约有700人分析:(1)、根据统计表用A组人数除以其所占的百分比计算出总人数,即可求解;(2)、根据(1)求出的人数补全条形统计图;(3)、用C组所占的百分比乘以360°即可求解;(4)、先算出样本中每天课后进行体育锻炼的时间超过60分钟的学生所占百分比,再乘以全校人数即可求得.(1)解:总人数为:50÷25%=200(人),B组的人数为:m=200×40%=80(人),D组的人数为:n=200×15%=30(人),C组所占的百分比为:p=40×100%=20%;200所以答案是:80,30,20%;(2)由(1)可知,B组人数为80人,D组人数为30人,补全条形统计图,如图所示:(3)C组所对应的圆心角为:20%×360°=72°,所以答案是:72°;(4)该校每天课后进行体育锻炼的时间超过60分钟的学生约有:(20%+15%)×2000=700(人).小提示:本题考查了统计表,条形统计图,扇形统计图圆心角的计算,样本估计总体等知识,熟练掌握以上知识点并灵活运用是解题的关键.18、为减少传统塑料袋对生态环境的破坏,国家提倡使用可以在自然环境下(特定微生物、温度、湿度)较快完成降解的环保塑料袋.调查小组就某小区每户家庭1周内环保塑料袋的使用情况进行了抽样调查,使用情况为A(不使用)、B(1~3个)、C(4~6个)、D(7个及以上),以下是根据调查结果绘制的统计图的一部分.(1)本次调查的样本容量是_____,请补全条形统计图;(2)已知该小区有1500户家庭,调查小组估计:该小区1周内使用7个及以上环保塑料袋的家庭约有225户.调查小组的估计是否合理?请说明理由.答案:(1)100,图见解析(2)合理,理由见解析分析:(1)利用频数除以频率即可得出,结合条形统计图及扇形统计图,求出B,C涉及的户数再画图即可;(2)利用样本估计总体的思想来解释即可.(1)解:本次调查的样本容量为:20=100(户),0.2∴C使用情况的户数为:100×25%=25(户),=15%,D占的比例为:15100∴B的比例为:1−25%−20%−15%=40%,∴B使用情况的户数为:100×40%=40(户),补全条形统计图如下:所以答案是:100.(2)解:合理,理由如下:=15%,利用样本估计总体:D占的比例为:15100∴1500×15%=225(户),∴调查小组的估计是合理的.小提示:本题考查了形统计图及扇形统计图,样本估计总体,解题的关键是通过数形结合对数据进行分析.。
第十章数据的收集、整理与描述
1、统计调查
(1)全面调查:考察全体对象的调查,例如2010年我国进行的第六次人口普查,就是一次全面调查。
(2)抽样调查:采用调查部分对象的方式来收集数据,根据部分来估计整体的情况,叫做抽样调查。
统计中常用样本特性来估计总体特性。
需要注意的是,在抽样调查中,如果抽取样本的方法得当,一般样本能客观地反映总体的情况,抽样调查的结果会比较接近总体的情况,否则抽样调查的结果往往会偏离总体的情况,所以,在抽样调查要求抽取的样本要具有代表性。
①总体:所要考察对象的全体叫做总体。
②个体:总体中每一个考察对象叫做个体。
③样本:从总体中所抽取的一部分个体叫做总体的一个样本。
④样本容量:样本中个体的数目(不含单位)。
(3)简单随机抽样:
为了使样本能较好地反映总体情况,除了有合适的样本容量外,抽取时还要尽量使每一个个体有相等的机会被抽到。
抽取样本的过程中,总体中每一个个体都有相等的机会被抽到,像这样的抽样方法叫做简单随机抽样。
【总结】
例1、要调查下面几个问题,你认为应该作全面调查还是抽样调查?
A.检测某城市的空气质量
B.调查一个村子所有家庭的收入
C.调查一批重型导弹的杀伤半径
D.考查一批光盘的质量
例2、为了了解一批电视机的使用寿命,从中抽取了10台进行试验,对于这个问题,下列说法中正确的是()
A.每台电视机的使用寿命是个体
B.一批电视机是总体
C.10台电视机是总体的一个样本
D.10台是样本容量
例3、某课外兴趣小组为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是()
A.在公园调查了1000名老年人的健康状况
B.在医院调查了1000名老年人的健康状况
C.调查了10名老年邻居的健康状况
D.利用派出所的户籍网随机调查了该地区10%的老年人的健康状况
例4、在鱼塘里第一次捕捞出10条鱼,把它们全部做上标记后放到池塘里,过一段时间进行第二次捕捞,若一共捕捞到100条鱼,其中2条鱼身上有标记,你能估计出池塘里鱼的数目吗?
2.统计图
例1、要描述我国连续5年在奥运会上获得金牌总数的变化情况,应选择
统计图表示。
例2、根据预测,21世纪中叶我国劳动者构成比例绘制成扇
形统计图如图所示,则第一、二、三产业劳动者的构成比例
是______∶______∶______。
例3、某市股票在七个月之内增长率的变化状况如图所示.从图上看出,下列结论不正确的是( )
A.2~6月份股票月增长率逐渐减少
B.7月份股票的月增长率开始回升
C.这七个月中,每月的股票不断上涨
D.这七个月中,股票有涨有跌
3.直方图
(1)条形图与直方图的区别:
①条形图各矩形间有空隙,直方图各矩形间无空隙。
②直方图可以显示各组频数分布情况,而条形图不能反映这一点。
(2)画直方图的步骤(课本P145)
例1、已知全班有40位学生,他们有的步行,有的骑车,还有的乘车来上学,根据以下已知信息完成统计表:
例2、今年,市政府的一项实事工程就是由政府投人1000万元资金,对城区4万户家庭的老式水龙头和13升抽水马桶进行免费改造。
某社区为配合政府完成工作,对社区内1200户家庭中的120户进行了随机抽样调查,并汇总成下表:
在抽样的120户家庭中,既要改造水龙头又要改造马桶的家庭共有多少户?
上学方式
步行 骑车 乘车 划记 正正正 次数 9 占百分比
例3、某百货商场经理对新进某一品牌几种号码
的男式跑步鞋的销售情况进行了一周的统计,得
到一组数据后,绘制了频数(双)频率统计表如
右图所示,请你根据图表中提供的信息,填写出
表中a、b、c的值。
例4、育才中学现有学生3000人,学校为了进一步丰富学生课余生活,拟调整兴趣活动小组,为此进行一次抽样调查.根据采集到的数据绘制的统计图(不完整)如下:
请你根据图中提供的信息,完成下列问题:
(1)左图中“体育”部分所对应的圆心角为度;
(2)爱好“书画”的人数占被调查人数的百分数是;
(3)估计育才中学现有的学生中,有人爱好“音乐”。
例5、某校公布了该校反映各年级学生体育达标情况的两张统计图,该校七、八、九三个年级共有学生800人。
甲、乙、丙三个同学看了这两张统计图后,甲说:“七年级的体育达标率最高。
”乙说:“八年级共有学生264人。
”丙说:“九年级的体育达标率最高。
”甲、乙、丙三个同学中,说法正确的是()
A.甲和乙
B.甲和丙
C.乙和丙
D.甲、乙、丙都正确。