北京市西城区2013-2014学年高一上学期期末考试数学试题
- 格式:doc
- 大小:799.12 KB
- 文档页数:8
北京市西城区2014-2015学年⾼⼀下学期期末考试数学试题北京市西城区2014-2015学年下学期⾼⼀年级期末考试数学试卷试卷满分:150分考试时间:120分钟A卷 [必修模块3] 本卷满分:50分⼀、选择题:本⼤题共8⼩题,每⼩题4分。
共32分。
在每⼩题给出的四个选项中,只有⼀项是符合要求的。
1. 对⼀个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同⽅法抽取样本时,总体中每个个体被抽中的概率依次为P1,P2,P3,则()A. P1=P2B. P2=P3C. P1=P3D. P1=P2=P32. 从1,2,3,4这四个数中⼀次随机选取两个数,所取两个数之和为5的概率是()A. B. C. D.3. 执⾏如图所⽰的程序框图,输出的S值为()A. 2B.C.D.4. 某校对⾼⼀年级学⽣的数学成绩进⾏统计,全年级同学的成绩全部介于60分与100分之间,将他们的成绩数据绘制成如图所⽰的频率分布直⽅图。
现从全体学⽣中,采⽤分层抽样的⽅法抽取60名同学的试卷进⾏分析,则从成绩在[90,100]内的学⽣中抽取的⼈数为()A. 24B. 18C. 15D. 125. 投掷⼀颗骰⼦,掷出的点数构成的基本事件空间是={1,2,3,4,5,6}。
设事件A={1,3},B={3,5,6},C={2,4,6},则下列结论中正确的是()A. A,C为对⽴事件B. A,B为对⽴事件C. A,C为互斥事件,但不是对⽴事件D. A,B为互斥事件,但不是对⽴事件6. 下图是1,2两组各7名同学体重(单位:千克)数据的茎叶图。
设1,2两组数据的平均数依次为和,标准差依次为s1和s2,那么()(注:标准差s=,其中为x1,x2,…,x n的平均数)A. <,s1B. <,s1>s2C. >,s1>s2D. >,s17. 下图给出的是计算的⼀个程序框图,则判断框内应填⼊关于i的不等式为()A. i<50B. i>50C. i<51D. i>518. 袋中装有5个⼩球,颜⾊分别是红⾊、黄⾊、⽩⾊、⿊⾊和紫⾊,现从袋中随机抽取3个⼩球。
北京市西城区2013-2014学年度第一学期期末试卷九年级数学 2014.1作图题用一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.抛物线2(2)1y x =-+的顶点坐标是 A .(21),B .(21)-,C .(21)-,D .(21)--,2.如图,⊙O 是△ABC 的外接圆,若o 100AOB ∠=,则∠ACB 的度数是 A .40° B .50° C .60°D .80°3.若两个圆的半径分别为2和1,圆心距为3,则这两个圆的位置关系是 A .内含B .内切C .相交D .外切4.下列图形中,既是轴对称图形又是中心对称图形的是A B C D 5.在Rt △ABC 中,∠C =90°,若BC =1,AC =2,则sin A 的值为 A B C .12D .26.如图,抛物线2y ax bx c =++(0)a ≠的对称轴为直线12x =-.下列结论中,正确的是A .a <0B .当12x <-时,y 随x C .0a b c ++>D .当12x =-时,y7.如图,在平面直角坐标系xOy 纵坐标都是整数.若将△ABC 则旋转中心的坐标是A .(00),B .(10),C .(11)-,D .(2.50.5),8.若抛物线()2231y x m m =-+-(m 是常数)与直线1y x =+有两个交点,且这两个交点分别在抛物线对称轴的两侧,则m 的取值范围是 A .2m < B .2m >C .94m <D .94m >二、填空题(本题共16分,每小题4分)9.如图,△A BC 中,点D ,E 分别在AB ,AC 边上,DE ∥BC ,若2AD =,3DB =,1DE =,则BC 的长是 .10.把抛物线2=y x 向右平移1个单位,再向下平移3个单位,得到抛物线=y .11.如图,在△ABC 中,∠ACB =90°,∠ABC =30°,BC =2.将△ABC 绕点C 逆时针旋转α角后得到△A ′B ′C ,当点A 的对应点A' 落在AB 边上时,旋转角α的度数是 度,阴影部分的面积为 .12.在平面直角坐标系xOy 中,过点(65)A ,作AB ⊥x 轴于点B .半径为(05)r r <<的⊙A与AB 交于点C ,过B 点作⊙A 的切线BD ,切点为D ,连接DC 并延长交x 轴于点E .(1)当52r =时,EB 的长等于 ;(2)点E 的坐标为 (用含r 的代数式表示).三、解答题(本题共30分,每小题5分) 13.计算:2sin603tan302tan60cos45︒+︒-︒⋅︒.14.已知:二次函数23y x bx =+-的图象经过点(25)A ,. (1)求二次函数的解析式;(2)求二次函数的图象与x 轴的交点坐标;(3)将(1)中求得的函数解析式用配方法化成2()y x h k =-+的形式.15.如图,在梯形ABCD 中,AB ∥DC ,∠A =90°,点P 在AD 边上,且PC PB ⊥.若AB =6,DC =4,PD =2,求PB 的长.16.列方程或方程组解应用题:“美化城市,改善人民居住环境”是城市建设的一项重要内容.某市近年来,通过植草、栽树、修建公园等措施,使城区绿地面积不断增加,2011年底该市城区绿地总面积约为75公顷,截止到2013年底,该市城区绿地总面积约为108公顷,求从2011年底至2013年底该市城区绿地总面积的年平均增长率.17.如图,为了估算某河的宽度,在河对岸边选定一个目标点A ,在近岸取点B ,C ,D ,使得AB ⊥BD ,∠ACB =45°,∠ADB =30°,并且点B ,C ,D 在同一条直线上.若测得CD =30米,求河宽AB (结果精确到11.73 1.41).18.如图,AB 是⊙O 的弦,OC ⊥AB 于点C ,连接OA ,AB =12,cos A = (1)求OC 的长;(2)点E ,F 在⊙O 上,EF ∥AB .若EF =16,直接写出EF 与AB 之间的距离.四、解答题(本题共20分,每小题5分)19.设二次函数2143y x x =-+的图象为C 1.二次函数22(0)y ax bx c a =++≠的图象与C 1关于y 轴对称.(1)求二次函数22y ax bx c =++的解析式; (2)当3x -<≤0时,直接写出2y 的取值范围; (3)设二次函数22(0)y ax bx c a =++≠图象的顶点为点A ,与y 轴的交点为点B ,一次函数3y kx m =+( k ,m 为常数,k ≠0)的图象经过A ,B 两点,当23y y <时,直接写出x 的取值范围.ABCO20.如图,在矩形ABCD 中,E 是CD 边上任意一点(不与点C ,D 重合),作AF ⊥AE 交CB 的延长线于点F . (1)求证:△ADE ∽△ABF ;(2)连接EF ,M 为EF 的中点,AB =4,AD =2,设DE =x ,①求点M 到FC 的距离(用含x 的代数式表示);②连接BM ,设2BM y =,求y 与x 之间的函数关系式,并直接写出BM 的长度的最小值.21.如图,AB 是⊙O 的直径,点C 在⊙O 上,连接BC ,AC ,作OD ∥BC 与过点A 的切线交于点D ,连接DC 并延长交AB 的延长线于点E . (1)求证:DE 是⊙O 的切线;(2)若23CE DE =,求cos ABC ∠的值.22.阅读下面材料:定义:与圆的所有切线和割线.......都有公共点的几何图形叫做这个圆的关联图形. 问题:⊙O的半径为1,画一个⊙O 的关联图形.在解决这个问题时,小明以O 为原点建立平面直角坐标系xOy 进行探究,他发现能画出很多⊙O 的关联图形,例如:⊙O 本身和图1中的△ABC (它们都是封闭的图形),以及图2中以O 为圆心的 (它是非封闭的图形),它们都是⊙O 的关联图形.而图2中以P ,Q 为端点的一条曲线就不是⊙O 的关联图形.参考小明的发现,解决问题:(1)在下列几何图形中,⊙O 的关联图形是 (填序号);(DmE① ⊙O 的外切正多边形 ② ⊙O 的内接正多边形③ ⊙O 的一个半径大于1的同心圆(2)若图形G 是⊙O 的关联图形,并且它是封闭的,则图形G 的周长的最小值是____; (3)在图2中,当⊙O 的关联图形 的弧长最小时,经过D ,E 两点的直线为y =__; (4)请你在备用图中画出一个⊙O 的关联图形,所画图形的长度l 小于(2)中图形G的周长的最小值,并写出l 的值(直接画出图形,不写作法).五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知:二次函数2314y x mx m =-++(m 为常数).(1)若这个二次函数的图象与x 轴只有一个公共点A ,且A 点在x 轴的正半轴上. ①求m 的值;②四边形AOBC 是正方形,且点B 在y 轴的负半轴上,现将这个二次函数的图象平移,使平移后的函数图象恰好经过B ,C 两点,求平移后的图象对应的函数解析式;(2) 当0≤x ≤2时,求函数2314y x mx m =-++的最小值(用含m 的代数式表示).24.已知:△ABC ,△DEF 都是等边三角形,M 是BC 与EF 的中点,连接AD ,BE . (1)如图1,当EF 与BC 在同一条直线上时,直接写出AD 与BE 的数量关系和位置关系;(2)△ABC 固定不动,将图1中的△DEF 绕点M 顺时针旋转α(o 0≤α≤o 90)角,如图2所示,判断(1)中的结论是否仍然成立,若成立,请加以证明;若不成立,说明理由;(3)△ABC 固定不动,将图1中的△DEF 绕点M 旋转α(o 0≤α≤o 90)角,作DH ⊥BC 于点H .设BH =x ,线段AB ,BE ,ED ,DA 所围成的图形面积为S .当A B =6,DE =2时,求S 关于x 的函数关系式,并写出相应的x 的取值范围.图2备用图图1(DmE25.已知:二次函数224y ax ax =+-(0)a ≠的图象与x 轴交于点A ,B (A 点在B 点的左侧),与y 轴交于点C ,△ABC 的面积为12. (1)①填空:二次函数图象的对称轴为 ; ②求二次函数的解析式;(2) 点D 的坐标为(-2,1),点P 在二次函数图象上,∠ADP 为锐角,且tan 2ADP ∠=,求点P 的横坐标;(3)点E 在x 轴的正半轴上,o 45OCE ∠>,点O 与点O '关于EC 所在直线对称.作ON ⊥EO '于点N ,交EC 于点M .若EM ·EC =32,求点E 的坐标.北京市西城区2013-2014学年度第一学期期末九年级数学试卷参考答案及评分标准 2014.1三、解答题(本题共30分,每小题5分) 13.解:2sin603tan302tan60cos45︒+︒-︒⋅︒.232= ................................................................................... 4分=............................................................................................................... 5分 14.解:(1)∵ 二次函数23y x bx =+-的图象经过点A (2,5),∴ 4235b +-=. .......................................................................................... 1分 ∴ 2b =.∴ 二次函数的解析式为223y x x =+-. ................................................... 2分 (2)令0y =,则有2230x x +-=.解得13x =-,21x =.∴ 二次函数的图象与x 轴的交点坐标为(3,0)-和(1,0). .......................... 4分 (3)223y x x =+-2(21)4x x =++-2(1)4x =+-.............................................................................................. 5分 15.解:∵ 在梯形ABCD 中,AB ∥CD ,∠A =90°,∴ ∠D =90°.∴ 90DCP DPC ∠+∠=︒. ∵PC PB ⊥,∴∠BPC =90°,90DPC APB ∠+∠=︒.∴∠DCP =∠APB . ................................................. 2分 ∴t an an t DCP APB =∠∠. 在Rt △PCD 中, CD =2,PD =4, ∴1tan 2PD DCP CD ∠==.在Rt △PBA 中,AB =6, ∴tan AB APB PA∠=.∴162PA=. ∴12PA =. ............................................................................................................... 4分∴PB == .................................................................................. 5分16.解:设从2011年底至2013年底该市城区绿地总面积的年平均增长率是x . ......... 1分依题意,得275(1)108x +=. ................................................................................. 2分整理,得236(1)25x +=. .......................................................................................... 3分615x +=±.解得x 1=0.2=20%,x 2=-2.2(舍去). ................................................................... 4分 答:从2011年底至2013年底该市城区绿地总面积的年平均增长率是20%. ........ 5分 17.解:设河宽AB 为x 米. ............................................................................................... 1分AC B (2)2或14. ....................................................................................................... 5分四、解答题(本题共20分,每小题5分)19.解:(1)二次函数2143y x x =-+图象的顶点(2,1)-关于y 轴的对称点坐标为(2,1)--,···························································································· 1分∴ 所求的二次函数的解析式为22(2)1y x =+-, ········································ 2分即2243y x x =++.(2)1-≤2y ≤3. ········································································································ 4分(3)20x -<<. ········································································································· 5分20.(1)证明:∵ 在矩形ABCD 中,∠DAB =∠ABC =∠C =∠D =90°.∴ 90ABF D ∠=∠=︒. ∵ AF ⊥AE ,∴ ∠EAF =90DAE EAB DAB ∠+∠=∠=︒. ∴ 90BAE BAF ∠+∠=︒. ∴ ∠DAE =∠BAF .∴ △ADE ∽△ABF . ··············································································· 2分(2)解:①如图,取FC 的中点H ,连接MH .∵ M 为EF 的中点,∴ MH ∥DC ,12MH EC =. ∵ 在矩形ABCD 中,∠C =90°, ∴ MH ⊥FC ,即MH 是点M 到FC 的距离. ∵ DE =x ,DC =AB =4. ∴ EC =4x -,∴ 12MH EC =122x =-.即点M 到FC 的距离为MH 122x =-. .................................................. 3分 ②∵△ADE ∽△ABF ,∴ DE BF AD AB =. ∴ 24x BF =. ∴ 2BF x =,FC =22x +,FH = CH =1x +. ∴ 1HB BF HF x =-=-. ∵ 122MH x =-, ∴ 在Rt △MHB 中,222221(2)(1)2MB BH MH x x =+=-+-25454x x =-+. ∴ 25454y x x =-+(04x <<), ............................................................ 4分当85x =时,BM 长的最小值是 ................................................... 5分21.(1)证明:如图,连接OC .∵ AD 是过点A 的切线,AB 是⊙O 的直径, ∴ AD ⊥AB , ∴ ∠DAB =90°. ∵ OD ∥BC ,HMDFAECB∴ ∠DOC =∠OCB ,∠AOD =∠ABC . ∵ OC =OB , ∴ ∠OCB =∠ABC . ∴ ∠DOC =∠AOD . 在△COD 和△AOD 中,OC = OA , ∠DOC =∠AOD ,OD=OD ,∴ △COD ≌△AOD . .................................................................................................. 1分 ∴ ∠OCD=∠DAB = 90°. ∴ OC ⊥DE 于点C . ∵ OC 是⊙O 的半径,∴ DE 是⊙O 的切线. ............................................................................................. 2分(2)解:由23CE DE =,可设2(0)CE k k =>,则3DE k =... ........................................ 3分∴ AD DC k ==. ∴ 在Rt △DAE 中,AE =.∴ tan E =AD AE =. ∵ 在Rt △OCE 中,tan 2OC OCE CE k==. ∴ 2OC k=, ∴ OC OA ==∴ 在Rt △AOD 中,OD ................................................... 4分 ∴ cos cos OA ABC AOD OD ∠=∠==... ............................................................... 5分 22.解:(1)①③; .......... 2分(2)2π; ............ 3分 (3)x - ... 4分(4)答案不唯一,所画图形是非封闭的,长度l 满足2π+≤ l <2π. 例如:在图1中l 2=π+,在图2中l =6. .......... 5分阅卷说明:在(1)中,只填写一个结果得1分,有错误结果不得分;在(4)中画图正确且图形长度都正确得1分,否则得0分.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)图1 图223.解:(1)①∵ 二次函数2314y x mx m =-++的图象与x 轴只有一个公共点A , ∴ ∆2341(1)04m m =-⨯⨯+=. .................................................................... 1分 整理,得2340m m --=.解得,14m =,21m =-.又点A 在x 轴的正半轴上,∴ 0m >.∴ m =4. ............................................................................................................ 2分②由①得点A 的坐标为(20),.∵ 四边形AOBC 是正方形,点B 在y 轴的负半轴上,∴ 点B 的坐标为(02)-,,点C 的坐标为(22)-,. ...................................... 3分 设平移后的图象对应的函数解析式为2y x bx c =++(b ,c 为常数).∴ 2,42 2.c b c =-⎧⎨++=-⎩解得2,2.b c =-⎧⎨=-⎩ ∴平移后的图象对应的函数解析式为222y x x =--...................................... 4分 (2)函数2314y x mx m =-++的图象是顶点为23(,1)244m m m -++,且开口向上的抛物线.分三种情况:(ⅰ)当02m <,即0m <时,函数在0≤x ≤2内y 随x 的增大而增大,此时函数的最小值为314m +; (ⅱ)当0≤2m ≤2,即0≤m ≤4时,函数的最小值为23144m m -++; (ⅲ)当22m >,即4m >时,函数在0≤x ≤2内y 随x 的增大而减小,此时函数的最小值为554m -+. 综上,当0m <时,函数2314y x mx m =-++的最小值为314m +; 当04m ≤≤时,函数2314y x mx m =-++的最小值为23144m m -++; 当4m >时,函数2314y x mx m =-++的最小值为554m -+. ............... 7分24.(1)AD BE=,AD BE ⊥. ........................................................................................ 2分(2)证明:连接DM ,AM . 在等边三角形ABC 中,M 为BC 的中点,∴ AM BC ⊥,1302BAM BAC ∠=∠=︒,AM BM∴ 90BME EMA ∠+∠=︒.同理,DM EM90AMD EMA ∠+∠=︒. ∴ AM DM BM EM =,AMD BME ∠=∠. ········· 3分 ∴ △ADM ∽△BEM .∴AD DM BE EM== ................................................................................ 4分 延长BE 交AM 于点G ,交AD 于点K .∴ MAD MBE ∠=∠,BGM AGK ∠=∠.∴ 90GKA AMB ∠=∠=︒.∴ AD BE ⊥. ............................................................................................ 5分(3)解:(ⅰ)当△DEF 绕点M 顺时针旋转α(o 0≤α≤o 90∵ △ADM ∽△BEM ,∴ 2()3ADM BEM S AD S BE∆∆==. ∴ 13BEM ADM S S ∆∆= ∴ ABM ADM BEM DEM S S S S S ∆∆∆∆=+--23ABM ADM DEM S S S ∆∆∆=+- 121133)12322x =⨯⨯⨯⨯--⨯ .∴ S =+ (3≤x ≤3+. ........................................................... 6分(ⅱ) 当△DEF 绕点M 逆时针旋转α(o 0≤α≤o 90)角时,可证△ADM ∽△BEM ,∴ 21()3BEM ADM S BM S AM ∆∆==. ∴ 13BEM ADM S S ∆∆=. ∴ ABM BEM ADM DEM S S S S S ∆∆∆∆=+--23ABM ADM DEM S S S ∆∆∆=-- 21)32x =⨯⨯-=.∴ S =+(3x ≤3).综上,S +(3≤x ≤3+). ......................................................... 7分25.解:(1)①该二次函数图象的对称轴为直线1x =-; ................................................ 1分②∵∴∵ ∴..................................... 2分 (2)如图,作(ⅰ)∴在Rt △ADF 中,o 90AFD ∠=,得tan 2ADF DF∠==.延长DF 与抛物线交于点P 1,则P 1点为所求. ∴ 点P 1的坐标为(24)--,. ....................................................................... 3分 (ⅱ)当点P 在直线AD 的上方时,延长P 1A 至点G 使得AG =AP 1,连接DG ,作GH ⊥x 轴于点H ,如图所示.可证 △GHA ≌△1P FA .∴ HA =AF ,GH = P 1 F ,GA =P 1A .又∵ (40)A -,,1(2P --,∴ 点G 的坐标是(64)-,在△ADP 1中, DA =DP 1=5,1AP =,∴ 22211DA AP DP +=.∴ 1o 90DAP ∠=.∴ DA ⊥1GP .∴ 1DG DP =.∴ 1ADG ADP ∠=∠. ∴ 1tan tan ADG ADP ∠=∠P 2,则P 2点为所求.作DK 2S ∥GK 交DK 于点S .设P 4)x -, 则22241522S x x x x P =+--=+-,2DS x =--. 由2P S DS =,3GK =,4DK =,得2152234x x x +---=. 140x -=.∵ P 2点在第二象限,∴ P 2点的横坐标为71614x --=(舍正). 综上,P 点的横坐标为-2或71614--. ..................................................... 5分 (3)如图,连接O O ',交CE 于T .连接O 'C . ∵ 点O 与点O '关于EC 所在直线对称,∴ O O '⊥CE ,OCE ∠=∠O 'CE ,∠C O 'E o 90COE =∠=.∴ O 'C ⊥O 'E .∵ ON ⊥O 'E ,∴ O 'C ∥O N .∴ OMC ∠=∠O 'C E OCE =∠.分 ∴ CT MT =.∵ 在Rt △ETO 中,o 90ETO ∠=,cos ET OEC OE∠=, 在Rt △COE 中,o 90COE ∠=,cos OE OEC EC∠=, ∴ OE ET EC OE=. ∴ 2OE ET EC =⋅()EM TM EC =+⋅EM EC TM EC =⋅+⋅ 32TM EC =+⋅.同理 2OC CT EC =⋅TM EC =⋅16=.∴ 2321648OE =+=.∵ 0OE >,∴ 43OE =.∵ 点E 在x 轴的正半轴上,∴ E 点的坐标为(43,0)). ............................................................................... 8分。
北京市西城区2014 —2015学年度第一学期期末试卷高二数学2015.1(文科)试卷满分:150分考试时间:120分钟一、选择题:本大题共10小题,每小题4分,共40分. 在每小题给出的四个选项中,只有一项是符合要求的.二、填空题:本大题共6小题,每小题5分,共30分. 把答案填在题中横线上. 11. 抛物线24y x =的准线方程为_______________.12. 命题“2,20x x x ∃∈-<R ”的否定是_____________________. 13. 右图是一个四棱锥的三视图,则该四棱锥的 体积为_______.14. 圆心在直线y x =上,且与x 轴相切于点(2,0) 的圆的方程为____________________.15. 已知F 为双曲线22:14y C x -=的一个焦点, 则点F 到双曲线C 的一条渐近线的距离为__________. 16. “降水量”是指从天空降落到地面上的液态或固态(经融 化后)降水,未经蒸发、渗透、流失而在水平面上积聚的 深度.降水量以m m 为单位.为了测量一次降雨的降水量,一个同学使用了如图所 示的简易装置:倒置的圆锥. 雨后,用倒置的圆锥接到的 雨水的数据如图所示,则这一场雨的降水量为 m m .三、解答题:本大题共6小题,共80分. 解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分13分)如图,四边形ABCD 为矩形,AD ⊥平面ABE ,90AEB ∠=o,F 为CE 上的点. (Ⅰ)求证://AD 平面BCE ; (Ⅱ)求证:AE ⊥BF .正(主)视图 侧(左)视图俯视图AEBCD F18.(本小题满分13分)已知△ABC 三个顶点的坐标分别为(0,0)A ,(4,0)B ,(3,1)C . (Ⅰ)求△ABC 中AC 边上的高线所在直线的方程; (Ⅱ)求△ABC 外接圆的方程.19.(本小题满分14分)如图,已知直三棱柱111ABC A B C -中,AB BC =,E 为AC 中点. (Ⅰ)求证:1//AB 平面1BC E ; (Ⅱ)求证:平面1BC E ⊥平面11ACC A .20.(本小题满分13分)如图,,A B 是椭圆22:13x W y +=的两个顶点,过点A 的直线与椭圆W 交于另一点C .(Ⅰ)当AC 的斜率为31时,求线段AC 的长; (Ⅱ)设D 是AC 的中点,且以AB 为直径的圆恰过点D . 求直线AC 的斜率.AB CEA 1B 1C 121.(本小题满分13分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,平面PCD ⊥平面ABCD ,且3PD PC BC ===,CD =E 为PB 中点.(Ⅰ)求三棱锥P BCD -的体积; (Ⅱ)求证:CE ⊥平面PBD ;(Ⅲ)设M 是线段CD 上一点,且满足2DM MC =,试在线段PB 上确定一点N ,使得//MN 平面PAD ,并求出BN 的长.22.(本小题满分14分)已知,A B 是抛物线24y x =上的不同两点,弦AB (不平行于y 轴)的垂直平分线与x 轴交于点P .(Ⅰ)若直线AB 经过抛物线24y x =的焦点,求,A B 两点的纵坐标之积;(Ⅱ)若点P 的坐标为(4,0),弦AB 的长度是否存在最大值?若存在,求出其最大值;若不存在,请说明理由.PABCDE M·北京市西城区2014 — 2015学年度第一学期期末试卷高二数学(文科)参考答案及评分标准2015.1一、选择题:本大题共10小题,每小题4分,共40分.1.B2.B3.D4. C5. D6.D7.A8. A9.C 10. C 二、填空题:本大题共6小题,每小题5分,共30分.11. 1x =- 12. 2,20x x x ∀∈-≥R 13.8314. 22(2)(2)4x y -+-= 15. 2 16. 1三、解答题:本大题共6小题,共80分. 17. (本小题满分13分)(Ⅰ)证明:因为四边形ABCD 为矩形,所以//AD BC . ………………2分 又因为BC ⊂平面BCE ,AD ⊄平面BCE , ………………4分所以//AD 平面BCE . ………………5分 (Ⅱ)证明:因为AD ⊥平面ABE ,BC AD //,所以BC ⊥平面ABE ,则BC AE ⊥ . ………………7分 又因为90AEB ∠=o,所以AE BE ⊥. ………………9分 所以AE ⊥平面BCE . ………………11分 又BF ⊂平面BCE , ………………12分 所以AE BF ⊥. ………………13分18. (本小题满分13分)解:(Ⅰ)因为(0,0)A ,(3,1)C ,所以直线AC 的斜率为13k =, ………………2分 又AC 边上的高所在的直线经过点(4,0)B ,且与AC 垂直,所以所求直线斜率为3-, ………………4分 所求方程为03(4)y x -=--,即 3120x y +-=. ………………5分(Ⅱ)设△ABC 外接圆的方程为220x y Dx Ey F ++++=, ………………6分AEBCDF因为点(0,0)A ,(4,0)B ,(3,1)C 在圆M 上,则2220,440,3130.F D F D E F =⎧⎪++=⎨⎪++++=⎩………………9分解得4D =-,2E =,0F =. ………………12分所以△ABC ∆外接圆的方程为22420x y x y +-+=. ………………13分19. (本小题满分14分)(Ⅰ)证明:连结1CB ,与1BC 交于点F ,连结EF . ………………1分因为三棱柱111ABC A B C -是直三棱柱, 所以四边形11BCC B 是矩形,点F 是1B C 中点. ………………3分又E 为AC 中点,所以1//EF AB . …………5分 因为EF ⊂平面1BC E ,1AB ⊄平面1BC E ,所以1//AB 平面1BC E . ………………7分 (Ⅱ)证明:因为AB BC =,E 为AC 中点,所以BE AC ⊥. ………………9分 又因为三棱柱111ABC A B C -是直三棱柱,所以1CC ⊥底面ABC ,从而1CC BE ⊥. ………………11分 所以BE ⊥平面11ACC A . ………………12分 因为BE ⊂平面1BC E , ………………13分 所以平面1BC E ⊥平面11ACC A . ………………14分20. (本小题满分13分) 解:(Ⅰ)由已知(0,1)A -,直线AC 的方程为13y x 1=-. ………………1分 由221,313y x x y 1⎧=-⎪⎪⎨⎪+=⎪⎩ 得2230x x -=, ………………2分 解得32x =或0x =(舍), ………………3分所以点C 的坐标为31(,)22-, ………………4分所以2AC ==. ………………5分ABCEA 1B 1C 1F(Ⅱ)依题意,设直线AC 的方程为1y kx =-,0k ≠.由221,13y kx x y =-⎧⎪⎨+=⎪⎩ 得22(31)60k x kx +-=, ………………7分 解得2631kx k =+或0x =(舍), ………………8分所以点C 的横坐标为2631kk +,设点D 的坐标为00(,)x y ,则02331kx k =+, ………………9分0021131y kx k -=-=+, ………………10分因为以AB 为直径的圆恰过点D ,所以1OD =,即222231()()13131k k k -+=++. ………………11分 整理得23k 1=, ………………12分所以k =. ………………13分21. (本小题满分13分)(Ⅰ)解:由已知3PD PC ==,CD =△PCD 是等腰直角三角形,90CPD ∠=o. ………………1分因为平面PCD ⊥平面ABCD ,底面ABCD 为矩形,BC CD ⊥,所以BC ⊥平面PCD . ………………2分 三棱锥P BCD -的体积1119()3322PCD V S BC PC PD BC ∆=⨯=⨯⨯⨯=. ………………4分(Ⅱ)证明:由(Ⅰ)知,BC ⊥平面PCD , 所以BC ⊥PD .因为90CPD ∠=o,即PD PC ⊥,所以PD ⊥平面PBC . ………………5分 因为CE ⊂平面PBC ,所以PD CE ⊥. ………………6分 因为PC BC =,E 为PB 中点,所以CE PB ⊥, ………………7分 因为PD PB P =I ,所以CE ⊥平面PBD . ………………8分(Ⅲ)解:在面PCD 上,过M 作//MF PD 交PC 于F .在面PBC 上,过F 作//FN BC 交PB 于N ,连结MN . ………………9分 因为//MF PD ,MF ⊄平面PAD ,PD ⊂平面PAD ,PABCDE M· FN所以//MF 平面PAD .因为////FN BC AD ,FN ⊄平面PAD ,AD ⊂平面PAD , 所以//FN 平面PAD .所以平面//MNF 平面PAD . ………………10分 从而,//MN 平面PAD . ………………11分由所作可知,△CMF 为等腰直角三角形,CM =所以1CF =,2PF =. ………………12分△PNF ,△PBC 均为等腰直角三角形,所以PN =PB =所以N 为线段PB 上靠近点B 的三等分点,且BN =. ………………13分22. (本小题满分14分)解:(Ⅰ)抛物线24y x =的焦点为(1,0)F , ………………1分依题意,设直线AB 方程为(1)y k x =-,其中0k ≠. ………………2分将24y x =代入直线方程,得2(1)4y y k =-, 整理得2440ky y k --=, ………………4分 所以4A B y y =-,即,A B 两点的纵坐标之积为4-. ………………5分 (Ⅱ)设:(0)AB y kx b k =+≠,11(,)A x y ,22(,)B x y .由24,y x y kx b⎧=⎨=+⎩ 得222(24)0k x kb x b +-+=. ………………6分 由222241616416160k b kb k b kb ∆=+--=->,得1kb <. ………………7分所以12242kb x x k -+=,2122b x x k=. ………………8分设AB 中点坐标为00(,)x y ,则120222x x kb x k +-==, 002y kx b k=+=, ………………9分 所以弦AB 的垂直平分线方程为2212()kby x k k k--=--, 令0y =,得222kbx k -=+. ………………10分由已知2224kb k-+=,即222k kb =-. ………………11分AB ======……………12分当2112k =,即k =AB 的最大值为6. ………………13分当k =b =;当k =b =均符合题意.所以弦AB 的长度存在最大值,其最大值为6. ………………14分。
北京市西城区2013 — 2014学年度第一学期期末试卷高一数学 2014.1试卷满分:150分 考试时间:120分钟A 卷 [必修 模块4] 本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的. 1.若sin 0<α,且cos 0>α,则角α是( ) (A )第一象限的角 (B )第二象限的角 (C )第三象限的角(D )第四象限的角2.已知向量1(1,0)=e ,2(0,1)=e ,那么122|+=|e e ( )(A )1(B (C )2(D 3.若角α的终边经过点(1,2)P -,则tan =α( )(A (B ) (C )2- (D )12-4.已知正方形ABCD 的边长为1,则AB AC ⋅=( )(A (B )1(C (D )25.在平面直角坐标系xOy 中,函数2sin()6y x π=-的图象( ) (A )关于直线6x π=对称 (B )关于直线6x π=-对称 (C )关于点(,0)6π对称(D )关于点(,0)6π-对称 6.已知非零向量,OA OB 不共线,且13BM BA =,则向量OM =( ) (A )1233OA OB +(B )2133OA OB +(C )1233OA OB -(D )1433OA OB -7.已知函数1()cos 22f x x x =+,则()12f π=( )(A )2(B )2(C )1(D 8.设a ,b 是两个非零向量,且+=-a b a b ,则a 与b 夹角的大小为( ) (A )120︒(B )90︒(C )60︒(D )30︒9.已知函数()sin cos f x x x =ωω在区间[,]63ππ-上单调递增,则正数ω的最大值是( ) (A )32(B )43(C )34 (D )2310.已知函数()cos(sin )f x x =,则下列结论中正确的是( ) (A )()f x 的定义域是[1,1]- (B )()f x 的值域是[1,1]- (C )()f x 是奇函数(D )()f x 是周期为π的函数二、填空题:本大题共6小题,每小题4分,共24分. 把答案填在题中横线上. 11. sin()6π-=______.12. 若sin =α,且(0,)∈πα,则α=______. 13. 已知向量(1,3)=a ,(2,)k =-b .若向量a 与b 共线,则实数k =_____. 14. 若tan 2=α,且32π∈(π,)α,则sin()2π+=α______. 15. 已知向量(cos ,sin )αα=a ,(cos ,sin )ββ=b .若π,3〈〉=a b ,则c o s ()-=αβ_____. 16. 定义在R 上的非常值函数()f x 同时满足下述两个条件:① 对于任意的x ∈R ,都有2()()3f x f x π+=; ② 对于任意的x ∈R ,都有()()66f x f x ππ-=+.则其解析式可以是()f x =_____.(写出一个满足条件的解析式即可)三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤.17. (本小题满分12分)已知3tan 4=-α. (Ⅰ)求πtan()4-α的值;(Ⅱ)求2sin 3cos 3sin 2cos --αααα的值.18.(本小题满分12分)已知函数2()sin 22cos2f x x x x =⋅. (Ⅰ)求()f x 的最小正周期;(Ⅱ)若[,]84x ππ∈,求()f x 的最大值与最小值.19.(本小题满分12分)如图,正六边形ABCDEF 的边长为1.,M N 分别是,BC DE 上的动点,且满足BM DN =.(Ⅰ)若,M N 分别是,BC DE 的中点,求AM AN ⋅的值; (Ⅱ)求AM AN ⋅的取值范围.B 卷 [学期综合] 本卷满分:50分一、填空题:本大题共5小题,每小题4分,共20分.把答案填在题中横线上. 1. 已知集合2{|430}A x x x =-+>,{|02}B x x =<≤,那么A B =_____.2. 已知2log 3a =,32b=,21log 3c =.将,,a b c 按从小到大排列为_____. 3. 若函数2()2f x x x =-在区间(,)a +∞上是增函数,则a 的取值范围是_____. 4. 函数12()|21|xf x x =--的零点个数为_____.5. 给定数集A .若对于任意,a b A ∈,有a b A +∈,且a b A -∈,则称集合A 为闭集合.给出如下四个结论:① 集合{4,2,0,2,4}A =--为闭集合; ② 集合{|3,}A n n k k ==∈Z 为闭集合; ③ 若集合12,A A 为闭集合,则12AA 为闭集合;④ 若集合12,A A 为闭集合,且1A R Ø,2A R Ø,则存在c ∈R ,使得12()c A A ∉.其中,全部正确结论的序号是_____.二、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤. 6.(本小题满分10分)已知函数()log (2)1a f x x =+-,其中1a >.(Ⅰ)若()f x 在[0,1]上的最大值与最小值互为相反数,求a 的值; (Ⅱ)若()f x 的图象不经过第二象限,求a 的取值范围.7.(本小题满分10分)已知函数()|2|f x x x =-. (Ⅰ)解不等式()3f x <;(Ⅱ)设0a >,求()f x 在区间[0,]a 上的最大值.8.(本小题满分10分)设函数()f x ,()g x 的定义域分别为f g D D ,,且f g D D Ø.若对于任意f x D ∈,都有()()g x f x =,则称()g x 为()f x 在g D 上的一个延拓函数.给定2() 1 (01)f x x x =-<≤.(Ⅰ)若()h x 是()f x 在[1,1]-上的延拓函数,且()h x 为奇函数,求()h x 的解析式; (Ⅱ)设()g x 为()f x 在(0,)+∞上的任意一个延拓函数,且()g x y x=是(0,)+∞上的单调函数.(ⅰ)判断函数()g x y x=在(0,1]上的单调性,并加以证明; (ⅱ)设0s >,0t >,证明:()()()g s t g s g t +>+.北京市西城区2013 —2014学年度第一学期期末试卷一、选择题:本大题共10小题,每小题4分,共40分.1.D;2.D;3.C;4.B;5.C;6.A;7.A;8.B;9.C;10.D.二、填空题:本大题共6小题,每小题4分,共24分.11.12-;12.3π,或32π;13.6-;14.5-;15.12;16.sin3x等(答案不唯一).注:12题,得出一个正确的结论得2分.三、解答题:本大题共3小题,共36分.17.(Ⅰ)解:因为3 tan4=-α,所以πtan tanπ4tan()π41tan tan4--=+⋅ααα【3分】7=-. 【6分】(Ⅱ)解:因为3 tan4=-α,所以2sin3cos2tan33sin2cos3tan2--=--αααααα【9分】1817=. 【12分】18.(Ⅰ)解:1cos4()2cos22xf x x x-=⋅1cos4422xx-=+【2分】1sin(4)62xπ=-+.【4分】因为242Tππ==,所以()f x的最小正周期是2π.【6分】(Ⅱ)解:由(Ⅰ)得,1 ()sin(4)62f x xπ=-+.因为84x ππ≤≤, 所以 54366x πππ≤-≤, 【 8分】 所以 1sin(4)126x π≤-≤, 【 9分】所以 131sin(4)622x π≤-+≤. 【10分】所以,当6x π=时,()f x 取得最大值32;当4x π=时,()f x 取得最小值1.【12分】19.(本小题满分12分)(Ⅰ)解:如图,以AB 所在直线为x 轴,以A 为坐标原点建立平面直角坐标系. 【 1分】因为ABCDEF 是边长为1的正六边形,且,M N 分别是,BC DE 的中点,所以 5(,)44M ,1(2N , 【 3分】所以 5311848AM AN ⋅=+=. 【 4分】 (Ⅱ)解:设BM DN t ==,则[0,1]t ∈.【 5分】所以(1,)22t M +,(1N t -. 【 7分】 所以3(1)(1)22t AM AN t t ⋅=+⋅-+2112t t ++=-213(1)22t =--+ 【10分】 当0t =时,AM AN ⋅取得最小值1; 【11分】 当1t =时,AM AN ⋅取得最大值32. 【12分】一、填空题:本大题共5小题,每小题4分,共20分.1.{|01}x x <<;2.c b a <<;3. [1,)+∞;4. 2;5.②④. 注:5题,选出一个正确的序号得2分,有错选不给分.6.(Ⅰ)解:函数()log (2)1a f x x =+-的定义域是(2,)-+∞. 【 1分】因为 1a >,所以 ()log (2)1a f x x =+-是[0,1]上的增函数. 【 2分】 所以 ()f x 在[0,1]上的最大值是(1)log 31a f =-;最小值是(0)log 21a f =-.【 4分】 依题意,得 log 31(log 21)a a -=--, 【 5分】 解得a =【 6分】 (Ⅱ)解:由(Ⅰ)知,()log (2)1a f x x =+-是(2,)-+∞上的增函数. 【 7分】在()f x 的解析式中,令0x =,得(0)log 21a f =-, 所以,()f x 的图象与y 轴交于点(0,log 21)a -. 【 8分】 依题意,得(0)log 210a f =-≤, 【 9分】 解得 2a ≥. 【10分】 7.(Ⅰ)解:原不等式可化为22230x x x ≥⎧⎨--<⎩,,(1) 或22230.x x x <⎧⎨-+>⎩,(2) 【 1分】解不等式组(1),得 23x ≤<;解不等式组(2),得2x <. 【 3分】 所以原不等式的解集为{|3}x x <. 【 4分】(Ⅱ)解:222,2,()|2|2, 2.x x x f x x x x x x ⎧-≥⎪=-=⎨-+<⎪⎩ 【 5分】① 当01a <<时,()f x 是[0,]a 上的增函数,此时()f x 在[0,]a 上的最大值是2()2f a a a =-+. 【 6分】② 当12a ≤≤时,()f x 在[0,1]上是增函数,在[1,]a 上是减函数,此时()f x 在[0,]a 上的最大值是(1)1f =. 【 7分】③ 当2a >时,令()(1)(2)10f a f a a -=-->,解得1a >. 所以,当21a <≤此时()(1)f a f ≤,()f x 在[0,]a 上的最大值是(1)1f =;当1a >此时()(1)f a f >,()f x 在[0,]a 上的最大值是2()2f a a a =-.【 9分】记()f x 在区间[0,]a 上的最大值为()g a ,所以222,01,()1,112,1a a a g a a a a a ⎧-+<<⎪⎪=≤≤+⎨⎪->+⎪⎩ 【10分】8.(Ⅰ)解:当0x =时,由()h x 为奇函数,得(0)0h =. 【 1分】任取[10)x ∈-,,则(01]x -∈,, 由()h x 为奇函数,得22()()[()1]1h x h x x x =--=---=-+, 【 2分】所以()h x 的解析式为221,01,()0,0,1,10.x x h x x x x ⎧-<≤⎪==⎨⎪-+-≤<⎩【 3分】(Ⅱ)解:(ⅰ)函数()g x y x=是(0,1]上的增函数. 【 4分】证明如下:因为()g x 为()f x 在(0,)+∞上的一个延拓函数,所以当(01]x ∈,时,2()()1g x f x x ==-. 记()()1()g x f x k x x x x x===-,其中(0,1]x ∈. 任取12,(0,1]x x ∈,且12x x <,则210x x x ∆=->, 因为211221212112()(1)11()()()0x x x x y k x k x x x x x x x -+∆=-=---=>, 所以函数()g x y x=是(0,1]上的增函数. 【 6分】 (ⅱ)由()g x y x = 是(0,)+∞上的单调函数,且(0,1]x ∈时,()g x y x =是增函数,从而得到函数()g x y x= 是(0,)+∞上的增函数. 【 7分】因为 0s >,0t >, 所以 s t s +>,s t t +>, 所以()()g s t g s s t s+>+, 即 ()()()s g s t s t g s ⋅+>+⋅. 【 8分】 同理可得:()()()t g s t s t g t ⋅+>+⋅.将上述两个不等式相加,并除以s t +,即得 ()()()g s t g s g t +>+. 【10分】。
北京2013届高三最新模拟试题分类汇编(含9区一模及上学期期末试题精选)专题:圆锥曲线一、选择题1 .(2013届北京大兴区一模理科)双曲线221x m y -=的实轴长是虚轴长的2倍,则m 等于 ( )A .14B .12C .2D .42 .(2013届北京海滨一模理科)抛物线24y x =的焦点为F ,点(,)P x y 为该抛物线上的动点,又点(1,0)A -,则||||P F P A 的最小值是( )A .12 B .2 C .2D .33 .(2013届北京市延庆县一模数学理)已知双曲线)0,0(12222>>=-b a by ax 的离心率为2,一个焦点与抛物线x y 162=的焦点相同,则双曲线的渐近线方程为( )A .x y 23±= B .x y 23±= C .x y 33±= D .x y 3±=4 .(2013届东城区一模理科)已知1(,0)F c -,2(,0)F c 分别是双曲线1C :22221x y ab-=(0,0)a b >>的两个焦点,双曲线1C 和圆2C :222x y c +=的一个交点为P ,且12212P F F P F F ∠=∠,那么双曲线1C 的离心率为 ( )A 2B C .2D 15 .(2013届门头沟区一模理科)已知P (,)x y 是中心在原点,焦距为10的双曲线上一点,且y x的取值范围为33(,)44-,则该双曲线方程是 A .221916x y -=B .221916yx-=C .221169x y -= D .221169y x -=6 .(北京市东城区2013届高三上学期期末考试数学理科试题)已知抛物线22y p x =的焦点F 与双曲线22179xy-=的右焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上且|||A K A F =,则△A F K 的面积为 ( )A .4B .8C .16D .327 .(北京市海淀区北师特学校2013届高三第四次月考理科数学)方程2x xy x +=的曲线是 ( )A .一个点B .一条直线C .两条直线D .一个点和一条直线8 .(北京市海淀区北师特学校2013届高三第四次月考理科数学)已知双曲线22221(0,0)x y a b ab-=>>,过其右焦点且垂直于实轴的直线与双曲线交于,M N 两点,O 为坐标原点.若O M O N ⊥,则双曲线的离心率为 ( )A .12-+B .12+ C .12-+D .12+9 .(北京市通州区2013届高三上学期期末考试理科数学试题 )已知直线1:4360l x y -+=和直线2:1l x =-,抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值是( )A .5B .2C .115D .310.(【解析】北京市朝阳区2013届高三上学期期末考试数学理试题 )已知双曲线的中心在原点,一个焦点为)0,5(1-F ,点P 在双曲线上,且线段PF 1的中点坐标为(0,2),则此双曲线的方程是 ( )A .1422=-yxB .1422=-yx C .13222=-yxD .12322=-yx11.(【解析】北京市海淀区2013届高三上学期期末考试数学理试题 )椭圆2222:1(0)x y C a b ab+=>>的左右焦点分别为12,F F ,若椭圆C 上恰好有6个不同的点P ,使得12F F P ∆为等腰三角形,则椭圆C 的离心率的取值范围是( )A .12(,)33B .1(,1)2 C .2(,1)3D .111(,)(,1)322二、填空题12.(2013届北京西城区一模理科)在直角坐标系xO y 中,点B 与点(1,0)A -关于原点O 对称.点00(,)P x y 在抛物线24y x =上,且直线A P 与B P 的斜率之积等于2,则0x =______.13.(2013届房山区一模理科数学)已知双曲线2222:1(0,0)x y C a b ab-=>>的焦距为4,且过点(2,3),则它的渐近线方程为 .14.(北京市东城区普通高中示范校2013届高三3月联考综合练习(二)数学(理)试题 )若双曲线22221(0,0)x y a b ab-=>>与直线y =无交点,则离心率e 的取值范围是 .15.(北京市东城区普通高中示范校2013届高三3月联考综合练习(二)数学(理)试题 )已知直线:1(R )l y a x a a =+-∈,若存在实数a使得一条曲线与直线l 有两个不同的交点,且以这两个交点为端点的线段的长度恰好等于a ,则称此曲线为直线l 的“绝对曲线”.下面给出的三条曲线方程:①21y x =--;②22(1)(1)1xy -+-=;③2234x y +=.其中直线l 的“绝对曲线”有_____.(填写全部正确选项的序号)如图,16.(北京市东城区普通校2013届高三3月联考数学(理)试题 )1F 和2F 分别是双曲线22221(00)x y a b ab-=>>,的两个焦点,A和B 是以O 为圆心,以1OF 为半径的圆与 该双曲线左支的两个交点,且2F AB △是等边三角形,则双 曲线的离心率为 .17.(北京市西城区2013届高三上学期期末考试数学理科试题)已知椭圆22142xy+=的两个焦点是1F ,2F ,点P在该椭圆上.若12||||2P F P F -=,则△12P F F 的面积是______.18.(北京市顺义区2013届高三第一次统练数学理科试卷(解析))在平面直角坐标系xOy 中,设抛物线x y 42=的焦点为F ,准线为P l ,为抛物线上一点,l PA ⊥,A 为垂足.如果直线AF 的倾斜角为 120,那么=PF _______.19.(北京市昌平区2013届高三上学期期末考试数学理试题 )以双曲线221916xy-=的右焦点为圆心,并与其渐近线相切的圆的标准方程是 _____.20.(【解析】北京市海淀区2013届高三上学期期末考试数学理试题 )以y x =±为渐近线且经过点(2,0)的双曲线方程为______.21.(【解析】北京市石景山区2013届高三上学期期末考试数学理试题 )已知定点A 的坐标为(1,4),点F 是双曲线221412xy-=的左焦点,点P 是双曲线右支上的动点,则P F P A +的最小值为 .三、解答题22.(2013届北京大兴区一模理科)已知动点P 到点A (-2,0)与点B (2,0)的斜率之积为14-,点P 的轨迹为曲线C 。
北京市西城区2017 - 2018学年度第二学期期末考试高一数学试卷北京市西城区2017-2018学年度第二学期期末试卷高一数学2018.7 A卷 [立体几何初步与解析几何初步] 本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合要求的。
1.已知点 M(-1,2),N(3,0),则点 M 到点 N 的距离为()。
A) 2 (B) 4 (C) 5 (D) 2√52.直线 x-y-3=0 的倾斜角为()。
A) 45 (B) 60 (C) 120 (D) 1353.直线 y=2x-2 与直线 l 关于 y 轴对称,则直线 l 的方程为()。
A) y=-2x+2 (B) y=-2x-2 (C) y=2x+2 (D) y=1/x-14.已知圆 M: x^2+y^2=1 与圆 N: (x-2)^2+y^2=9,则两圆的位置关系是()。
A) 相交 (B) 相离 (C) 内切 (D) 外切5.设m,n 为两条不重合的直线,α,β 为两个不重合的平面,m,n 既不在α 内,也不在β 内。
则下列结论正确的是()。
A) 若m//α,n//α,则 m//n。
B) 若 m//n,n//α,则m//α。
C) 若 m⊥α,n⊥α,则 m⊥n。
D) 若 m⊥α,m⊥β,则α⊥β。
6.若方程 x^2+y^2-4x+2y+5k=0 表示圆,则实数 k 的取值范围是()。
A) (-∞,1) (B) (-∞,1] (C) [1,+∞) (D) R7.圆柱的侧面展开图是一个边长为 2 的正方形,那么这个圆柱的体积是()。
A) π (B) π/2 (C) 2π (D) π/28.方程 x=1-y^2 表示的图形是()。
A) 两个半圆 (B) 两个圆 (C) 圆 (D) 半圆9.如图,四棱锥 P-ABCD 的底面 ABCD 是梯形,XXX。
若平面 PAD 平面 PBC∥l,则()。
某某省某某第一中学2015-2016学年高一上学期期末考试数学一、选择题:共10题1.下列说法中,正确的是A.幂函数的图象都经过点(1,1)和点(0,0)B.当a=0时,函数y=xα的图象是一条直线C.若幂函数y=xα的图象关于原点对称,则y=xα在定义域内y随x的增大而增大D.幂函数y=xα,当a<0时,在第一象限内函数值随x值的增大而减小【答案】D【解析】本题主要考查幂函数的图象与性质.由幂函数的图象与性质可知,A错误;当x=0时,y=0,故B错误;令a=-1,则y=x-1,显然C错误;故D正确.2.如图所示,则这个几何体的体积等于A.4B.6C.8D.12【答案】A【解析】由三视图可知所求几何体为四棱锥,如图所示,其中SA⊥平面ABCD,SA=2,AB=2,AD=2,CD=4,且四边形ABCD为直角梯形,∠DAB=90°,∴V=SA×(AB+CD)×AD=×2××(2+4)×2=4,故选A.3.下列关于函数y=f(x),x∈[a,b]的叙述中,正确的个数为①若x0∈[a,b]且满足f(x0)=0,则(x0,0)是f(x)的一个零点;②若x0是f(x)在[a,b]上的零点,则可用二分法求x0的近似值;③函数f(x)的零点是方程f(x)=0的根,f(x)=0的根也一定是函数f(x)的零点;④用二分法求方程的根时,得到的都是根的近似值.A.0B.1C.3D.4【答案】B【解析】本题主要考查方程与根、二分法.由零点的定义知,零点是曲线与x轴交点的横坐标,故①错误;当f(a)=0时,无法用二分法求解,故②错误;显然,③正确;若f(x)=2x-x-1,在区间(-1,1)上的零点,用二分法,可得f(0)=0,显然,④错误.4.如图,在三棱锥S-ABC中,E为棱SC的中点,若AC=,SA=SB=SC=AB=BC=2,则异面直线AC与BE所成的角为A.30°B.45°C.60°D.90°【答案】C【解析】本题主要考查异面直线所成的角.取SA的中点D,连接BD、DE,则,是异面直线AC与BE所成的角或补角,由题意可得BD=BE=,DE=,即三角形BDE是等边三角形,所以5.如图,正方体ABCDA1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的是A.AC⊥BEB.EF∥平面ABCDC.直线AB与平面BEF所成的角为定值D.异面直线AE、BF所成的角为定值【答案】D【解析】本题主要考查线面平行与垂直的判定定理、线面所成的角、异面直线所成的角,考查了空间想象能力.易证AC⊥平面BDD1B1,则AC⊥BE,A正确,不选;易知平面A1B1C1D1∥平面ABCD,则EF∥平面ABCD,B正确,不选;因为平面BEF即是平面BDD1B1,所以直线AB 与平面BEF所成的角为定值,故C正确,不选;故选D.6.若函数且)有两个零点,则实数a的取值X围是A. B. C. D.【答案】B【解析】本题主要考查函数的性质与零点.当时,函数是减函数,最多只有1个零点,不符合题意,故排除A、D;令,易判断函数在区间上分别有一个零点,故排除C,所以B正确.7.已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则A.α∥β且l∥α B.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l【答案】D【解析】本题涉及直线与平面的基本知识,意在考查考生的空间想象能力、分析思考能力,难度中等偏下.由于m,n为异面直线,m⊥平面α,n⊥平面β,则平面α与平面β必相交,但未必垂直,且交线垂直于直线m,n,又直线l满足l⊥m,l⊥n,则交线平行于l ,故选D.8.已知直线(1+k)x+y-k-2=0过定点P,则点P关于直线x-y-2=0的对称点的坐标是A.(3,﹣2)B.(2,﹣3)C.(3,﹣1)D.(1,﹣3)【答案】C【解析】本题主要考查直线方程、两条直线的位置关系.将(1+k)x+y-k-2=0整理为:k(x-1)+x+y-2=0,则x-1=0且x+y-2=0,可得P(1,1),设点P的对称点坐标为(a,b),则,则x=3,y=-1,故答案:C.9.如图,平面⊥平面与两平面所成的角分别为和.过分别作两平面交线的垂线,垂足为,则=A. B. C. D.【答案】A【解析】本题主要考查线面与面面垂直的判定与性质、直线与平面所成的角,考查了空间想象能力.根据题意,由面面垂直的性质定理可得,,则,则AB=2,则10.经过点P(1,4)的直线在两坐标轴上的截距都是正值,若截距之和最小,则直线的方程为A.x+2y-6=0 B.2x+y-6=0 C.x-2y+7=0 D.x-2y-7=0【答案】B【解析】本题主要考查直线方程、基本不等式.由直线的斜率为k(k<0),则y-4=k(x-1),分别令x=0、y=0求出直线在两坐标轴上的截距为:4-k,1-,则4-k+1-,当且仅当-k=-,即k=-2时,等号成立,则直线的方程为2x+y-6=0二、填空题:共5题11.已知直线: x+(1+m)y+m-2=0与直线:mx+2y+8=0平行,则经过点A(3,2)且与直线垂直的直线方程为________.【答案】2x-y-4=0【解析】本题主要考查直线方程、两条直线的位置关系.因为直线: x+(1+m)y+m-2=0与直线:mx+2y+8=0平行,所以(m+1)m-2=0,且8-(m-2),则m=1,直线: x+2y-1=0,根据题意,设所求直线方程为2x-y+t=0,将点A(3,2)代入可得t=-4,即:2x-y-4=012.用斜二测画法得到的四边形ABCD是下底角为45°的等腰梯形,其下底长为5,一腰长为,则原四边形的面积是________.【答案】8【解析】本题主要考查平面直观图.根据题意,直观图中,梯形的下底长为5,一腰长为,则易求上底为3,高为1,面积为,所以原四边形的面积是13.已知三棱锥A-BCD的所有棱长都为,则该三棱锥的外接球的表面积为________.【答案】3π【解析】本题主要考查空间几何体的表面积与体积,考查了空间想象能力.将正方体截去四个角可得到一个正四面体,由题意,可将该三棱锥补成一个棱长为1的正方体,所以该三棱锥的外接球的直径即为正方体的对角线,所以2r=,则该三棱锥的外接球的表面积为S=14.已知关于x的方程有两根,其中一根在区间内,另一根在区间内,则m的取值X围是________.【答案】【解析】本题主要考查二次函数的性质与二元一次方程的根.设,由题意可知:,求解可得15.甲、乙、丙、丁四个物体同时以某一点出发向同一个方向运动,其路程关于时间的函数关系式分别为,,,,有以下结论:①当时,甲走在最前面;②当时,乙走在最前面;③当时,丁走在最前面,当时,丁走在最后面;④丙不可能走在最前面,也不可能走在最后面;⑤如果它们一直运动下去,最终走在最前面的是甲.其中,正确结论的序号为_________(把正确结论的序号都填上,多填或少填均不得分).【答案】③④⑤【解析】①错误.因为,,所以,所以时,乙在甲的前面.②错误.因为,,所以,所以时,甲在乙的前面.③正确.当时,,的图象在图象的上方.④正确.当时,丙在甲乙前面,在丁后面,时,丙在丁前面,在甲、乙后面,时,甲、乙、丙、丁四人并驾齐驱.⑤正确.指数函数增长速度越来越快,x充分大时,的图象必定在,,上方,所以最终走在最前面的是甲.三、解答题:共5题16.如图(1)所示,在直角梯形中,BC AP,AB BC,CD AP,又分别为线段的中点,现将△折起,使平面平面(图(2)).(1)求证:平面平面;(2)求三棱锥的体积.【答案】证明:(1)分别是的中点,∵平面,AB平面.∴平面.同理,平面,∵,EF平面平面∴平面平面.(2)=.【解析】本题主要考查面面与线面平行与垂直的判定与性质、空间几何体的表面积与体积,考查了空间想象能力与等价转化.(1)根据题意,证明、,再利用线面与面面平行的判定定理即可证明;(2)由题意易知,则结果易得.17.已知两点,直线,求一点使,且点到直线的距离等于2.【答案】设点的坐标为.∵.∴的中点的坐标为.又的斜率.∴的垂直平分线方程为,即.而在直线上.∴.①又已知点到的距离为2.∴点必在于平行且距离为2的直线上,设直线方程为,由两条平行直线之间的距离公式得:∴或.∴点在直线或上.∴或②∴①②得:或.∴点或为所求的点.【解析】本题主要考查直线方程与斜率、两条直线的位置关系、中点坐标公式.设点的坐标为,求出统一线段AB的垂直平分线,即可求出a、b的一个关系式;由题意知,点必在于平行且距离为2的直线上, 设直线方程为,由两条平行直线之间的距离公式得:,求出m的值,又得到a、b的一个关系式,两个关系式联立求解即可.18.(1)已知圆C经过两点,且被直线y=1截得的线段长为.求圆C的方程;(2)已知点P(1,1)和圆过点P的动直线与圆交于A,B两点,求线段AB的中点M的轨迹方程.【答案】(1)设圆方程为.因为点O,Q在圆上,代入:又由已知,联立:解得:由韦达定理知:.所以:.即即:.即:.则.所以所求圆方程为:.(2)设点M (x ,y ), 圆的圆心坐标为C (0,2). 由题意:,又.所以: 化简:所以M 点的轨迹方程为【解析】本题主要考查圆的方程、直线与圆的位置关系、圆的性质、直线的斜率公式、方程思想.(1)设圆方程为,将y =1代入圆的方程,利用韦达定理,求出D 、E 、F 的一个关系式,再由点O 、Q 在圆上,联立求出D 、E 、F 的值,即可得到圆的方程;(2) 设点M (x ,y ), 圆的圆心坐标为C (0,2),由题意:,又,化简求解即可得到结论.19.如图,在四棱锥P —ABCD 中,PA ⊥底面ABCD , AB ⊥AD , AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.C A PB D E(1)求PB 和平面PAD 所成的角的大小;(2)证明:AE ⊥平面PCD ;(3)求二面角A-PD-C的正弦值.【答案】(1)在四棱锥P—ABCD中,∵PA⊥底面ABCD,AB⊂平面ABCD,∴PA⊥A B.又AB⊥AD,PA∩AD=A,从而AB⊥平面PAD,∴PB在平面PAD内的射影为PA,从而∠APB为PB和平面PAD所成的角.在Rt△PAB中,AB=PA,故∠APB=45°.所以PB和平面PAD所成的角的大小为45°.(2)证明:在四棱锥P—ABCD中,∵PA⊥底面ABCD,CD⊂平面ABCD,∴CD⊥PA.由条件CD⊥AC,PA∩AC=A∵CD⊥平面PA C.又AE⊂平面PAC,∴AE⊥C D.由PA=AB=BC,∠ABC=60°,可得AC=PA.∵E是PC的中点,∴AE⊥P C.又PC∩CD=C,综上得AE⊥平面PCD.(3)过点E作EM⊥PD,垂足为M,连接AM,如图所示.由(2)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则可证得AM⊥PD.因此∠AME是二面角A—PD—C的平面角.由已知,可得∠CAD=30°.设AC=a,可得PA=a,AD=a,PD=a,AE=在Rt△ADP中,∵AM⊥PD,∴AM·PD=PA·AD,则AM==.在Rt△AEM中,sin∠AME==.所以二面角A—PD—C的正弦值为.【解析】本题主要考查线面垂直的判定定理与性质定理、线面角与二面角,考查了空间想象能力.(1)根据题意,证明AB⊥平面PAD,即可得证∠APB为PB和平面PAD所成的角,则易求结果;(2)由题意,易证CD⊥平面PA C,可得AE⊥C D,由题意易知AC=PA,又因为E是PC 的中点,所以AE⊥P C,则结论易证;(3) 过点E作EM⊥PD,垂足为M,连接AM,如图所示,由(2)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则可证得AM⊥PD,因此∠AME是二面角A—PD—C的平面角,则结论易求.20.诺贝尔奖的奖金发放方式为:每年一发,把奖金总额平均分成6份,分别奖励给在6项(物理、化学、文学、经济学、生理学和医学、和平)为人类作出最有益贡献的人,每年发放奖金的总金额是基金在该年度所获利息的一半;另一半利息计入基金总额,以便保证奖金数逐年增加.假设基金平均年利率为r=6.24%.资料显示:1999年诺贝尔发放后基金总额约为19 800万美元.设f(x)表示第x(x∈N*)年诺贝尔奖发放后的基金总额(1999年记为f(1),2000年记为f(2),…,依次类推)(1)用f(1)表示f(2)与f(3),并根据所求结果归纳出函数f(x)的表达式;(2)试根据f(x)的表达式判断网上一则新闻“2009年度诺贝尔奖各项奖金高达150万美元”是否为真,并说明理由.(参考数据:1.031 29≈1.32)【答案】(1)由题意知:f(2)=f(1)(1+6.24%)-f(1)·6.24%=f(1)×(1+3.12%),f(3)=f(2)×(1+6.24%)-f(2)×6.24%=f(2)×(1+3.12%)=f(1)×(1+3.12%)2,∴f(x)=19800(1+3.12%)x-1(x∈N*).(2)2008年诺贝尔奖发放后基金总额为f(10)=19800(1+3.12%)9=26136,故2009年度诺贝尔奖各项奖金为·f(10)·6.24%≈136(万美元),与150万美元相比少了约14万美元,是假新闻.【解析】本题主要考查指数函数、函数的解析式与求值,考查了分析问题与解决问题的能力、计算能力.(1)由题意知: f(2)=f(1)(1+6.24%)-f(1)·6.24%,f(3)=f(2)×(1+6.24%)-f(2)×6.24%,化简,即可归纳出函数f(x)的解析式;(2)根据题意,求出2008年诺贝尔奖发放后基金总额为f(10),再求出2009年度诺贝尔奖各项奖金为·f(10)·6.24%,即可判断出结论.。
2013-2014学年度第一学期高一级期末考试一.选择题(每小题5分,共50分,每小题只有一个选项是正确的) 1. 已知集合M ={x|x <3},N ={x |122x>},则M ∩N 等于( ) A ∅B {x |0<x <3}C {x |-1<x <3}D {x |1<x <3}2. 已知三条不重合的直线m 、n 、l 两个不重合的平面βα,,有下列命题 ①若αα//,,//m n n m 则⊂; ②若βαβα//,//,则且m l m l ⊥⊥; ③若βαββαα//,//,//,,则n m n m ⊂⊂;④若αββαβα⊥⊥⊂=⊥n m n n m 则,,,, ;其中正确的命题个数是( )A .1B .2C .3D .4 3. 如图,一个简单空间几何体的三视图中,其正视图与侧视图都是边长 为2的正三角形,俯视图轮廓为正方形,则其侧面积是( ) A .4. 函数()23xf x x =+的零点所在的一个区间是( )A .()2,1--B .()1,0-C .()0,1D .()1,25. 如图,在正方体ABCD-A 1B 1C 1D 1中,异面直线A 1B 和AD 1所成角的大小是( ) A. 30° B. 45° C.90° D.60°6. 已知函()()21,1,log ,1.a a x x f x x x --⎧⎪=⎨>⎪⎩≤若()f x 在(),-∞+∞上单调递增,则实数a 的取值范围为( ) A . ()1,2B . ()2,3C . (]2,3D . ()2,+∞7. 如图在正三棱锥A-BCD 中,E 、F 分别是AB 、BC 的中点,EF ⊥DE ,且BC =1,则正三棱锥A-BCD的体积是 ( )243D. 123C. 242B. 122.A8. 函数y =log 2(1-x )的图象是( )俯视图正视图 侧视图9. 已知)(x f 是定义在R 上的函数,且)2()(+=x f x f 恒成立,当)0,2(-∈x 时,2)(x x f =,则当[]3,2∈x 时,函数)(x f 的解析式为 ( )A .42-x B .42+x C .2)4(+x D . 2)4(-x10. 已知)91(log 2)(3≤≤+=x x x f ,则函数[])()(22x f x f y +=的最大值为( )A .6B .13C .22D .33二.填空题(每小题5分,共20分)11. 一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为 .12. 已知函数()()223f x x m x =+++是偶函数,则=m .13. 已知直二面角βα--l ,点A ∈α,AC ⊥l ,C 为垂足,B ∈β,BD ⊥l ,D 为垂足, 若AB=2,AC=BD=1则C,D 两点间的距离是_______14. 若函数2()log (2)(0,1)a f x x x a a =+>≠在区间102⎛⎫ ⎪⎝⎭,恒有()0f x >,则()f x 的单调递增区间是三.解答题(本大题共6小题,共80分。
北京市西城区2013 — 2014学年度第一学期期末试卷高三数学(文科) 2014.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{|02}A x x =<<,0{|1}B x x =-≥,则集合A B = ( ) (A )(0,1)(B )(0,1](C )(1,2)(D )[1,2)2.已知命题p :“x ∀∈R ,23x -<”,那么p ⌝是( ) (A )x ∀∈R ,23x ->, (B )x ∀∈R ,23x -≥ (C )x ∃∈R ,23x -<(D )x ∃∈R ,23x -≥3.在平面直角坐标系xOy 中,点(1,3)A ,(2,)B k -,若向量OA AB ⊥,则实数k =( )(A )4(B )3(C )2 (D )14.若坐标原点在圆22()()4x m y m -++=的内部,则实数m 的取值范围是( ) (A )11m -<< (B)m -< (C)m -<(D)22m -<< 5.执行如图所示的程序框图,输出的S 值为( ) (A )34 (B )45(C )56(D )16. 若曲线221ax by +=为焦点在x 轴上的椭圆,则实数a ,b 满足( ) (A )22a b > (B )11a b< (C )0a b <<(D )0b a <<7.定义域为R 的函数()f x 满足(1)2()f x f x +=,且当(0,1]x ∈时,2()f x x x =-,则当[1,0]x ∈-时,()f x 的最小值为( ) (A )18-(B ) 14-(C )0(D )148.在平面直角坐标系xOy 中,记不等式组0,0,2x y x y y +⎧⎪-⎨⎪⎩≥≤≤所表示的平面区域为D . 在映射,:u x y T v x y =+⎧⎨=-⎩的作用下,区域D 内的点(,)x y 对应的象为点(,)u v ,则由点(,)u v 所形成的平面区域的面积为( ) (A )2 (B )4(C )8(D )16第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.已知复数z 满足2i=1iz +,那么||z =______. 10.在等差数列{}n a 中,11a =,8104a a +=,则公差d =______;前17项的和17S =______. 11.已知一个正三棱柱的所有棱长均相等,其侧(左)视图如图所示,那么此三棱柱正(主)视图的面积为______.12.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 若3a =,2b =,1cos()3A B +=, 则cos C =______;c = ______.13.设函数2log , 0,()4, 0,xx x f x x >⎧=⎨⎩≤ 则[(1)]f f -=______;若函数()()g x f x k =-存在两个零点,则实数k 的取值范围是______. 14.14.设{(,)|(,)0}M x y F x y ==为平面直角坐标系xOy 内的点集,若对于任意11(,)x y M ∈,存在22(,)x y M ∈,使得12120x x y y +<,则称点集M 满足性质P . 给出下列三个点集:侧(左)视图○1{(,)|cos 0}R x y x y =-=; ○2{(,)|ln 0}S x y x y =-=; ○322{(,)|1}T x y x y =-=. 其中所有满足性质P 的点集的序号是______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数()f x x ω=,π()sin()(0)3g x x ωω=->,且()g x 的最小正周期为π.(Ⅰ)若()2f α=[π,π]α∈-,求α的值; (Ⅱ)求函数()()y f x g x =+的单调增区间.16.(本小题满分13分)以下茎叶图记录了甲、乙两组各三名同学在期末考试中的数学成绩.乙组记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以a 表示.(Ⅰ)若甲、乙两个小组的数学平均成绩相同,求a 的值; (Ⅱ)求乙组平均成绩超过甲组平均成绩的概率;(Ⅲ)当2a =时,分别从甲、乙两组同学中各随机选取一名同学,求这两名同学的数学成绩之差的绝对值不超过2分的概率.17.(本小题满分14分)如图,在多面体ABCDEF 中,底面ABCD 是边长为2的正方形,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,BF =3,G 和H 分别是CE 和CF 的中点. (Ⅰ)求证:AC ⊥平面BDEF ; (Ⅱ)求证:平面BDGH //平面AEF ; (Ⅲ)求多面体ABCDEF 的体积.甲组乙组 891 a822 F BCG EAHD18.(本小题满分13分)已知函数()()e xf x x a =+,其中e 是自然对数的底数,a ∈R . (Ⅰ)求函数)(x f 的单调区间;(Ⅱ)当[0,4]x ∈时,求函数()f x 的最小值.19.(本小题满分14分)已知,A B 是抛物线2:W y x =上的两个点,点A 的坐标为(1,1),直线AB 的斜率为(0)k k >.设抛物线W 的焦点在直线AB 的下方.(Ⅰ)求k 的取值范围;(Ⅱ)设C 为W 上一点,且AB AC ⊥,过,B C 两点分别作W 的切线,记两切线的交点为D . 判断四边形ABDC 是否为梯形,并说明理由.20.(本小题满分13分)设无穷等比数列{}n a 的公比为q ,且*0()n a n >∈N ,[]n a 表示不超过实数n a 的最大整数(如[2.5]2=),记[]n n b a =,数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T . (Ⅰ)若1114,2a q ==,求3T ; (Ⅱ)证明: n n S T =(1,2,3,n =L )的充分必要条件为n a N *Î;(Ⅲ)若对于任意不超过2014的正整数n ,都有21n T n =+,证明:120122()13q <<.北京市西城区2013 — 2014学年度第一学期期末 高三数学(文科)参考答案及评分标准2014.1一、选择题:本大题共8小题,每小题5分,共40分.1.D 2.D 3.A 4.C 5.B 6.C 7.A 8.C 二、填空题:本大题共6小题,每小题5分,共30分.9 10. 18 3411. 12.13-13. 2- (0,1] 14.○1○3注:第10、12、13题第一问2分,第二问3分. 第14题若有错选、多选不得分,少选得2分. 三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:因为π()sin()(0)3g x x ωω=->的最小正周期为π, 所以2||ωπ=π,解得2ω=. ……………… 3分由 ()f α=2α=, 即 cos 2α= ………… 4分 所以 π22π4k α=±,k ∈Z . 因为 [π,π]α∈-, 所以7πππ7π{,,,}8888α∈--. ……………… 6分(Ⅱ)解:函数 π()()2sin(2)3y f x g x x x =+=+-ππ2sin 2cos cos 2sin 33x x x =+- ……………… 8分1sin 2222x x =+πsin(2)3x =+, ………10分 由 2πππ2π2π232k k x -++≤≤, ………………11分解得 5ππππ1212k k x -+≤≤. ………………12分 所以函数()()y f x g x =+的单调增区间为5ππ[ππ]()1212k k k -+∈Z ,.…………13分16.(本小题满分13分)(Ⅰ)解:依题意,得 11(889292)[9091(90)]33a ++=+++, ……………… 3分解得 1a =. ……………… 4分 (Ⅱ)解:设“乙组平均成绩超过甲组平均成绩”为事件A , ……………… 5分依题意 0,1,2,,9a = ,共有10种可能. ……………… 6分 由(Ⅰ)可知,当1a =时甲、乙两个小组的数学平均成绩相同,所以当2,3,4,,9a = 时,乙组平均成绩超过甲组平均成绩,共有8种可能.… 7分 所以乙组平均成绩超过甲组平均成绩的概率84()105P A ==. ……………… 8分 (Ⅲ)解:设“这两名同学的数学成绩之差的绝对值不超过2分”为事件B ,………… 9分当2a =时,分别从甲、乙两组同学中各随机选取一名同学,所有可能的成绩结果有339⨯=种, 它们是:(88,90),(88,91),(88,92),(92,90),(92,91),(92,92),(92,90),(92,91),(92,92), ………………10分所以事件B 的结果有7种,它们是:(88,90),(92,90),(92,91),(92,92),(92,90),(92,91),(92,92). ……………… 11分因此这两名同学的数学成绩之差的绝对值不超过2分的概率7()9P B =. ………………13分17.(本小题满分14分)(Ⅰ)证明:因为四边形ABCD 是正方形,所以AC BD ⊥. ……………… 1分 又因为平面BDEF ⊥平面ABCD ,平面BDEF 平面ABCD BD =, 且AC ⊂平面ABCD ,所以AC ⊥平面BDEF . ……………… 4分 (Ⅱ)证明:在CEF ∆中,因为,G H 分别是,CE CF 的中点,所以//GH EF ,又因为GH ⊄平面AEF ,EF ⊂平面AEF ,G E所以//GH 平面AEF . ……………… 6分 设AC BD O = ,连接OH ,在ACF ∆中,因为OA OC =,CH HF =,所以//OH AF ,又因为OH ⊄平面AEF ,AF ⊂平面AEF ,所以//OH 平面AEF . ……………… 8分 又因为OH GH H = ,,OH GH ⊂平面BDGH ,所以平面//BDGH 平面AEF . ………………10分 (Ⅲ)解:由(Ⅰ),得 AC ⊥平面BDEF ,又因为AO =,四边形BDEF 的面积3BDEF S =⨯= 11分所以四棱锥A BDEF -的体积1143BDEF V AO S =⨯⨯= . ………………12分 同理,四棱锥C BDEF -的体积24V =.所以多面体ABCDEF 的体积128V V V =+=. ………………14分18.(本小题满分13分)(Ⅰ)解:因为()()e x f x x a =+,x ∈R ,所以()(1)e xf x x a '=++. …………… 2分令()0f x '=,得1x a =--. ……………… 3分 当x 变化时,()f x 和()f x '的变化情况如下:)……………… 5分故()f x 的单调减区间为(,1)a -∞--;单调增区间为(1,)a --+∞.………… 6分 (Ⅱ)解:由(Ⅰ),得()f x 的单调减区间为(,1)a -∞--;单调增区间为(1,)a --+∞.所以当10a --≤,即1a -≥时,()f x 在[0,4]上单调递增,故()f x 在[0,4]上的最小值为min ()(0)f x f a ==; ……………… 8分 当401a <--<,即51a -<<-时,()f x 在(0,1)a --上单调递减, ()f x 在(1,4)a --上单调递增,故()f x 在[0,4]上的最小值为1min ()(1)e a f x f a --=--=-;………………10分当41a --≥,即5a -≤时,()f x 在[0,4]上单调递减,故()f x 在[0,4]上的最小值为4min ()(4)(4)e f x f a ==+. ………………12分所以函数()f x 在[0,4]上的最小值为1min4, 1,()e , 51,(4)e , 5.a a a f x a a a ---⎧⎪=--<<-⎨⎪+-⎩≥≤ ……13分 19.(本小题满分14分)(Ⅰ)解:抛物线2y x =的焦点为1(0,)4. ……………… 1分由题意,得直线AB 的方程为1(1)y k x -=-, ……………… 2分 令 0x =,得1y k =-,即直线AB 与y 轴相交于点(0,1)k -. ……………… 3分 因为抛物线W 的焦点在直线AB 的下方, 所以 114k ->,解得 34k <. 因为 0k >,所以 304k <<. ………… 5分(Ⅱ)解:结论:四边形ABDC 不可能为梯形. ……………… 6分 理由如下:假设四边形ABDC 为梯形. ……………… 7分 由题意,设211(,)B x x ,222(,)C x x ,33(,)D x y ,联立方程21(1),,y k x y x -=-⎧⎨=⎩ 消去y ,得210x kx k -+-=, 由韦达定理,得11x k +=,所以 11x k =-. ……………… 8分 同理,得211x k=--. ……………… 9分 对函数2y x =求导,得2y x '=,所以抛物线2y x =在点B 处的切线BD 的斜率为1222x k =-, ……………… 10分抛物线2y x =在点C 处的切线CD 的斜率为2222x k=--. ………………11分由四边形ABDC 为梯形,得//AB CD 或//AC BD . 若//AB CD ,则22k k=--,即2220k k ++=, 因为方程2220k k ++=无解,所以AB 与CD 不平行. ………………12分 若//AC BD ,则122k k-=-,即22210k k -+=, 因为方程22210k k -+=无解,所以AC 与BD 不平行. ……………13分 所以四边形ABDC 不是梯形,与假设矛盾.因此四边形ABDC 不可能为梯形. ……………14分 20.(本小题满分13分)(Ⅰ)解:因为等比数列{}n a 的114a =,12q =, 所以 114a =,27a =,3 3.5a =. ……………… 1分所以 114b =,27b =,33b =. ……………… 2分则 312324T b b b =++=. ……………… 3分(Ⅱ)证明:(充分性)因为 n a N *Î, 所以 []n n n b a a == 对一切正整数n 都成立.因为 12n n S a a a =+++L ,12n n T b b b =+++L ,所以 n n S T =. …… 5分(必要性)因为对于任意的n N *Î,n n S T =,当1n =时,由1111,a S b T ==,得11a b =; ……………… 6分 当2n ≥时,由1n n n a S S -=-,1n n n b T T -=-,得n n a b =.所以对一切正整数n 都有n n a b =. ……………… 7分 因为 []n n b a Z = ,0n a >,所以对一切正整数n 都有n a N *Î. ……………… 8分(Ⅲ)证明:因为 201421()n T n n =+≤,所以 113b T ==,120142(2)n n n b T T n -=-=≤≤. …… 9分因为 []n n b a =,所以 1[3,4)a ∈,2014[2,3)(2)n a n ∈≤≤. …………10分 由 21a q a =,得 1q <. ………………11分因为 201220142[2,3)a a q=∈, 所以 20122223q a >≥, 所以 2012213q <<,即 120122()13q <<. ………………13分。
北京市西城区2013-2014学年下学期高一年级期末考试数学试卷(试卷满分:150分 考试时间:120分钟)一、选择题:本大题共8小题,每小题5分,共40分。
1. 不等式3)2(<+x x 的解集是( )(A ){13<<-x x } (B ){31<<-x x }(C ){,3-<x x 或1>x }(D ){,1-<x x 或3>x } 2. 在等比数列{n a }中,若=321a a a —8,则2a 等于( ) (A )—38 (B )—2(C )38±(D )2±3. 总体由编号为01,02,…,29,30的30个个体组成。
利用下面的随机数表选取4个个体。
选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出的第4个个体的编号为( )7806 6572 0802 6314 2947 1821 9800 3204 9234 4935 3623 4869 6938 7481(A )02(B )14(C )18(D )294. 执行如图所示的程序框图,输出的S 值为( )(A )1(B )5(C )14(D )305. 在△ABC 中,若C B A 222sin sin sin <+,则△ABC 的形状是( ) (A )锐角三角形 (B )钝角三角形 (C )直角三角形 (D )无法确定 6. 已知不等式015<+-x x 的解集为P 。
若P x ∈0,则“10<x ”的概率为( ) (A )41 (B )31 (C )21 (D )327. 设0,0>>b a ,则下列不等式中不.恒成立的是( ) (A )aa 1+≥2 (B )22b a +≥2(1-+b a ) (C )b a -≥b a -(D )33b a +≥22ab8. 已知数列A :1a ,2a ,…,n a (<<≤210a a …3,≥<n a n )具有性质P :对任意)1(,n j i j i ≤≤≤,i j i j a a a a -+与两数中至少有一个是该数列中的一项。
北京市西城区2013 — 2014学年度第一学期期末试卷高一数学 2014.1试卷满分:150分 考试时间:120分钟A 卷 [必修 模块4] 本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.已知[0,2)∈πα,且角α与角π6-终边相同,则=α( ) (A )11π6(B )7π6 (C )5π6(D )π62.若sin 0<α,且cos 0>α,则角α是( ) (A )第一象限的角 (B )第二象限的角 (C )第三象限的角(D )第四象限的角3.已知向量1(1,0)=e ,2(0,1)=e ,那么向量122+e e 的坐标是( ) (A )(1,2)-(B )(1,2)-(C )(1,2)--(D )(1,2)4.若角α的终边经过点(1,2)P -,则tan =α( )(A )5(B )5-(C )2- (D )12-5.已知正方形ABCD 的边长为1,则AB AC ⋅=( )(A )2(B )1(C (D )26.在平面直角坐标系xOy 中,函数sin y x =的图象( ) (A )关于x 轴对称 (B )关于y 轴对称 (C )关于原点对称(D )关于点(,0)2π对称7.在△ABC 中,D 是BC 的中点,则向量AD =( ) (A )1122AB AC + (B )AB AC +(C )1122AB AC - (D )AB AC -8.已知函数1()cos 2f x x x =+,则()12f π=( )(A )2 (B )2(C )1(D 9.设a ,b 是两个非零向量,且+=-a b a b ,则a 与b 夹角的大小为( ) (A )120︒(B )90︒(C )60︒(D )30︒10.已知函数()sin cos f x x x =ωω在区间[,]63ππ-上单调递增,则正数ω的最大值是( ) (A )32(B )43(C )34 (D )23二、填空题:本大题共6小题,每小题4分,共24分. 把答案填在题中横线上. 11. sin()3π-=______. 12. 若1cos 2=-α,且(0,)∈πα,则α=______. 13. 已知向量(1,3)=a ,(2,)k =-b .若向量a 与b 共线,则实数k =_____. 14. 若tan 2=α,且32π∈(π,)α,则sin()2π+=α______. 15. 定义在R 上的函数()f x 满足:对任意的x ∈R ,都有(2)()f x f x +=.若(1)2f -=,则(3)f =_____.16. 已知向量(cos ,sin )αα=a ,(cos ,sin )ββ=b .若π,3〈〉=a b ,则c o s ()-=αβ_____.三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤. 17. (本小题满分12分)已知3tan 4=-α. (Ⅰ)求πtan()4-α的值; (Ⅱ)求2sin 3cos 3sin 2cos --αααα的值.18.(本小题满分12分)已知函数2()(sin 2cos2)1f x x x =++. (Ⅰ)求()f x 的最小正周期; (Ⅱ)若[,]124x ππ∈,求()f x 的最大值与最小值.19.(本小题满分12分)如图,正六边形ABCDEF 的边长为1,O 为其中心,,M N 分别是,BC DE 上的动点,且BM DN =.(Ⅰ)若,M N 分别是,BC DE 的中点,求OM ON ⋅的值; (Ⅱ)求OM ON ⋅的取值范围.B 卷 [学期综合] 本卷满分:50分一、填空题:本大题共5小题,每小题4分,共20分.把答案填在题中横线上. 1. 已知集合2{|430}A x x x =-+>,{|02}B x x =<≤,那么A B =_____.2. 已知2log 3a =,3log 2b =,21log 3c =.将,,a b c 按从小到大排列为_____. 3. 函数()121()2xf x x =-的零点个数为_____.4. 若函数2()2f x x x =-在区间(,)a +∞上是增函数,则a 的取值范围是_____.5. 给定数集A .若对于任意,a b A ∈,有a b A +∈,且a b A -∈,则称集合A 为闭集合.给出如下三个结论:① 集合{4,2,0,2,4}A =--为闭集合; ② 集合{|2,}A n n k k ==∈Z 为闭集合; ③ 若集合12,A A 为闭集合,则12A A 为闭集合.其中,全部正确结论的序号是_____.二、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤. 6.(本小题满分10分)已知函数21()x f x x-=.(Ⅰ)证明:()f x 是奇函数;(Ⅱ)用函数单调性的定义证明:()f x 在(0,)+∞上为增函数.7.(本小题满分10分)已知函数()log (2)1a f x x =+-,其中1a >.(Ⅰ)若()f x 在[0,1]上的最大值与最小值互为相反数,求a 的值; (Ⅱ)若()f x 的图象不经过第二象限,求a 的取值范围. 8.(本小题满分10分)已知函数()|2|f x x x =-. (Ⅰ)解不等式()3f x <;(Ⅱ)设0a >,求()f x 在区间[0,]a 上的最大值.北京市西城区2013 — 2014学年度第一学期期末试卷A 卷 [必修 模块4] 满分100分一、选择题:本大题共10小题,每小题4分,共40分.1. A ;2. D ;3. D ;4. C ;5. B ;6. C ;7.A ;8. A ;9. B ; 10. C . 二、填空题:本大题共6小题,每小题4分,共24分.11.2-; 12. 32π; 13.6-;14.15.2; 16. 12.三、解答题:本大题共3小题,共36分. 17.(本小题满分12分) (Ⅰ)解:因为 3tan 4=-α, 所以 πtan tanπ4tan()π41tan tan 4--=+⋅ααα 【 3分】 7=-. 【 6分】(Ⅱ)解:因为3tan 4=-α, 所以2sin 3cos 2tan 33sin 2cos 3tan 2--=--αααααα 【 9分】1817=. 【12分】 18.(本小题满分12分)(Ⅰ)解:2()(sin 2cos2)1f x x x =++22sin 22sin 2cos 2cos 21x x x x =+⋅++ 【 2分】 sin 42x =+. 【 4分】因为 242T ππ==, 所以()f x 的最小正周期是2π. 【 6分】(Ⅱ)解:由(Ⅰ)得,()sin 42f x x =+.因为124x ππ≤≤, 所以 43x π≤≤π, 【 8分】所以 0sin 41x ≤≤,所以 2sin 423x ≤+≤. 【10分】 所以,当8x π=时,()f x 取得最大值3;当4x π=时,()f x 取得最小值2.【12分】 19.(本小题满分12分)(Ⅰ)解:因为ABCDEF 是边长为1的正六边形,O 为其中心,且,M N 分别是,BC DE 的中点,所以 3OM ON ==,120MON ︒∠=, 【 2分】 所以 3cos1208OM ON OM ON ︒⋅==-. 【 4分】 (Ⅱ)解:因为ABCDEF 是边长为1的正六边形,O 为其中心,BM DN =,所以 △DON ≌△BOM . 【 6分】 所以 OM ON =,且DON BOM ∠=∠,即 OM ON =,且120MON ︒∠=. 【 8分】所以 21cos1202OM ON OM ON ON ︒⋅==-. 【10分】 当点N 重合于点D 或E 时,ON 取得最大值1,OM ON ⋅取得最小值12-;【11分】当点N 是DE 的中点时,ON 取得最小值OM ON ⋅取得最大值38-.【12分】一、填空题:本大题共5小题,每小题4分,共20分.1.{|01}x x <<;2.c b a <<;3. 1;4. [1,)+∞;5.②. 二、解答题:本大题共3小题,共30分.6.(本小题满分10分)(Ⅰ)证明:由已知,函数()f x 的定义域为{0}D x x =∈≠R . 【 1分】设x D ∈,则x D -∈,22()11()()x x f x f x x x----==-=--. 【 3分】所以函数()f x 为奇函数. 【 4分】 (Ⅱ)证明:设12,x x 是(0,)+∞上的两个任意实数,且12x x <,则210x x x ∆=->.2221212111()()x x y f x f x x x --∆=-=-【 6分】 22122121121212(1)(1)()(1)x x x x x x x x x x x x ----+==. 【 8分】 因为 120x x <<, 所以 120x x >,210x x ->,1210x x +>,所以 0y ∆>, 【 9分】 所以 ()f x 在(0,)+∞上是增函数. 【10分】7.(本小题满分10分)(Ⅰ)解:函数()log (2)1a f x x =+-的定义域是(2,)-+∞. 【 1分】因为 1a >,所以 ()log (2)1a f x x =+-是[0,1]上的增函数. 【 2分】 所以 ()f x 在[0,1]上的最大值是(1)log 31a f =-;最小值是(0)log 21a f =-. 【 4分】 依题意,得 log 31(log 21)a a -=--, 【 5分】 解得a =【 6分】(Ⅱ)解:由(Ⅰ)知,()log (2)1a f x x =+-是(2,)-+∞上的增函数. 【 7分】在()f x 的解析式中,令0x =,得(0)log 21a f =-, 所以,()f x 的图象与y 轴交于点(0,log 21)a -. 【 8分】依题意,得(0)log 210a f =-≤, 【 9分】 解得 2a ≥. 【10分】8.(本小题满分10分) (Ⅰ)解:原不等式可化为22230x x x ≥⎧⎨--<⎩,,(1) 或22230.x x x <⎧⎨-+>⎩,(2) 【 1分】解不等式组(1),得 23x ≤<;解不等式组(2),得2x <. 【 3分】 所以原不等式的解集为{|3}x x <. 【 4分】(Ⅱ)解:222,2,()|2|2, 2.x x x f x x x x x x ⎧-≥⎪=-=⎨-+<⎪⎩ 【 5分】① 当01a <<时,()f x 是[0,]a 上的增函数,此时()f x 在[0,]a 上的最大值是2()2f a a a =-+. 【 6分】 ② 当12a ≤≤时,()f x 在[0,1]上是增函数,在[1,]a 上是减函数,此时()f x 在[0,]a 上的最大值是(1)1f =. 【 7分】③ 当2a >时,令()(1)(2)10f a f a a -=-->,解得1a >. 所以,当21a <≤此时()(1)f a f ≤,()f x 在[0,]a 上的最大值是(1)1f =;当1a >此时()(1)f a f >,()f x 在[0,]a 上的最大值是2()2f a a a =-.【 9分】 记()f x 在区间[0,]a 上的最大值为()g a ,所以222,01,()1,112,1a a a g a a a a a ⎧-+<<⎪⎪=≤≤+⎨⎪->+⎪⎩ 【10分】。