分类资料的假设检验
- 格式:pptx
- 大小:348.24 KB
- 文档页数:40
常用的假设检验方法
常用的假设检验方法包括:1. 单样本t检验:用于比较一个样本的均值是否与已知的总体均值有显著差异。
2. 双样本t检验:用于比较两个独立样本的均值是否有显著差异。
3. 配对样本t检验:用于比较两个相关样本的均值是否有显著差异。
4. 卡方检验:用于比较观察频数与期望频数之间的差异,适用于分类数据。
5. 方差分析(ANOVA):用于比较多个样本的均值是否有显著差异。
6. Wilcoxon符号秩检验:用于比较两个相关样本的中位数是否有显著差异。
7. Mann-Whitney U检验:用于比较两个独立样本的中位数是否有显著差异。
8. Kruskal-Wallis H检验:用于比较多个独立样本的中位数是否有显著差异。
9. McNemar检验:用于比较两个相关样本的比例是否有显著差异,适用于二项分布数据。
10. Fisher精确检验:用于比较两个独立样本的比例是否有显著差异,适用于二项分布数据。
以上是常用的假设检验方法,根据不同的情况和数据类型选择不同的方法进行统计分析。
常见的假设检验方法嘿,咱今儿就来说说常见的假设检验方法!这可真是个有意思的事儿呢!你想想啊,生活中咱经常会碰到各种各样需要判断的情况。
就好比说,你觉得今天会不会下雨,这其实就是一种假设呀!那怎么去检验这个假设对不对呢?常见的假设检验方法里有个叫 Z 检验的。
这就好像是个厉害的侦探,能通过一些数据线索来判断假设是不是成立。
比如说,咱要检验一批产品是不是合格,Z 检验就能派上大用场啦!它能通过对样本数据的分析,告诉咱这批产品大体上是个啥情况。
还有 T 检验呢!它就像是个精细的工匠,专门处理一些比较“小气”的数据。
比如样本量没那么大的时候,T 检验就能发挥它的作用啦!它能在有限的数据里找出真相来。
那这两种方法怎么用呢?就好比你要去开一把锁,Z 检验和 T 检验就是不同的钥匙。
你得根据锁的情况,也就是数据的特点,来选择合适的钥匙呀!不然你拿着 T 检验这把钥匙去开 Z 检验能开的锁,那可不得折腾半天也打不开呀!咱再说说卡方检验。
这个呀,就像是个分类专家!它能把一堆杂乱的数据按照不同的类别整理得清清楚楚。
比如说,你想知道不同性别对某个事物的看法是不是有差异,卡方检验就能帮你搞明白。
假设检验方法可真是神奇啊!它们就像我们的秘密武器,能让我们在面对一堆数据和假设的时候不再迷茫。
你说要是没有这些方法,我们该多抓瞎呀!比如说,一个公司要推出新产品,要是没有这些假设检验方法,怎么知道这个新产品会不会受欢迎呢?那不就跟闭着眼睛走路一样,容易摔跟头嘛!这些方法还能帮我们在科学研究里找到真理呢!科学家们通过假设检验,不断地验证自己的理论,推动着知识的进步。
所以啊,常见的假设检验方法可真是太重要啦!咱可得好好学一学,用一用,让它们为我们的生活和工作服务呀!别小看了这些方法,它们能发挥的作用可大着呢!你还在等什么呢?赶紧去研究研究吧!。
常⽤的假设检验⽅法(U检验、T检验、卡⽅检验、F检验)⼀、假设检验假设检验是根据⼀定的假设条件,由样本推断总体的⼀种⽅法。
假设检验的基本思想是⼩概率反证法思想,⼩概率思想认为⼩概率事件在⼀次试验中基本上不可能发⽣,在这个⽅法下,我们⾸先对总体作出⼀个假设,这个假设⼤概率会成⽴,如果在⼀次试验中,试验结果和原假设相背离,也就是⼩概率事件竟然发⽣了,那我们就有理由怀疑原假设的真实性,从⽽拒绝这⼀假设。
⼆、假设检验的四种⽅法1、有关平均值参数u的假设检验根据是否已知⽅差,分为两类检验:U检验和T检验。
如果已知⽅差,则使⽤U检验,如果⽅差未知则采取T检验。
2、有关参数⽅差σ2的假设检验F检验是对两个正态分布的⽅差齐性检验,简单来说,就是检验两个分布的⽅差是否相等3、检验两个或多个变量之间是否关联卡⽅检验属于⾮参数检验,主要是⽐较两个及两个以上样本率(构成⽐)以及两个分类变量的关联性分析。
根本思想在于⽐较理论频数和实际频数的吻合程度或者拟合优度问题。
三、U检验(Z检验)U检验⼜称Z检验。
Z检验是⼀般⽤于⼤样本(即⼤于30)平均值差异性检验的⽅法(总体的⽅差已知)。
它是⽤标准的理论来推断差异发⽣的概率,从⽽⽐较两个的差异是否显著。
Z检验步骤:第⼀步:建⽴虚⽆假设 H0:µ1 = µ2 ,即先假定两个平均数之间没有显著差异,第⼆步:计算Z值,对于不同类型的问题选⽤不同的计算⽅法,1、如果检验⼀个样本平均数(X)与⼀个已知的总体平均数(µ0)的差异是否显著。
其Z值计算公式为:其中:X是检验样本的均值;µ0是已知总体的平均数;S是总体的标准差;n是样本容量。
2、如果检验来⾃两个的两组样本平均数的差异性,从⽽判断它们各⾃代表的总体的差异是否显著。
其Z值计算公式为:第三步:⽐较计算所得Z值与理论Z值,推断发⽣的概率,依据Z值与差异显著性关系表作出判断。
如下表所⽰:第四步:根据是以上分析,结合具体情况,作出结论。
假设检验(二)——非参数检验假设检验的统计方法,从其统计假设的角度可分为两类:参数检验与非参数检验。
上一节我们所介绍的Z 检验、t 检验,都是参数检验。
它们的共同特点是总体分布正态,并满足某些总体参数的假定条件。
参数检验就是要通过样本统计量去推断或估计总体参数。
然而,在实践中我们常常会遇到一些问题的总体分布并不明确,或者总体参数的假设条件不成立,不能使用参数检验。
这一类问题的检验应该采用统计学中的另一类方法,即非参数检验。
非参数检验是通过检验总体分布情况来实现对总体参数的推断。
非参数检验法与参数检验法相比,特点可以归纳如下:(1)非参数检验一般不需要严格的前提假设;(2)非参数检验特别适用于顺序资料;(3)非参数检验很适用于小样本,并且计算简单;(4)非参数检验法最大的不足是没能充分利用数据资料的全部信息;(5 )非参数检验法目前还不能用于处理因素间的交互作用。
非参数检验的方法很多,分别适用于各种特点的资料。
本节将介绍几种常用的非参数检验方法。
一.2检验2检验主要用于对按属性分类的计数资料的分析,对于数据资料本身的分布形态不作任何假设,所以从一定的意义上来讲,它是一种检验计数数据分布状态的最常用的非参数检验方法。
22检验的方法主要包括适合性检验和独立性检验。
(一)2检验概述2是实得数据与理论数据偏离程度的指标。
其基本公式为:2 ( f0 f e)(公式11—9)fe式中,f0 为实际观察次数,f e 为理论次数。
分析公式可知,把实际观测次数和依据某种假设所期望的次数(或理论次数)的差数平方,除以理论次数,求出比值,再将n 个比值相加,其和就是2。
观察公式可发现,如果实际观察次数与理论次数的差异越小, 2值也就越小。
当 f 0 与 f e 完全相同时,2值为零。
际次数与理论次数之差的大小而变化利用2值去检验实际观察次数与理论次数的差异是否显著的方法称为2检验有两个主要的作第一,可以用来检验各种实际次数与理论次数是否吻合的这类问题统称为适合性检验; 第二, 判断计数的两组或多组资料是否相互关联还是相互独立的问 题,这类问题统称为独立性检验。
第六章 分类资料的假设检验题库一、选择题1.2χ分布的形状( )。
A. 同正态分布B. 同t 分布C.为对称分布D. 与自由度ν有关E. 与样本含量n 有关 2.四格表的自由度( )。
A. 不一定等于1B. 一定等于1C. 等于行数×列数D. 等于样本含量-1E. 等于格子数-13.5个样本率作比较,24,01.02χχ>,则在α=0.05的检验水准下,可认为( )。
A. 各总体率不全相等 B. 各总体率均不等 C. 各样本率均不等 D. 各样本率不全相等 E. 至少有两个总体率相等4.测得某地6094人的两种血型系统,结果如下。
欲研究两种血型系统之间是否有联系,应选择的统计分析方法是( )。
某地6094人的ABO 与MN 血型ABO 血型MN 血型M N MN O431 490 902 A 388 410 800 B 495 587 950 AB137 17932A.秩和检验B.2χ检验C.Ridit 检验D.相关分析E.Kappa 检验 5.假定两种方法检测结果的假阳性率和假阴性率均很低。
现有50份血样用甲法检查阳性25份,用乙法检查阳性35份,两法同为阳性和阴性的分别为23份和13份。
欲比较两种方法检测结果的差别有无统计学意义,应选用( )。
A. u 检验B. t 检验C. 配对t 检验D. 配对四格表资料的2χ检验 E. 四格表资料的2χ检验6.某医师欲比较两种疗法治疗2型糖尿病的有效率有无差别,每组各观察了30例,应选用( )。
A.两样本率比较的u 检验B.两样本均数比较的u 检验C. 四格表资料的2χ检验 D. 配对四格表资料的2χ检验 E. 四格表资料2χ检验的校正公式7.用大剂量Vit.E 治疗产后缺乳,以安慰剂对照,观察结果如下:Vit.E 组,有效12例,无效6例;安慰剂组有效3例,无效9例。
分析该资料,应选用( )。
A. t 检验 B.2χ检验 C.F 检验 D.Fisher 精确概率法 E. 四格表资料的2χ检验校正公式8.欲比较胞磷胆碱与神经节苷酯治疗脑血管疾病的疗效,将78例脑血管疾病患者随机分为2组,结果如下。