第4章-光电探测原理及器件
- 格式:ppt
- 大小:3.54 MB
- 文档页数:165
光电探测器原理及应用
光电探测器是一种能够将光信号转化为电信号的装置,其基本原理是利用光的能量激发材料中的电子从而产生电流。
根据光电效应的不同机制,光电探测器通常可以分为光电二极管、光电导、光电二极管阵列等多种类型。
光电二极管是最基本的光电探测器之一,其工作原理是光照射到光敏材料表面时,材料中的电子会被光激活并跃迁至导带中,从而形成电流。
光电二极管具有响应速度快、灵敏度高等特点,广泛应用于光通信、光谱分析、光电测量等领域。
光电导是一种利用光照射后材料电阻发生变化的光电探测器,其工作原理是光激发后,光电导材料中的载流子浓度发生改变,从而引起电阻的变化。
光电导具有较高的灵敏度和较宽的光谱响应范围,可广泛应用于光谱分析、光学测量、遥感等领域。
光电二极管阵列是由多个光电二极管组成的阵列结构,可以同时检测多个光信号,具有高灵敏度和高分辨率的特点。
光电二极管阵列常被用于光通信、图像传感、光谱分析等领域,如CCD(电荷耦合器件)摄像头就是经典的光电二极管阵列应
用之一。
此外,光电探测器还广泛应用于激光测距仪、扫描仪、光电子显像、医学诊断、环境监测等领域。
例如,激光测距仪利用光电探测器检测激光脉冲的发射和接收时间差,实现对目标距离的测量;扫描仪利用光电探测器对扫描光线的反射或透射光进行检测,实现图像的数字化处理和存储。
总之,光电探测器通过将光信号转化为电信号,实现了光能量的检测和测量。
其应用领域广泛,并在科学研究、工业生产、医疗诊断等领域发挥着重要的作用。
光电检测器的工作原理
光电检测器是一种利用光电效应原理来检测光信号的装置。
它由光电发射器和光电接收器两部分组成。
光电发射器是一个发射光源,常见的有发光二极管(LED)或激光器。
当电流通过发光二极管时,其内部的半导体材料会发出特定波长的光。
光电接收器是一个接收光信号并产生电信号的元件,常见的有光敏二极管(LDR)或光电二极管(photodiode)。
光敏二极管或光电二极管的外围电路会对接收到的光信号进行放大和处理。
光电检测器的工作原理是当光电发射器发出的光照射到光电接收器上时,光能被光电接收器吸收并转化为电能。
这个转化过程是通过光电效应实现的。
光电效应的基本原理是当光束照射到半导体材料上时,光子会激发半导体材料中的电子跃迁到导带上,形成电子空穴对。
而这些电子空穴对可以导致半导体中的电流流动。
当光电接收器中的光电二极管或光敏二极管吸收到光子后,其内部会产生电流。
这个电流大小与光强度成正比。
通过对光电接收器产生的电流进行测量,我们可以间接地获得光的强度或光的存在与否。
光电检测器广泛应用于多个领域,如光通信、光电传感、光电测量等。
在各个领域中,光电检测器都起到了至关重要的作用。
什么是光的光电探测器和光电导?光的光电探测器和光电导是光电传感器的重要类型,用于检测和测量光信号。
本文将详细介绍光的光电探测器和光电导的原理、结构和应用。
1. 光电探测器(Photodetector)的原理和结构:光电探测器是一种能够将光信号转换为电信号的器件。
它基于光子的能量被半导体材料吸收,激发带载流子,从而形成电流的原理。
最常见的光电探测器类型是光电二极管(Photodiode)和光电倍增管(Photomultiplier Tube),前文已经详细介绍过。
除了这两种常见类型,还有其他一些光电探测器,如光电晶体管、光电场效应晶体管和光电导等。
光电探测器的结构和工作原理与具体的类型有关。
总体而言,光电探测器通常包括光敏元件、电极、引线和封装等部分。
光敏元件是用于吸收光信号并产生电荷载流子的材料,电极用于收集和测量电流,引线用于连接光电探测器与外部电路,封装则是保护和固定光电探测器的外壳。
2. 光电探测器的应用:光电探测器在许多领域有着广泛的应用,包括但不限于以下几个方面:-光通信:光电探测器用于接收光信号,将光信号转换为电信号,并通过电路进行处理和解码,实现光通信的接收端。
-光测量:光电探测器可以用于测量光的强度、波长、频率和相位等参数,用于光谱分析、光度计和光谱仪等。
-光电检测:光电探测器可以用于检测物体的存在、位置和运动等,用于光电开关、光电传感和光电探测等应用。
-光电能转换:光电探测器可以将光能转化为电能,用于太阳能电池板和光伏发电系统等。
3. 光电导(Photoconductor)的原理和结构:光电导是一种能够根据光信号的强度来改变电导率的材料。
光电导的原理是光照射到材料上时,光子的能量被吸收,激发带载流子,从而改变材料的导电性能。
光电导材料通常是半导体材料,如硒化铟(Indium Selenide)、硒化镉(Cadmium Selenide)和硒化铅(Lead Selenide)等。
半导体光电探测器之阳早格格创做纲要:本文介绍了光电与系统的组成、一些半导体光电探测器的处事本理及其个性,末尾叙述了光电导探测器与光伏探测器的辨别.闭键词汇:半导体光电探测器,光电系统,光电导探测器,光伏探测器弁止光电探测器是一种受光器件,具备光电变更功能.光敏器件的种类繁琐,有光敏电阻、光电二极管、光电三极管、光晶闸管、集成光敏器件等;有雪崩型的及非雪崩型的;有PN 结型、PIN结型及同量结型的等.由于光电探测器的赞同速度快,体积小,暗电流小,使之正在光纤通讯系统、光纤尝试系统、光纤传感器、光断绝器、彩电光纤传输、电视图象传输、赶快光源的光探测器、微小光旗号的探测、激光测距仪的接支器件、下压电路中的光电丈量及光电互感器、估计机数据传输、光电自动统造及光丈量等圆里得到了广大应用.半导体光电探测器是用半导体资料创造的能接支战探测光辐射的器件.光映照到器件的光敏区时,它便能将光旗号转形成电旗号,是一种光电变更功能的测光元件.它正在国防战工农业死产中有着要害战广大的应用.半导体光电探测器可分为光电导型战光伏型二种.光电导型是指百般半导体光电导管,即光敏电阻;光伏型包罗光电池、P-N结光电二极管、PIN光电二级管、雪崩光电二极管、光电三级管等.本文最先介绍了光电系统的组成,而后分别介绍其处事本理及其个性,末尾将那二类探测器举止比较.一、光电子系统的组成系统又称为收射天线,果为光波是一种电磁波,收射光教系统所起的效率战无线电收射天线所起的效率真足相共.收支进去的光旗号通过传输介量,如大气等,到达接支端.由接支光教系统或者接支天线将光散焦到光电探测器上,光电过少距离传输后会衰减,使接支到的旗号普遍很强,果此需要用前置搁大器将其搁大,而后举止解码,还本成收支端本初的待传递旗号,末尾由末端隐现器隐现出去.图1-1光电子系统图二、半导体探测器的本理1、光电导探测器光电导探测器主假如通过电阳值的变更去检测,以下尔将以光敏电阻为例介绍其处事本理.光敏电阻又称光导管, 它不极性, 杂粹是一个电阻器件, 使用时既可加曲流电压, 也不妨加接流电压.无光照时, 光敏电阻值(暗电阻)很大, 电路中电流(暗电流)很小. 当光敏电阻受到一定波少范畴的光照时, 它的阻值(明电阻)慢遽缩小, 电路中电流赶快删大. 普遍期视暗电阻越大越佳, 明电阻越小越佳,此时光敏电阻的敏捷度下. 本量光敏电阻的暗电阻值普遍正在兆欧级, 明电阻正在几千欧以下.它的处事本理图如2-1图当不光照时,Rd=10断路当有光照时,Rd= 导通2、光伏探测器光伏探测器鉴于光照爆收电势好,用测电势好的本理.它分为光电池与光电二极管二种典型,光电池主假如把光能变更为电能的器件,暂时有硒光电池、硅光电池、砷化镓及锗光电池等,但是暂时使用最广的是硅光电池.光电二级管分为P-N结光电二极管、PIN光电二级管、雪崩光电二极管、光电三级管等.以下尔将分别介绍其处事本理及其个性. 1)P-N结光电二级管2)PIN光电二级管PIN光电二极管又称赶快光电二极管,与普遍的光电二极管相比,它具备不的时间常量,并使光谱赞同范转背少波目标移动,其峰值波少可移至1.04~1.06um而与YAG激光器的收射波少相对于应.它具备敏捷度下的便宜,所以通时常使用于强光检测(线性).它的结构图如2-3所示,它是由P型半导体战N型半导体之间夹了一层本征半导体形成的.果为本征半导体近似于介量,那便相称于删大了P-N结结电容二个电极之间的距离,使结电容变得很小.其次,P型半导体战N型半导体中耗尽层的宽度是随反背电压减少而加宽的,随着反偏偏压的删大,结电容也要变得很小.由于I层的存留,而P区普遍干得很薄,进射光子只可正在I层内被吸支,而反背偏偏压主要集结正在I区,产死下电场区,I区的光死载流子正在强电场效率下加速疏通,所以载流子渡越时间常量()减小,进而革新了光电二极管的频次赞同.共时I层的引进加大了耗尽区,展宽了光电变更的灵验处事地区,进而使敏捷度得以普及.3)雪崩光电二级管雪崩光电二级管(APD)是得用光死载流子正在下电场区内的雪崩效力而赢得光电流删益,具备敏捷度下、赞同快等便宜,通时常使用于激光测距、激光雷达、强光检测(非线性).APD雪崩倍删的历程是:当光电二极管的p-n结加相称大的反背偏偏压时,正在耗尽层内将爆收一个很下的电场,它脚以使正在强电场区漂移的光死载流子赢得充分的动能,通过与晶格本子碰碰将爆收新的电子-空穴对于.新的电子-空穴对于正在强电场效率下,分别背好同的目标疏通,正在疏通历程中又大概与本子碰碰再一次爆收新的电子-空穴对于.如许反复,产死雪崩式的载流子倍减少.那个历程便是APD的处事前提.APD普遍正在略矮于反背北脱电压值的反偏偏压下处事.正在无光照时,p-n结不会爆收雪崩倍删效力.但是结区一朝有光映照,激励出的光死载流子便被临界强电场加速而引导雪崩倍删.若反背偏偏压大于反背打脱电压时,光电流的删益可达(十的六次圆)即爆收“自持雪崩倍删”.由于那时出现的集粒噪声可删大到搁大器的噪声火仄,以以致器件无法使用.4)光电三级管光电三级管与光电二极管比较,光电三级管输出电流较大,普遍正在毫安级,但是光照个性较好,多用于央供输出电流较大的场合.光电三极管有pnp战npn型二种结构,时常使用资料有硅战锗.比圆用硅资料创造的npn型结有3DU型,pnp型有3CU型.采与硅npn型光电三极管,其暗电流比锗光电三极管小,且受温度变更效率小,所以得到位广大应用.底下以3DU型光电三极管为例证明它的结构、处事本理与主要个性.3DU型光电三极管是以p型硅为基极的三极管,如图2-4(a)所示.由图可知,3DU管的结媾战一般晶体管类似,不过正在资料的掺杂情况、结里积的大小战基极引线的树立上战一般晶体管分歧.果为光电三极管要赞同光辐射,受光里即集电结(bc结)里积比普遍晶体管大.其余,它是利用光统造集电极电流的,所以正在基极上既可树立引线举止电统造,也不妨不设,真足共光一统造.它的处事本理是处事时各电极所加的电压与一般晶体管相共,即要包管集电结反偏偏置,收射正偏偏听偏偏置.由于集电结是反偏偏压,正在结区有很强的内修电场,对于3DU管去道,内修电场目标是由c到b的.战光电二极管处事本理相共,如果有光照到集电结上,激励电子-空穴对于,接着那些载流子被内修电场分散,电子流背集电极,空穴流背基极,相称于中界背基极注进一个统造电流Ib=Ip.果为收射打队结是正偏偏置的,空穴则留正在基区,使基极电位降下,收射极便有洪量电子经基极流背集电极,总的集电极电流为Ic=Ip+βIp=(1+β)Ip,式中β为电流删益系数.由此可睹,光电三极管的集电结是光电变更部分.共时集电极、基极、收射极形成一个有搁大效率的晶体管.所以正在本理上不妨把它瞅万里一个由光电二极管与一般晶体管分散而成的拉拢件,如图2-4(b)所示.光电三级管另一个个性是它的明暗电流比要比光电二极管、光电池、光电导探测器大,所以光电三极管是用去做光启闭的理念元件.3.光电导探测器与电伏探测器的辨别1)光电导探测器是均值的,而光伏探测器是结型的.2)光。
光电探测器工作原理与性能分析光电探测器是一种能够将光电信号转换为电信号的器件,广泛应用于光电通讯、光学测量、光学成像等领域。
在本文中,将对光电探测器的工作原理与性能进行分析。
一、光电探测器的工作原理光电探测器工作的基本原理是利用光电效应将光能转换为电子能,再经过电子放大及处理,将光信号转换为电信号输出。
光电探测器主要包括光敏元件、前置放大电路、信号处理电路等部分。
常见的光敏元件主要包括光电二极管、光电倍增管、光电导、光电导二极管、PIN光电二极管等。
其中,光电二极管是最常用的一种,它基于外光在PN结上产生电压的原理,将光能转换为电能。
PIN光电二极管又是一种与之类似的器件,但它的灵敏度更高,特别适用于高速、低噪音、低光水平的应用。
前置放大电路则是提高探测器灵敏度的重要部分。
它通常包括高阻抗输入级、宽带放大电路、低噪声电路等。
这些器件通常采用集成电路技术实现,具有高增益、高带宽、低噪声等优点。
信号处理电路主要包括滤波电路、放大电路、比较器、微处理器等部分。
滤波电路可以去除噪声干扰,放大电路可以放大信号的幅度,比较器可以将信号转换为数字信号,微处理器则可以对数字信号进行处理及控制。
二、光电探测器的性能分析光电探测器的性能参数包括灵敏度、响应时间、线性度、噪声等。
下面将对这些性能进行分析。
1. 灵敏度灵敏度是指探测器对光的灵敏程度,它通常通过量子效率来评估。
量子效率是指进入探测器的光子转化为电的比例。
由于光电探测器的灵敏度会受到光强度、工作温度、探测器结构等多种因素的影响,因此在实际应用中需要合理设计光路及保持探测器稳定性。
2. 响应时间响应时间是指光电探测器从接收光信号到输出电信号的时间。
响应时间由前置放大电路和光敏元件上升时间之和决定,因此我们可以通过优化这些器件来提高响应时间。
在高速应用中,响应时间非常关键,因此需要选用响应时间较短的光学元件及前置放大电路。
3. 线性度线性度是指光电探测器输出与输入之间的线性关系。
光电探测器功能及应用表征光电探测器性能参数主要有:量子效率、响应度、频率响应、噪声和探测度等。
其中量子效率和响应度表征了光电探测器将入射光转换成光电流本领的大小,频率响应表征了光电探测器工作速度的快慢,噪声和探测度表征了光电探测器所能探测到最小的入射光能量。
一、有关响应方面的性能参数1. 响应率(Responsivity)RV或RI表征探测器将入射光信号转换成电信号的能力电流的响应率RI:探测器将入射光信号转换成电流信号Ie的能力。
电压响应率RV:探测器将入射光信号转换成电压信号Ve的能力。
2.单色灵敏度Rλ --- 波长为l的单色辐射源单色灵敏度:输出的光电流iλ与波长为λ的入射到探测器的单色辐射光通量Pλ(或照度)之比3.积分灵敏度--- 复色辐射源表示探测器对连续入射光辐射的反应灵敏程度4. 响应时间描述光电器件对入射辐射响应快慢的参数5. 频率响应度二、有关噪声方面的参数1、信噪比信噪比是判定噪声大小通常使用的参数。
它是在负载电阻RL上产生的信号功率与噪声功率之比,(S――Signal N――Noise)2. 噪声等效功率(NEP)3. 探测率与比探测率三、其它参数1. 量子效率描述光电转换器件光电转换能力的一个重要参数2.线性度线性度是描述光电探测器输出信号与输入信号保持线性关系的程度。
工作参数为了提高传输效率并且无畸变地变换光电信号,就要使相互连接的各器件都处于最佳的工作状态,所以光电探测器要与被测信号、光学系统以及后续的电子线路在特性和工作参数上相匹配。
1、灵敏度(或称响应度)灵敏度RV (或RI )的定义为:探测器输出电压VS(或输出电流IS)与输入光功率P之比。
由于灵敏度与入射光波长关系密切。
入射波长不同,探测器的灵敏度也不同,所以一般还须给出灵敏度的光谱响应特性。
在光谱响应特性曲线中,探测器的光谱响应范围是峰值灵敏度下降一半时的波长范围。
但对具体器件的光谱响应范围的定义可能不同,例如对光电倍增管的定义为下降到峰值灵敏度的1% 或0.1%的波长范围。
《光电探测技术》课程标准课程代码:学时:36 学分:2一、课程的地位与任务《光电探测技术》课程是光电制造与应用技术专业(五年一贯制)开设的一门2学分的专业拓展课程,针对光机电一体化设备中涉及的光检测和控制技术,讲述光的度量、光电检测器件工作原理及特性、光电导探测器、结型光电探测器、光电成像器件、光纤传感检测、光电信号检测电路。
通过本课程的学习,使学生掌握光机电一体化设备的测量与自动化技术及其应用等知识,开拓学生思维。
二、课程的主要内容和学时分配1.课程的主要内容光的度量、光电检测器件工作原理及特性、光电导探测器、结型光电探测器、光电成像器件、光纤传感检测、光电信号检测电路,基本光电元器件检测、识别、焊接、装配。
第1章光的度量1.1辐射度量1.2光度的基本物理量1.3光度量基本定律1.4照度计与亮度计第2章光电检测器件工作原理及特性2.1光电检测器件的物理基础2.2光电检测器件的特性参数2.3光电导探测器及应用3.1光电导探测器的工作原理3.2光敏电阻的结构及分类3.3光敏电阻的特性3.4光敏电阻的应用习题3.5结型光电探测器及应用1.1结型半导体光伏效应1.2光电池1.3光电二极管1.4光电三极管1.5光电开关与光电耦合器1.6光电位置探测器第5章光电成像器件及应用5.1ccd图像传感器5.2CmOS图像传感器第6章光纤传感检测技术及应用6.1光纤传感器的基础6.2光纤的光波调制技术6.3光纤传感器实例第7章光电信号检测电路6.1光电检测电路的设计要求6.2光电信号输入电路的静态计算6.3光电信号检测电路的动态计算6.4前置放大器7.5滤波器7.6光电信号主放大器8.学时分配1.本课程注重学生对光电检测器件的应用能力培养;2.采取理论教学和实验相结合的方式以增强课程学习的理实性;四、课程的实践环节安排实验一光敏电阻的应用实验二光电二极管的应用实验三光电位置探测器的应用实验四光纤传感器的应用实验五光电检测电路的单元电路设计五、推荐教材和主要参考书《光电探测技术与应用》作者:黄焰、肖彬、孙冬丽,华中科技大学出版社,出版时间:2016年六、考核方式及标准平时考核成绩占60%(出勤+作业+其它),期末考试(开卷)占40%。