光电子器件_第二章结型光电探测器
- 格式:ppt
- 大小:1.75 MB
- 文档页数:60
光电探测器的发展现状及分析摘要概述了光电探测器的分类和基本原理,并从材料体系的选择和器件的主要应用等方面阐述了光电探测器国内外研究现状,预测了硅基雪崩光电探测器在军事和激光雷达等方向的应用前景关键词光电探测器分类原理发展现状一光电探测器原理光子型探测器(photon detector)利用外光电效应或内光电效应制成的辐射探测器,也称光电型探测器。
探测器中的电子直接吸收光子的能量,使运动状态发生变化而产生电信号,常用于探测红外辐射和可见光。
用外光电效应制成的光子型探测器是真空电子器件,如光电管、光电倍增管和红外变像管等。
这些器件都包含一个对光子敏感的光电阴极,当光子投射到光电阴极上时,光子可能被光电阴极中的电子吸收,获得足够大能量的电子能逸出光电阴极而成为自由的光电子。
在光电管中,光电子在带正电的阳极的作用下运动,构成光电流。
光电倍增管与光电管的差别在于,在光电倍增管的光电阴极与阳极之间设置了多个电位逐级上升并能产生二次电子的电极(称为打拿极)。
从光电阴极逸出的光电子在打拿极电压的加速下与打拿极碰撞,发生倍增效应,最后形成较大的光电流信号。
因此,光电倍增管具有比光电管高得多的灵敏度。
红外变像管是一种红外-可见图像转换器,它由光电阴极、阳极和一个简单的电子光学系统组成。
光电子在受到阳极加速的同时又受到电子光学系统的聚焦,当它们撞击在与阳极相连的磷光屏上时,便发出绿色的光像信号特点:入射光子和材料中的电子发生各种直接相互作用即光电子效应所用的材料:大多数为半导体。
根据效应发生的部位和性质分为1. 外光电效应:发生在物质表面上的光电转化现象,主要包括光阴极直接向外部发射电子的现象。
典型的例子是物质表面的光电发射。
这种效应多发生于金属和金属物。
2. 内光电效应:指发生在物质内部的光电转化现象,特别是半导体内部载流子发生效应,这种效应多发生于半导体内。
二光电探测器分类2.1 外光电效应探测器外光电效应:当光照射某种物质时,若入射的光子能量足够大,它和物质中的电子相互作用,致使电子逸出物质表面,这就是外光电效应,逸出物质表面的电子叫做光电子2.11 光电管光电管(phototube)基于外光电效应的基本光电转换器件。
光电子器件第一章1、 光电探测器输出信号电压或电流与单位入射光功率之比,即单位入射光功率作用下探测器输出信号电压或电流称为响应率.光谱响应率(R λ):光电器件在单色 (在波长λ附近一个很小的波长范围里) 辐射功率作用下产生的信号电压或信号电流。
——其中Rm 为光谱响应率的最大值R λ(单位:A/W )光谱响应率及量子效率仅由器件的响应特性所决定,而与光源无关。
2. 器件的光谱响应与光源辐射功率谱密度紧密相关,它们之间的匹配系统 α—称为器件与光源的光谱匹配系数,它反映了器件响应的波长范围同光源光谱的吻合程度。
在光源固定的情况下,面积A1是不变的,如果与曲线重合得愈多,面积A2愈大, α愈大,也就是光谱匹配愈好;反之,如果两曲线没有重合之处,α=0,即二者完全失配,则该光电器件对光源辐射没有探测能力。
光谱匹配是选择光电子器件,如像管、光电倍增管、红外成像器件的材料的重要依据。
3.光电探测器输出的电流或电压在其平均值上下无规则的、随机的起伏,称为噪声。
噪声是物理过程所固有的,人为不可能消除。
它的计算是在足够长时间内求其平方平均或均方根。
dP du R s u λλ=dP di R s i λλ=mR R R λλ=)( λR m R 1.24λλη)(λ R λ 12A A =α光电探测器的噪声来源主要有热噪声、散粒噪声、温度噪声、放大器噪声、频率噪声、复合噪声等。
当输出信号电压等于输出噪声电压均方根值时的探测器的入射辐射功率叫做最小可探测辐射功率,也叫做噪声等效功率NEP 。
Pmin 越小,器件的探测能力越强。
对Pmin 取倒数可作为衡量探测器探测能力的参数,称为探测率。
研究指出:探测率与器件的面积和工作带宽成反比。
4.光吸收厚度:设入射光的强度为 I0,入射到样品厚度为x 处的光强度为 I ,则:α为线吸收系数,单位为(1/cm )α大时,光吸收主要发生在材料的表层;α小时,光入射得深。
当厚度d=1/α时,称为吸收厚度,有64%的光被吸收。
光电子学与光子学的原理及应用第二章-课后答案1. 选择题1.1 题目一答案:C解析:光电效应是指物质受到光的照射后,吸收光能,将光能转化为电能的一种现象。
光电效应首先是由爱因斯坦在1905年提出的,他在描述光电效应时,引入了光子概念,假设光是由一组个别粒子组成的(即光量子),这些粒子就是后来被称为光子的电磁辐射量子。
1.2 题目二答案:A解析:光电倍增管是指通过光电效应,在光电面上光电发射物质外壳的钨丝和灯管之间加一个高达2000-3000伏的电压使其产生光电流,再对光电流进行电子倍增,最后输出检测的一种光电探测器。
光电倍增管的结构与普通的电子管相似,但是在各个电极和玻璃壳之间加入了紧密和高度真空的保护,同时在阳极和阳极网之间还添加了一个用直流电压加电的光电体。
当阳极对外加正电压使阳极电流开始增大时,就成为光电倍增管。
1.3 题目三答案:D解析:光电二极管是一种能够将光信号转化为电信号的器件。
光电二极管的基本原理是利用半导体材料的PN结在光照射下产生光电效应,使得PN结两端产生电荷,从而产生电压信号。
光电二极管的结构和普通二极管类似,主要由P型和N型的半导体材料组成,当光照射到光电二极管上时,光子能量被半导体材料所吸收,产生的热力激发电子,从而引起半导体PN结的载流子的复合和流动,产生感光电流。
光电二极管应用广泛,如光通信、光电测量、光谱分析等领域。
1.4 题目四答案:B解析:光导纤维是一种能够传输光信号的特殊纤维材料。
光导纤维的核心部分是由高折射率的材料构成,而外部由低折射率的材料构成。
当光线传输到光导纤维中时,会发生全反射现象,使得光线能够沿着光导纤维进行传输,最终到达目标地点。
光导纤维具有传输距离远、损耗小、带宽大、抗电磁干扰等优点,在通信、医疗、传感等领域得到广泛应用。
2. 填空题2.1 题目一答案:钠解析:钠具有低电离电势,激发电子的能量比较低,是光电电子极容易脱离的材料之一。
2.2 题目二答案:光电效应解析:光电效应是指物质受到光的照射后,吸收光能,将光能转化为电能的一种现象。
第2章结型光电探测器2.1.光伏效应光伏现象一导体材料的“结效瓯如:雪崩二极管ncmla^l (calhcxie)p-la>rer Oration/ / region□contact(anoda)光照下u1.24a(pim)=光照零偏p 〃结产生开路电压的效应光照反偏光电信号是光电流A结型光电探测光电二极管器的工作原理空2. 2. 硅光电池光电池是一种不需加偏蚤电压就能把光能直接转换成电能的PN结光电器件,按光电池的功用可将其分为煎类*即太阳能光电池和测量光电池。
K /太卩聆总光电池主要用作向负载提供电源,对它的要求主要是光电转换效率高、成本低。
由于总具有结构简单、体积小、重量轻、髙可靠性、寿命长、可在空间直接将太阳能转换成电能的特点,因此成为航天工业中的重要电源,而且还被广泛地应用于供电困难的场所和一些日用便携电器中。
测量光电池的主要功能是作为光电探测,即在不加偏置的情况下将光信号转换成电信号,此时对它的要求是线性范围宽、灵敏度高、光谱响应合适、稳定性高、寿命长等。
它常被应用在光度、色度、光学精密计量和测试设备中。
1•用途a.b.作光电探测器使用红外辐射探测器光电读出光电耦合作为电源使用人造卫星野外灯塔微波站§2.2光电池•光电池能直接将光通量转变为电动势,实际为电压源结构和工作原理硼扩冃攵层p 型电极 光电池的结构原理图光光电池有方形圆形三角形环形等P —+ N-+ O——丄p N-------------------------------- ___________________+性1・硅光电池的基本结构和工作原理按硅光电池衬底材料的不同奇分为2DR 型和2CR 型。
如图3・9 (a)所示为2DR 型硅 光电池,它是以P 型硅为衬底(即在本征型硅材料中掺入三价元素硼或镣等),然后在衬底 上扩散磷而形成N 型层并将其作为受光面。
硅光电池的受光面的输出电极多做成如图3・9 (b)所示为硅光电池的外形图,图中所示的 梳齿状或“E”字型电极,其目的是减小硅光电池的内电阻。
《光电⼦器件》笔记光电⼦器件第⼀章1、光电探测器输出信号电压或电流与单位⼊射光功率之⽐,即单位⼊射光功率作⽤下探测器输出信号电压或电流称为响应率.光谱响应率(R λ):光电器件在单⾊ (在波长λ附近⼀个很⼩的波长范围⾥) 辐射功率作⽤下产⽣的信号电压或信号电流。
——其中Rm 为光谱响应率的最⼤值R λ(单位:A/W )光谱响应率及量⼦效率仅由器件的响应特性所决定,⽽与光源⽆关。
2. 器件的光谱响应与光源辐射功率谱密度紧密相关,它们之间的匹配系统α—称为器件与光源的光谱匹配系数,它反映了器件响应的波长范围同光源光谱的吻合程度。
在光源固定的情况下,⾯积A1是不变的,如果与曲线重合得愈多,⾯积A2愈⼤, α愈⼤,也就是光谱匹配愈好;反之,如果两曲线没有重合之处,α=0,即⼆者完全失配,则该光电器件对光源辐射没有探测能⼒。
光谱匹配是选择光电⼦器件,如像管、光电倍增管、红外成像器件的材料的重要依据。
3.光电探测器输出的电流或电压在其平均值上下⽆规则的、随机的起伏,称为噪声。
噪声是物理过程所固有的,⼈为不可能消除。
它的计算是在⾜够长时间内求其平⽅平均或均⽅根。
dP du R s u λλ=dP di R s i λλ=mR R R λλ=)( λR m R 1.24λλη )(λλ12A A =α光电探测器的噪声来源主要有热噪声、散粒噪声、温度噪声、放⼤器噪声、频率噪声、复合噪声等。
当输出信号电压等于输出噪声电压均⽅根值时的探测器的⼊射辐射功率叫做最⼩可探测辐射功率,也叫做噪声等效功率NEP 。
Pmin 越⼩,器件的探测能⼒越强。
对Pmin 取倒数可作为衡量探测器探测能⼒的参数,称为探测率。
研究指出:探测率与器件的⾯积和⼯作带宽成反⽐。
4.光吸收厚度:设⼊射光的强度为 I0,⼊射到样品厚度为x 处的光强度为 I ,则:α为线吸收系数,单位为(1/cm )α⼤时,光吸收主要发⽣在材料的表层;α⼩时,光⼊射得深。
光电探测器原理光电探测器原理及应用光电探测器种类繁多,原则上讲,只要受到光照后其物理性质发生变化的任何材料都可以用来制作光电探测器。
现在广泛使用的光电探测器是利用光电效应工作的,是变光信号为电信号的元件。
光电效应分两类,内光电效应和外光电效应。
他们的区别在于,内光电效应的入射光子并不直接将光电子从光电材料内部轰击出来,而只是将光电材料内部的光电子从低能态激发到高能态。
于是在低能态留下一个空位——空穴,而高能态产生一个自由移动的电子,如图二所示。
硅光电探测器是利用内光电效应的。
由入射光子所激发产生的电子空穴对,称为光生电子空穴对,光生电子空穴对虽然仍在材料内部,但它改变了半导体光电材料的导电性能,如果设法检测出这种性能的改变,就可以探测出光信号的变化。
无论外光电效应或是内光电效应,它们的产生并不取决于入射光强,而取决于入射光波的波长λ或频率ν,这是因为光子能量E只和ν有关:E=hν(1)式中h为普朗克常数,要产生光电效应,每个光子的能量必须足够大,光波波长越短,频率越高,每个光子所具有的能量hν也就越大。
光强只反映了光子数量的多少,并不反映每个光子的能量大小。
目前普遍使用的光电探测器有耗尽层光电二极管和雪崩光电二极管,是由半导体材料制作的。
半导体光电探测器是很好的固体元件,主要有光导型,热电型和P—N结型。
但在许多应用中,特别是在近几年发展的光纤系统中,光导型探测器处理弱信号时噪声性能很差;热电型探测器不能获得很高的灵敏度。
而硅光电探测器在从可见光到近红外光区能有效地满足上述条件,是该波长区理想的光接收器件。
一、耗尽层光电二极管在半导体中,电子并不处于单个的分裂能级中,而是处于能带中,一个能带有许多个能级。
如图三所示。
能带与能带间的能量间隙称为禁带,禁带中没有电子,电子从下往上填,被电子全部填满的能带称为满带,最高的满带称为价带,紧靠在价带上面的能带称为导带,导带只有部分被电子填充,或是全部空着。