动力转向泵工作原理及系统匹配
- 格式:ppt
- 大小:3.37 MB
- 文档页数:69
转向系统概要一、转向系统作用1、按驾驶员的意志改变或保持车辆的行驶方向;2、减缓来自路面的冲击,并保持适当的路感;二、转向系统分类三、转向系统工作原理图示齿轮o动力耗缸动力祐塞储抽確方向盘同抽管轮穀高压管油量调节阀控制阀转向肋力泵曲轴皮带轮拉杆體头[Xzz®齿条G '四、液压助力转向系统构成与功能1 2动力转向泵结构原理一、动力转向泵的作用1、动力转向泵是液压动力转向系统的动力源,它通过发动机作为传动介质,将机械能转换为液压能,转向器通过油泵输出的液压油把液压能转换成机械能,从而起到减轻驾驶员操作强度,提高整车可操纵性的作用;2、通过压力安全阀控制动力转向管路内部压力,确保转向系统安全;3、通过流量控制阀控制转向系统流量,保证车辆高速行驶时驾驶员转向手感二、动力转向泵的分类1、从配车型分,可分为:商用车转向泵和乘用车转向泵。
2、从结构形式分,可分为:叶片式转向泵、齿轮式转向泵、柱塞式转向泵;其中双作用叶片式转向泵因其尺寸小、噪音低、容积效率高等优点在各种车型中被广泛采用。
3、从驱动形式分,可分为:齿轮驱动式转向泵、皮带轮驱动式转向泵、十字滑键(花键)式转向泵;其中皮带轮驱动转向泵主要用于驱动扭矩较小的乘用车,在商用车上齿轮驱动式和十字滑键式较为普遍。
三、动力转向泵的构成目前汽车用转向泵多为双作用叶片式转向泵,其主要由普通双作用叶片泵、流量控制阀和压力安全阀组成;双作用叶片泵提供高压油,流量控制阀保证转向泵输出适合整车需求的流量,压力安全阀控制转向泵的最高输出压力,对于发动机功率较小的汽油机, 还应配备压力开关。
四、动力转向泵爆炸图1.驱动轮2.驱动轴3.卡簧4.油封5. 轴承6.泵 体7.钢球8. 压力开关组件9. O 型密封圈10.压力板11.定子12.叶片13.转子14.螺栓15.泵盖16.密封圈17. 定位销18.保护堵19.螺栓 20.进油管21.O 型密封圈22.阀堵23.弹簧24.滑阀组件 五、泵的工作原理流量控制阀压力安全阀叶片式转向泵如下图所示,驱动轮带动转子旋转后,叶片在离心力的作用下 张开,并与定子、转子、配油盘共同形成工作腔,当转子与叶 片从定子内表面的小圆弧区向大圆弧区转动时,两个叶片之间的容积增大,压力减小,通过配油盘的吸油口吸油;由大圆弧 区转到小圆弧区时,两个叶片之间的容积缩小,压力增加,通 过压力板的排油口排油,排出的高压油通过转向油管进入转向 器,提供转向助力。
助力转向泵工作原理
转向泵是车辆转向系统的核心部件之一,它的工作原理是通过驱动马达将液压能转化为机械能,从而实现车辆的转向。
转向泵内部有一个小齿轮和一个大齿轮,它们通过一根轴连接在一起。
当马达开始工作时,马达的转动会引起小齿轮的运动。
小齿轮与大齿轮之间有一定的齿轮比,当小齿轮转动时,大齿轮也会跟随转动。
大齿轮和小齿轮之间有一个液压腔,这个液压腔中充满了液压油。
当小齿轮与大齿轮之间有空隙时,液压油会进入液压腔中,从而形成一定的压力。
这个压力会驱动液压油流向车辆转向系统的其他部件,如液压缸和转向机构。
当液压油流向转向机构时,转向机构会按照液压油的流动方向进行相应的转动。
如果驾驶员希望将车辆向左转,液压油会流向左转方向的转向机构,从而实现车辆的左转。
反之,如果驾驶员希望将车辆向右转,液压油会流向右转方向的转向机构,从而实现车辆的右转。
需要注意的是,转向泵的工作原理虽然简单,但它需要与其他转向系统的部件密切配合才能正常工作。
只有当转向泵、液压缸和转向机构等部件配合无误时,车辆才能顺利实现转向动作。
总之,转向泵通过将马达的机械能转化为液压能,驱动液压油流向车辆转向系统的其他部件,从而实现车辆的转向动作。
它是车辆转向系统中不可或缺的重要组成部分。
转向系统概要一、转向系统作用1、按驾驶员的意志改变或保持车辆的行驶方向;2、减缓来自路面的冲击,并保持适当的路感;二、转向系统分类三、转向系统工作原理图示四、液压助力转向系统构成与功能一、动力转向泵的作用1、动力转向泵是液压动力转向系统的动力源,它通过发动机作为传动介质,将机械能转换为液压能,转向器通过油泵输出的液压油把液压能转换成机械能,从而起到减轻驾驶员操作强度,提高整车可操纵性的作用;2、通过压力安全阀控制动力转向管路内部压力,确保转向系统安全;3、通过流量控制阀控制转向系统流量,保证车辆高速行驶时驾驶员转向手感二、动力转向泵的分类1、从配车型分,可分为:商用车转向泵和乘用车转向泵。
2、从结构形式分,可分为:叶片式转向泵、齿轮式转向泵、柱塞式转向泵;其中双作用叶片式转向泵因其尺寸小、噪音低、容积效率高等优点在各种车型中被广泛采用。
3、从驱动形式分,可分为:齿轮驱动式转向泵、皮带轮驱动式转向泵、十字滑键(花键)式转向泵;其中皮带轮驱动转向泵主要用于驱动扭矩较小的乘用车,在商用车上齿轮驱动式和十字滑键式较为普遍。
三、动力转向泵的构成目前汽车用转向泵多为双作用叶片式转向泵,其主要由普通双作用叶片泵、流量控制阀和压力安全阀组成;双作用叶片泵提供高压油,流量控制阀保证转向泵输出适合整车需求的流量,压力安全阀控制转向泵的最高输出压力,对于发动机功率较小的汽油机, 还应配备压力开关。
1.驱动轮2.驱动轴3.卡簧4.油封5.轴承6.泵体7.钢球8. 压力开关组件9. O 型密封圈 10.压力板11.定子12.叶片 13.转子 14.螺栓 15.泵盖 16.密封圈 17.定位销 18.保护堵19.螺栓 20.进油管 21.O型密封圈 22.阀堵 23.弹簧 24.滑阀组件五、泵的工作原理如下图所示,驱动轮带动转子旋转后,叶片在离心力的作用下张开,并与定子、转子、配油盘共同形成工作腔,当转子与叶片从定子内表面的小圆弧区向大圆弧区转动时,两个叶片之间的容积增大,压力减小,通过配油盘的吸油口吸油;由大圆弧区转到小圆弧区时,两个叶片之间的容积缩小,压力增加,通过压力板的排油口排油,排出的高压油通过转向油管进入转向器,提供转向助力。
动力转向系统的原理
动力转向系统是将发动机的功率转变为车辆转向力的装置,其原理主要包括以下几个方面:
1. 动力转向系统使用了液压助力装置,通过液压力将发动机功率转变为转向力。
液压助力装置由一个液压泵、液压缸和液压油组成。
当驾驶员转动方向盘时,液压泵被带动并增加液压油的压力,然后将液压油传送到液压缸中,产生转向力。
2. 动力转向系统还包括了转向柱、转向齿轮和转向机构。
当驾驶员转动方向盘时,转向柱传递转动力给转向齿轮,在转向齿轮的作用下,变向力传递给转向机构,从而改变车辆的转向角度。
3. 动力转向系统还使用了传感器和控制单元。
传感器会感知车辆的转向角度、车速和路面情况等信息,并将这些信息传递给控制单元。
控制单元根据接收到的信息,控制液压助力装置的工作状态,调整转向力的大小和方向,以满足驾驶员的转向需求。
总的来说,动力转向系统通过利用液压助力装置将发动机功率转变为车辆转向力,通过转向柱、转向齿轮和转向机构,改变车辆的转向角度。
同时,传感器和控制单元感知并调整液压助力装置的工作状态,以保证驾驶员的转向需求。
动力转向的原理动力转向是一种辅助汽车转向的技术,它利用汽车动力系统的力量来辅助驾驶员转动方向盘,使得转向更加轻松和精确。
动力转向的原理是通过将引擎的动力传递到转向系统,从而增加转向助力,减小驾驶员需要施加的力量。
在动力转向系统中,主要包括液压助力转向和电动助力转向两种形式。
下面将对这两种转向系统的原理进行详细阐述。
液压助力转向系统的原理是利用液压力来辅助转向。
它由液压泵、控制阀、油箱和助力器等组成。
当驾驶员转动方向盘时,液压泵将引擎的动力转化为液压压力,通过控制阀控制液压压力的传递和流向。
液压压力进入助力器,助力器会根据转向的力量和方向来增大或减小液压压力,然后将压力传递给机械转向系统,从而减小驾驶员所需要施加的力量。
电动助力转向系统的原理则是通过电机来辅助转向。
它由电机、电控单元、转向传感器和转向开关等组成。
当驾驶员转动方向盘时,转向传感器会检测到方向盘转动的力度和方向,并将这些信息传递给电控单元。
电控单元会根据转向的力度和方向来控制电机的运转。
电机通过一个齿轮减速器将电能转化为机械能,并将机械能传递到机械转向系统,从而减小驾驶员所需要施加的力量。
动力转向系统的优势主要体现在以下几个方面:首先是转向更加轻松和精确。
动力转向系统能够减小驾驶员所需要施加的转向力量,使得转向更加轻松和灵活。
尤其是在低速行驶和停车时,驾驶员只需轻轻转动方向盘,即可完成转向操作。
其次是提高了驾驶的安全性。
动力转向系统能够使得转向更加稳定和准确,降低了转向时的误差和不稳定性,减小了发生交通事故的概率。
再次是方便了驾驶员的操控。
动力转向系统能够根据驾驶员的指令和行驶情况,自动调节转向助力的大小和方向,使得驾驶员能够更加方便地操控汽车。
例如,在高速行驶时,动力转向系统会减小转向助力,使得方向盘更加稳定和灵敏。
最后是提高了驾驶的舒适性。
动力转向系统能够减小驾驶员所需要施加的力量,使得转向更加轻松和舒适。
尤其是在长时间驾驶时,驾驶员的疲劳程度明显减小。
电动转向油泵总成参数匹配及控制策略研究电动转向油泵总成是现代汽车中的重要组成部分,作为转向助力系统的核心元素,其性能参数的匹配和控制策略的合理设计将直接影响车辆的行驶稳定性、安全性和舒适性。
因此,对电动转向油泵总成参数匹配及控制策略的研究具有重要的理论和实用价值。
电动转向油泵总成的参数主要包括驱动电机功率、转速和扭矩、油泵排量和压力等,这些参数之间的匹配关系对于确保汽车稳定行驶和灵活转向具有至关重要的作用。
首先,在电动转向油泵总成的驱动电机方面,应根据汽车的用途、载荷和行驶环境等因素来确定合适的功率、转速和扭矩;其次,油泵排量和压力的选择应与车辆的制动系统、转向系统和悬挂系统等相互匹配,以实现良好的协同工作效果。
在电动转向油泵总成的控制策略方面,需要考虑到转向助力的需要、驾驶员行为和路面状况等因素,在保证车辆稳定性和安全性的前提下,尽可能提高驾驶员的舒适性。
例如,通过反馈控制技术实现对转向助力的精确控制,进而提高车辆的操控性;通过智能化控制和预测算法,实现对路面状况的感知和预测,从而优化转向助力的输出控制,提升驾驶员的行驶体验。
此外,还可以通过优化驾驶模式的切换策略,使车辆在不同路况和驾驶条件下表现出更合理、更高效的转向助力行为。
总之,电动转向油泵总成参数匹配和控制策略的研究是一个具有挑战性和实用性的课题,其结果将为汽车制造业和相关的技术领域提供重要的理论支撑和实用价值,从而为推动智能汽车和智慧交通的发展贡献力量。
除了以上提到的参数匹配和控制策略外,电动转向油泵总成的设计也是需要注意的要素。
在设计上,应采用轻量化和紧凑化的设计理念,以减少整车重量和占用空间。
同时,在材料和制造工艺上,应采用先进的技术,如3D打印、汽车轻量化材料等,以提高总成的质量和耐用性。
此外,为了满足不同车辆的需求,电动转向油泵总成还需要满足不同的工作模式,如智能驾驶、自动泊车和低速爬坡等。
相应地,控制策略也需要根据不同的工作模式做出相应的调整和优化,以确保总成的稳定性和安全性。
动力转向系的组成及工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII动力转向系的组成及工作原理组成:动力转向系统是在机械式转向系统的基础上加一套动力辅助装置组成的。
转向油泵安装在发动机上,由曲轴通过皮带驱动并向外输出液压油。
转向油罐有进、出油管接头,通过油管分别与转向油泵和转向控制阀联接。
转向控制阀用以改变油路。
机械转向器和缸体形成左右两个工作腔,它们分别通过油道和转向控制阀联接四轮转向系低速行驶时,反向偏转,以降低转弯半径;中速行驶时,同向偏转,以提高转向灵敏度高速行驶时,同向偏转,以提高汽车的行驶稳定性。
转向系的功用与组成功用:改变或恢复汽车行驶方向的专设机构。
组成:转向操纵机构功用:是将驾驶员转动转向盘的操纵力传给转向器。
转向器功用:增大转向盘传到转向节的力,并改变力的传递方向转向传动机构功用:是将转向器输出的力和运动传到转向桥两侧的转向节,使两侧转向轮偏转,且使两转向轮偏转角按一定关系变化,以保证汽车转向时车轮与地面的相对滑动尽可能小⑴齿轮齿条式转向器③特点:结构简单、工作可靠、使用寿命长、不需要调整齿轮齿条的间隙。
⑵循环球式转向器①组成:一般有两级传动副,第一级是螺杆螺母传动副,第二级是齿条齿扇传动副。
②工作过程:转向螺杆转动时,通过钢球将力传给转向螺母,螺母即沿轴向移动。
同时,在螺杆及螺母与钢球间的摩擦力偶作用下,所有钢球便在螺旋管状通道内滚动,形成"球流"。
在转向器工作时,两列钢球只是在各自的封闭流道内循环,不会脱出。
行驶系一、行驶系的功用(1)承受汽车的总质量;(2)把来自于传动系的扭矩转化为地面对车辆的牵引力;(3)承受汽车所受外界力和力矩,保证汽车正常行驶;(4)缓和路面对车身的冲击和振动。
二、行驶系的组成由车架、车桥、车轮和悬架组成。
车架种类:边梁式、中梁式、综合式车架.车桥二、分类(1)根据悬架不同:整体式、断开式;(2)根据车轮作用:转向桥、驱动桥、转向驱动桥、支持桥。
汽车转向泵原理
汽车转向泵是一种用于转向系统的液压泵,其工作原理是利用液体的压力来提供动力,将人的转向力转化为车轮的转向力,实现车辆的转向操作。
汽车转向泵通常由一个叶轮、一个排放孔和一个液体进口组成。
当车辆转向时,驱动发动机带动泵的叶轮旋转,增加液体的压力。
高压液体通过液体进口进入泵内,然后被泵叶轮离心力推送到泵的排放孔。
在液体流动过程中,液体的高压通过液体管路传递到转向机构,进而通过转向机构将液压能转化为机械能,从而实现车轮的转动。
当驾驶员转动方向盘时,转向机构将转动力传递给车轮,实现车辆的转向。
同时,汽车转向泵还通过回路系统将使用过的液体再次回流到液体进口,以保证液体的循环使用。
这样可以提高泵的效率,减少能量浪费,延长泵的使用寿命。
总之,汽车转向泵利用液体的压力来转换驾驶员的转向力,将液压能转化为机械能,实现车辆的转向操作。
这一原理使得驾驶员在转向时能够感受到较小的阻力,提高了驾驶的舒适性和安全性。
动力转向器工作原理动力转向器是一种常见的汽车动力传动系统组件,它起着转向和增加驾驶舒适性的作用。
本文将介绍动力转向器的工作原理,包括其结构组成、工作流程、作用机理以及常见故障及维修方法。
一、动力转向器的结构组成动力转向器通常由液压泵、液压缸、转向阀和流量控制装置等部件组成。
在实际应用中,还可能包括传感器、控制模块等辅助部件。
下面将逐一介绍各部件的作用和结构特点:1.液压泵:液压泵通常由齿轮泵、叶片泵或柱塞泵组成,其作用是将发动机输出的动力转化为液压能量,为液压转向系统提供动力源。
2.液压缸:液压缸是动力转向器中的执行元件,一般是单作用缸或双作用缸。
在转向操作时,液压缸会受控制器发出的指令,通过液压力来实现转向运动。
3.转向阀:转向阀的主要作用是调节液压系统的流量方向和流量大小,使转向操作更加精准和平稳。
通常转向阀会根据传感器的信号,自动调节系统的流量分配和流向,以实现不同工况下的转向要求。
4.流量控制装置:流量控制装置可确保液压系统的流量在一定范围内,使转向操作更加舒适和稳定。
在高速行驶时,流量控制装置可以增大液压流量,提高操控性能;而在低速行驶或停车时,可以减小液压流量,以提供更大的转向力。
5.辅助部件:在一些高级汽车上,动力转向器可能还会配备传感器、控制模块等辅助部件,用于感知车辆运动状态、路面情况和驾驶意图,从而对转向系统进行智能控制。
二、动力转向器的工作流程动力转向器的工作流程主要包括液压泵的工作、液压缸的运动和转向阀的调节,一般可以分为如下几个步骤:1.液压泵工作:当车辆发动机启动后,液压泵开始工作,将发动机输出的动力通过传动装置转化为液压能量,并通过液压管路输送至转向系统中。
2.转向阀调节:转向阀根据传感器的反馈信号,调节液压系统的流量方向和大小。
当驾驶员转动方向盘时,转向阀会接收到相应的信号,并指示液压缸进行转向动作。
转向阀会根据车速、路面情况等因素,自动调整系统的流量分配,确保转向操作的精准和稳定。
简述液压式动力转向系统的组成和工作原理。
液压式动力转向系统由以下组成部分组成:
1. 动力源:通常是由车辆的发动机通过传动装置连接到一台液压泵,用来产生液压压力。
2. 液压泵:将液压油从液压油箱抽取,并提供高压液压油流向转向装置。
3. 转向阀:控制液压油的流向和压力,通过操作员的方向盘输入力来调节转向的角度。
4. 液压缸:将液压油的压力转化为力矩,通过推拉杆或者活塞臂连接到车轮,实现转向。
5. 液压油箱:储存液压油,并通过液压泵供给液压系统。
6. 油管和接头:将液压油连接到液压泵、转向阀和液压缸。
液压式动力转向系统的工作原理如下:
1. 当驾驶员转动方向盘时,转向阀打开/关闭液压油的流向。
2. 液压泵抽取液压油并提供高压液压油流入转向阀。
3. 转向阀根据驾驶员的输入,调节液压油的流量和压力,将液压油引导到液压缸。
4. 液压油通过液压缸,将压力转化为力矩,并通过推拉杆或者活塞臂作用在车轮上,使车辆转向。
5. 当转向动作完成后,液压泵停止工作,转向阀关闭液压油的流向,液压油回流至液压油箱中。
通过液压式动力转向系统,驾驶员可以轻松地控制车辆的转向,减少了驾驶的劳力,并提供了更好的操控性能。