九年级二次函数课堂练习
- 格式:pdf
- 大小:542.61 KB
- 文档页数:19
二次函数考点分类一、典型例题类型一、二次函数的定义1.一个二次函数y=(k-1)x k2−3k+4+2x-1.(1)求k值.(2)求当x=0.5时y的值?2.已知函数y=(m2-m)x2+(m-1)x+2-2m.(1)若这个函数是二次函数,求m的取值范围.(2)若这个函数是一次函数,求m的值.(3)这个函数可能是正比例函数吗?为什么?类型二、二次函数图像的位置关系3.在同一坐标系中,二次函数y=ax2+bx与一次函数y=bx-a的图象可能是()A. B. C. D.4.已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是()A. B. C. D.5. 已知函数y=ax 2+bx+c ,当y >0时,−21<x <31.则函数y=cx 2-bx+a 的图象可能是下图中的( ) A. B. C. D.类型三、二次函数图像与系数的关系6. 二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,下列结论:①abc >0;②b 2-4ac <0;③4a+c >2b ;④(a+c )2>b 2;⑤x (ax+b )≤a-b ,其中正确结论的是( )A .①③④B .②③④C .①③⑤D .③④⑤(6) (7) 7. 如图,已知二次函数y=ax 2+bx+c (a ≠0)的图象与x 轴交于点A (-1,0),与y 轴的交点B 在(0,-2)和(0,-1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc >0;②4a+2b+c >0;③4ac-b 2<-4a ;④31<a <32;⑤b >c .其中正确结论有 (填写所有正确结论的序号). 8. 设二次函数y=ax 2+bx+c (a >0,c >1),当x=c 时,y=0;当0<x <c 时,y >0.请比较ac 和1的大小,并说明理由.类型四、二次函数点的坐标9. 点A (m ,y 1),B (m+4,y 2),C (1,y 3)在二次函数y=ax 2-2ax+4的图象上,且y 1≤y 2≤y 3,则m 的取值范围是 .10. 设实数a 、b 、c 满足222111c b a ++=|a 1+b 1+c1|,则函数y=ax 2+bx+c 的图象一定经过一个定点,那么这 个定点的坐标是 .11. 如图,二次函数y=ax 2+bx 的图象经过点A (2,4)与B (6,0).点C 是该二次函数图象上A ,B 两点之间的一动点,横坐标为x (2<x <6),写出四边形OACB 的面积S 关于点C 的横坐标x 的函数表达式,并求S 的最大值及C 的坐标.类型五、二次函数平移、折叠12. 将抛物线y=x 2-2x+1向下平移2个单位,再向左平移1个单位,所得抛物线的解析式是( )A .y=x 2-2B .y=x 2+2x-1C .y=x 2-2x-1D .y=x 2+213. 在平面直角坐标系中,点P 的坐标为(1,2),将抛物线y=21x 2-3x+2沿坐标轴平移一次,使其经过点P ,则平移的最短距离为( ) A.21 B .1 C .5 D.25 14. 直线y=m 是平行于x 轴的直线,将抛物线y=-21x 2-4x 在直线y=m 上侧的部分沿直线y=m 翻折,翻折后的部分与没有翻折的部分组成新的函数图象,若新的函数图象刚好与直线y=-x 有3个交点,则满足条件的m 的值为 .二、课堂小测1. 若y=(a 2+a )x 2a −2a −1是二次函数,那么( )A .a=-1或a=3B .a ≠-1且a ≠0C .a=-1D .a=32. 二次函数y=x 2的图象平移后经过点(2,0),则下列平移方法正确的是( )A .向左平移2个单位,向下平移2个单位B .向左平移1个单位,向上平移2个单位C .向右平移1个单位,向下平移1个单位D .向右平移2个单位,向上平移1个单位3. 函数y=ax 2与y=ax+a (a <0)在同一平面直角坐标系内图象大致是( )A .B .C .D .4. 函数y=-(x-m )(x-n )(其中m <n )的图象与一次函数y=mx+n 的图象可能是( )A .B .C .D .5. 如图,抛物线y=ax 2+bx+c 的对称轴为x=-1,且过点(21,0),有下列结论: ①abc >0; ②a-2b+4c >0;③25a-10b+4c=0;④3b+2c >0;其中所有正确的结论是( )A .①③B .①③④C .①②③D .①②③④(5) (6)6. 已知二次函数y=ax 2+bx+c 图象的对称轴为x=1,其图象如图所示,现有下列结论:①abc >0,②b-2a <0,③a-b+c >0,④a+b >n (an+b ),(n ≠1),⑤2c <3b .正确的是( )A .①③B .②⑤C .③④D .④⑤7. 已知点A (a-m ,y 1),B (a-n ,y 2),C (a+b ,y 3)都在二次函数y=x 2-2ax+1的图象上,若0<m <b <n ,则y 1、y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 1<y 3<y 2C .y 3<y 1<y 2D .y 2<y 3<y 18. 如图在平面直角坐标系中,一次函数y=mx+n 与x 轴交于点A ,与二次函数交于点B 、点C ,点A 、B 、C 三点的横坐标分别是a 、b 、c ,则下面四个等式中不一定成立的是( )A .a 2+bc=c 2-abB .a b b c b b c --=-222C .b 2(c-a )=c 2(b-a )D .cb a 111+= (8) (9)(10)9. 已知四个二次函数的图象如图所示,那么a 1,a 2,a 3,a 4的大小关系是 .10. 如图,正方形的边长为4,以正方形中心为原点建立平面直角坐标系,作出函数y=31x 2与y=-31x 2的图象,则阴影部分的面积是 .11. 抛物线y=x 2+x+2的图象上有三个点(-3,a )、(-2,b )、(3,c ),则a 、b 、c 的大小关系是(用“<”连接).12. 已知二次函数y=x 2-4x+m (m 为常数)的图象上的两点A (x 1,y 1)、B (x 2,y 2),若x 1<2<x 2,且x 1+x 2>4,则y 1与y 2的大小关系为y 1 y 2.(填“>”或“<”或“=”)13. 若二次函数y=-(x+1)2+h 的图象与线段y=x+2(-3≤x ≤1)没有交点,则h 的取值范围是 .14. 在平面直角坐标系xOy 中,抛物线y=ax 2-2ax-3(a ≠0)与y 轴交于点A .(1)直接写出点A 的坐标;(2)点A 、B 关于对称轴对称,求点B 的坐标;(3)已知点P (4,0),Q(−a 1,0).若抛物线与线段PQ 恰有两个公共点,结合函数图象,求a 的取值范围.15. 已知抛物线y=(m+1)x 2+(21m-2)x-3. (1)当m=0时,不与坐标轴平行的直线l 1与抛物线有且只有一个交点P (2,a ),求直线l 1的解析式;(2)在(1)的条件下,将直线l 1向上平移,与抛物线交于M ,N 两点(M 在N 的右侧),过P 作PQ ∥y 轴交MN 于点Q .求证:S △PQM =S △PQN .。
1.4 二次函数的应用第1课时 几何图形的面积问题数学(浙教版)九年级 上册第1章二次函数学习目标1.学会分析实际问题中的二次函数关系;2.学会用二次函数表示几何图形中的关系,并用来求实际问题中的最大值与最小值;导入新课问题1:从地面竖直向上抛出一小球,小球的高度 h (单位:m )与小球的运动时间 t (单位:s )之间的关系式是 h= 30t - 5t 2(0≤t ≤6).小球的运动时间是多少时,小球最高?小球运动中的最大高度是多少?t/sh/mO1234562040h= 30t - 5t2解决思路:通过图象可以看出,这个函数的图象是一条抛物线的一部分,这条抛物线的顶点是这个函数的图象的最高点.也就是说,当t 取顶点的横坐标时,这个函数有最大值.思考:如何求二次函数的顶点坐标呢?知识点一 二次函数的实际应用——几何图形面积问题由于抛物线 y = ax 2+ bx + c 的顶点是最低(高)点,当 时,二次函数 y = ax 2+ bx + c有最小(大)值思考:如何求出二次函数 y = ax 2+ bx + c 的最小(大)值?二次函数的顶点式可以很直观地看出最大值或最小值当 时小球运动的时间是 3s 时,小球最高.小球运动中的最大高度是 45 m.t/sh/m O 1234562040h= 30t - 5t2我们来求一下问题1:例用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l是多少时,场地的面积S最大?1.矩形面积公式是什么?2.如何用l表示另一边?3.面积S的函数关系式是什么?l30-lS=l(30-l),即S=-l2+30l (0<l<30).S=l(30-l),即S=-l2+30l (0<l<30).因此,当时,S有最大值,也就是说,当l是15m时,场地的面积S最大.归纳总结二次函数解决几何面积最值问题的方法1.求出函数解析式和自变量的取值范围;2.配方变形,或利用公式求它的最大值或最小值;3.检查求得的最大值或最小值对应的自变量的值必须在自变量的取值范围内.典例精析【例1】某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的两处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为28m,则当能建成的饲养室总占地面积最大时,中间隔开的墙长是( )米.A.4B.5C.6D.8【详解】解:设中间隔开的墙长为x m,能建成的饲养室总占地的面积为Sm2,根据题意得,S=x×(28+2-3x)=-3(x-5)2+75,-3<0,有最大值,∴当x=5时,S取得最大值,故选:B.【点睛】本题考查了二次函数的应用,根据题意列出函数关系式是解题的关键.练一练1.如图,某跑道的周长为400m 且两端为半圆形,要使矩形内部操场的面积最大,直线跑道AB 段的长应为.【详解】解:设矩形直线跑道AB=xcm ,矩形面积为ycm 2,由题意得: y=400−2ᵆᵰ·ᵆ=−2ᵰ(ᵆ−100)2+20000ᵰ∵−2ᵰ<0,∴当x=100时,y 最大,即直线跑道长应为100m .故答案为:100m2.如图,一块矩形区域ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长为18米(篱笆的厚度忽略不计),求当矩形ABCD 的面积最大时AB 的长.【详解】解:设AB=x 米,矩形的面积设为y (平方米),则AB+EF+CD=3x ,∴AD=BC=18−3ᵆ2.∴y=x·18−3ᵆ2=−32ᵆ2+9ᵆ.由于二次项系数小于0,所以y 有最大值,∴当AB=x=-ᵄ2ᵄ=3时,函数y 取得最大值.∴当AB=3米时,矩形ABCD 的面积最大.1.如图,要围一个矩形菜园ABCD,共中一边AD是墙,且AD的长不能超过26m,其余的三边AB,BC,CD用篱笆,且这三边的和为40m.有下列结论:①AB的长可以为6m;②AB的长有两个不同的值满足菜园ABCD的面积为192m2;③菜园ABCD面积的最大值为200m2.其中,正确结论的个数是( )A.0B.1C.2D.3【详解】设AB的长为xm,矩形ABCD的面积为ym2,则BC的长为(40-2x)m,由题意得y=x(40-2x)=-2x2+40x=-2(x-10)2+200,其中0<40-2x≤26,即7≤x<20,①AB的长不可以为6m,原说法错误;③菜园ABCD面积的最大值为200m2,原说法正确;②当y=-2(x-10)2+200=192时,解得x=8或x=12,∴AB的长有两个不同的值满足菜园ABCD面积为192m2,说法正确;综上,正确结论的个数是2个,故选:C.2.把一根长4a的铁丝分成两段,每一段弯曲成一个正方形,面积和最小是( )A.ᵄ2B.ᵄ2�C.ᵄ22D.ᵄ243.如图,某学校拟建一块矩形花圃,打算一边利用学校现有的墙(墙足够长),其余三边除门外用栅栏围成,栅栏总长度为38m ,门宽为2m .这个矩形花圃的最大面积是.【详解】解:设花圃的长为x,面积为y,则y 关于x 的函数表达式为:y=12(38+2−��ᵆ)ᵆ=−12ᵆ2+20ᵆ=−12(x-20)2+200又∵38+2-x>0,x≥22≤x<404.如图,小明想用长16米的栅栏(虚线部分),借助围墙围成一个矩形花园ABCD,则矩形ABCD的最大面积是平方米.【详解】解:设AB=x米,矩形ABCD的面积为S,则BC=(16-2x)米,∴S=x(16-2x)=2x2+16x=-2(x-4)2+32即矩形ABCD的最大面积为32平方米故答案为:32.5.用一段长为24m 的篱笆围成一个一边靠墙的矩形养鸡场,若墙长10m ,则这个养鸡场最大面积为 m 2.【详解】设养鸡场长为x 米,则宽为12(24−��ᵆ)米,面积为S 平方米,根据题意得:S=x×12(24−ᵆ)=−12ᵆ2+12ᵆ,(0<x≤10),∵二次函数图象对称轴为:直线x=12,开口向下,∴ 当0<x≤10时,S 随x 的增大而增大,∴当x=10时,S 取得最大值为70.故答案是:70.6.如图所示,矩形花圃ABCD的一边利用足够长的墙,另三边用总长为32米的篱笆围成.设AB边的长为x米,矩形ABCD的面积为S平方米.(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围);(2)当x为何值时,S有最大值?并求出最大值.【详解】(1)∵AB边长为xm,四边形为矩形,且剩余三边长总和为32m,∴BC边长为(32-2x)m,∴S=AB·BC=x(32-2x)=-2x2+32x;(2)函数化为顶点式,即得S=-2(x-8)2+128,可知x=8时,S有最大值128m2.【点睛】此题考查了二次函数的实际应用,根据简单等量关系解决问题,二次函数化为顶点式即可得到函数最值,正确理解题意列得函数解析式是解题的关键.7.如图,嘉嘉欲借助院子里的一面长15m的墙,想用长为40m的网绳围成一个矩形ABCD给奶奶养鸡,怎样使矩形ABCD的面积最大呢?同学淇淇帮她解决了这个问题.淇淇的思路是:设BC的边长为xcm,矩形ABCD的面积为Sm2,不考虑其他因素,请帮他们回答下列问题:(1)求S与x的函数关系式,直接写出x的取值范围;(2)x为何值时,矩形ABCD的面积最大?【详解】(1)解:S=x(40−��ᵆ2)=-12ᵆ2+20ᵆ,ᵆ的取值范围为0< ᵆ�≤15;(2)解:∵S=-12ᵆ2+20ᵆ ,-12<0,∴当x=-20−1=20时,S 有最大值,当x <20时,S 随x 的增大而增大,而0<x≤15,∴x=15时,S 有最大值,即矩形ABCD 的面积最大.课堂小结二次函数解决几何面积最值问题的方法1.求出函数解析式和自变量的取值范围;2.配方变形,或利用公式求它的最大值或最小值,3.检查求得的最大值或最小值对应的自变量的值必须在自变量的取值范围内.谢谢~。
数学课堂同步练习册(人教版九年级下册)参考答案第二十六章 二次函数26.1 二次函数及其图象(一)一、 D C C 二、 1. ≠0,=0,≠0,=0,≠0 =0, 2. x x y 62+=3. )10(x x y -= ,二三、1. 23x y = 2.(1)1,0,1 (2)3,7,-12 (3)-2,2,0 3. 2161x y = §26.1 二次函数及其图象(二)一、 D B A 二、1. 下,(0,0),y 轴,高 2. 略 3. 答案不唯一,如22x y -= 三、1.a 的符号是正号,对称轴是y 轴,顶点为(0,0) 2. 略3. (1) 22x y -= (2) 否 (3)()6-;(),6-§26.1 二次函数及其图象(三)一、 BDD 二、1.下, 3 2. 略 三、1. 共同点:都是开口向下,对称轴为y 轴.不同点:顶点分别为(0,0);(0,2);(0,-2) .2. 41=a 3. 532+-=x y §26.1 二次函数及其图象(四)一、 DCB 二、1. 左,1, 2. 略 3. 向下,3-=x ,(-3,0) 三、1. 3,2a c ==- 2. 13a =3. ()2134y x =-§26.1 二次函数及其图象(五)一、C D B 二、1. 1=x ,(1,1) 2. 左,1,下,2 3.略三、1.略2.(1)()212y x =+- (2)略 3. (1)3)2(63262--=-===x y k h a(2)直线2223x =>-小2.(1)()212y x =+- (2)略 §26.1 二次函数及其图象(六) 一、B B D D 二、1.23)27,23(=x 直线 2. 5;5;41<-3. < 三、1. ab ac a b x a y x y x y 44)2(32)31(36)4(2222-++=---=--= 略2. 解:(1)设这个抛物线的解析式为2y ax bx c =++.由已知,抛物线过(20)A -,,(10)B ,,(28)C ,三点,得4200428a b c a b c a b c -+=⎧⎪++=⎨⎪++=⎩,,.解这个方程组,得 224a b c =⎧⎪=⎨⎪=-⎩.∴所求抛物线的解析式为2224y x x =+-.(2)222192242(2)222y x x x x x ⎛⎫=+-=+-=+- ⎪⎝⎭.∴该抛物线的顶点坐标为1922⎛⎫-- ⎪⎝⎭,. §26.2 用函数观点看一元二次方程一、 C D D 二、1.(-1,0);(2,0) (0,-2) 2. 一 3. 312-或; 231<<-x ; 312x x <->或 三、1.(1)1x =-或3x = (2)x <-1或x >3(3)1-<x <3 2.(1)()21232y x =--+ (2)()20和()20 §26.3 实际问题与二次函数(一)一、 A C D 二、1. 2- 大 18 2. 7 3. 400cm 2三、1.(1)当矩形的长与宽分别为40m 和10m 时,矩形场地的面积是400m 2(2)不能围成面积是800m 2的矩形场地.(3)当矩形的长为25m 、宽为25m 时,矩形场地的面积最大,是625m 22.m ,矩形的一边长为2x m .其相邻边长为((2041022xx -+=-+∴该金属框围成的面积(121022S x x ⎡⎤=⋅-++⎣⎦(2320x x =-++ (0<x<10-当30x ==-.此时矩形的一边长为)260x m =-,相邻边长为((()10210310m -+⋅-=.()21003300.S m =-=-最大26.3 实际问题与二次函数(二)一、A B A 二、1. 2 2. 250(1)x + 3.252或12.5 三、1. 40元 当5.7=x 元时,625=最大W 元 2. 解:(1)降低x 元后,所销售的件数是(500+100x ),y=-100x 2+600x+5500 (0<x ≤11 )(2)y=-100x 2+600x+5500 (0<x ≤11 )配方得y=-100(x -3)2+6400 当x=3时,y 的最大值是6400元。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练第22章二次函数22.1.3二次函数y =a (x -h )2+k 的图象和性质一、选择题1.对于抛物线,下列说法正确的是()A .最低点坐标(-3, 0)B .最高点坐标(-3, 0)C .最低点坐标(3, 0)D .最高点坐标(3, 0)2.顶点为()6,0,开口向下,开口的大小与函数213y x =的图象相同的抛物线所对应的函数是()A .21(6)3y x =+B .21(6)3y x =-C .21(6)3y x =-+D .21(6)3y x =--3.二次函数y=2(x ﹣1)2+3的图象的对称轴是()A .x=1B .x=﹣1C .x=3D .x=﹣34.关于二次函数y=﹣(x+1)2+2的图象,下列判断正确的是()A .图象开口向上B .图象的对称轴是直线x=1C .图象有最低点D .图象的顶点坐标为(﹣1,2)5.抛物线y =2(x -1)2的对称轴是()A .1B .直线x =1C .直线x =2D .直线x =-16.顶点为(5,1),形状与函数y=13x 2的图象相同且开口方向相反的抛物线是()A .y=-13(x-5)2+1B .y=13x 2-5C .y=-13(x-5)2-1D .y=13(x+5)2-17.抛物线y =﹣2(x ﹣1)2的图象上有三个点A (﹣1,y 1),B (1,y 2),C (2,y 3),则y 1,y 2,y 3的大小关系是()A .1y >2y >3y B .2y >1y >3y C .3y >1y >2y D .2y >3y >1y 8.顶点为(0,−5),且开口方向、形状与函数 = 2的图象相同的抛物线是().A . =( +5)2B . = 2−5C . =( −5)2D . = 2+59.已知二次函数y =-(x +3)2,那么这个二次函数的图像有()A .最高点(3,0)B .最高点(-3,0)C .最低点(3,0)D .最低点(-3,0)10.如图,一条抛物线与x 轴相交于M ,N 两点(点M 在点N 的左侧),其顶点P 在线段AB 上移动,点A ,B 的坐标分别为(-2,-3),(1,-3),点N 的横坐标的最大值为4,则点M 的横坐标的最小值为()A .-1B .-3C .-5D .-7二、填空题11.用配方法把二次函数y =﹣x 2﹣2x+4化为y =a(x ﹣h)2+k 的形式为______.12.如果抛物线y=(2-a)x 2的开口方向向上,那么a 的取值范围是_______.13.点A (2,y 1),B (3,y 2)是二次函数y=(x ﹣1)2+3的图象上两点,则y 1_____y 2(填“>”、“<”或“=”)14.已知b c a c a bk a b c+++===,则抛物线2()3y x k =-+的顶点坐标为____________。
人教版九年级数学上册第22.1.1节《二次函数》课本+微课视频+练习
电子课本
▼▼▼▼
微课视频
微课视频1:
更的多精彩视频,同学们可以选择观看哦!
名师视频2:
名师课堂视频3:
同步练习
22.1.1 二次函数
知识点:1.二次函数的定义:一般地,形如的函数,叫做二次函数,其中是,分别是函数表达式的,,。
2.当时,这个函数还是二次函数吗?为什么?或能为0吗?
一、选择题:
3.已知函数m是常数.
(1)若这个函数是一次函数,求的值;
(2)若这个函数是二次函数,求的值。
4.汽车在行驶中,由于惯性作用刹车后还要向前滑行一段路程才能停止,我们称这段路程为“刹车距离”。
已知某种汽车的刹车距离y(m)与车速x(km/h)之间有如下关系:当司机小张以80 km/h的速度行驶时,发现前方
大约60m处有一障碍物阻塞了道路,于是小张紧急刹车,问汽车是否撞到障碍物?
1
参考答案
22.1.1 二次函数
知识点:
,自变量,二次项系数,一次项系数,常数项.
一.选择题 1.B 2.D 3. B 4. D 5. D 6. A。
22.1.3二次函数y =a(x -h)2+k 的图象与性质(2)——二次函数y =a(x-h)2的图象与性质学习目标:1.会画二次函数y =a (x-h )2的图象;2.掌握二次函数y =a (x-h )2的性质,并要会灵活应用; 一、复习:1.在同一直角坐标系内画出二次函数y = 12 x 2,y = 12 x 2+2,y =12 x 2-2的图象(草图),并回答:(1)三条抛物线的位置关系。
(2)分别说出它们的对称轴、开口方向和顶点坐标。
(3)说出它们所具有的公共性质。
2.(1)在同一直角坐标系中,二次函数y =ax 2+k 与y =ax 2的图象有什么关系? (2)二次函数y =ax 2+k 的图象开口方向、对称轴、 顶点坐标分别是什么?二、探索新知:1.二次函数y =2(x -1)2和y =2(x+1)2的图象与二次函数y =2x 2的图象的开口方向、对称轴以及顶点坐标相同吗?这两个函数的图象之间有什么关系?画出二次函数y =2(x -1)2和y =2(x+1)2与二次函数y =2x 2的图象,并加以观察x … -4 -3 -2 -1 0 1 2 3 4 … y =2x 2…… y =2(x -1)2 …… y =2(x+1)2……161284y 2x431-1 -2 -3 -4 0观察图像得:函数y =2(x -1)2和y =2(x+1)2的图象相同点是: ; 不同的是:函数y =2(x -1)2的顶点坐标是 ,对称轴是 ,有最 值是 ;函数y =2(x+1)2的顶点坐标是 ,对称轴是 ,有最 值是 。
把抛物线y =2x 2向 平移 个单位就得抛物线y =2(x -1)2;把抛物线y =2x 2向 平移 个单位就得抛物线y =2(x+1)2。
2.画出二次函数y =-12 (x +1)2,y=-12 (x -1)2的图象,并考虑它们的开口方向、对称轴、顶点以及最值、增减性.先列表:x… -4 -3 -2 -1 0 1 2 3 4 … y =-12 (x +1)2… … y =-12 (x -1)2……描点并画图.(1)、观察图象,填表:函数开口方向顶点 对称轴 最值增减性(对称轴右侧) 平移y =-12 (x+1)2y =-12(x -1)2三、整理知识点y =ax 2y =ax 2+k y =a (x-h)2a>0a<0a>0a<0a>0a<0开口方向增减性(对称轴左侧)顶点坐标对称轴最值x= 时,y最值=平移对于二次函数的图象,只要|a|相等,则它们的形状_________,只是_________不同.四、课堂训练1.抛物线y=2 (x+3)2的开口______________;顶点坐标为__________________;对称轴是_________;当x>-3时,y______________;当x=-3时,y有_______值是_________.2.抛物线y=4 (x-2)2与y轴的交点坐标是___________,与x轴的交点坐标为________.3.若将抛物线y=2x2+1向下平移2个单位后,得到的抛物线解析式为_______________.4.若抛物线y=m (x+1)2过点(1,-4),则m=_______________.5.抛物线y= -3(x+2)2开口向,对称轴为,顶点坐标为 .6.抛物线y=3(x+0.5)2可以看成由抛物线向平移个单位得到的;7.把抛物线y=3x2向右平移4个单位后,得到的抛物线的表达式为____________________.把抛物线y=3x2向左平移6个单位后,再向上平移2个单位得,到的抛物线的表达式为____________________.8.抛物线y=3(x-3)2可由抛物线y=3x2沿轴向平移个单位得到,也可以由抛物线y=3(x-7)2沿轴向平移个单位得到。
926.10 二次函数一.阅读教科书第4—6页上方二.学习目标:1.知道二次函数的一般表达式;2.会利用二次函数概念分析解题;3.列二次函数表达式解实际问题. 三.知识点:一般地,形如______________的函数,叫做二次函数。
其中x 是________,a 是_______,b 是_______,c 是_____. 四.基本知识练习1.观察:①y =6x 2;②y =-32 x 2+30x;③y =200x 2+400x +200.这三个式子中,虽然函数有一项的,两项的或三项的,但自变量的最高次项的次数都是____次.一般地,如果y =ax 2+bx +c(a.b.c 是常数,a ≠0),那么y 叫做x 的__. 2.函数y =(m -2)x 2+mx -3(m 为常数).1)当m_____时,该函数为二次函数; 2)当m_______时,该函数为一次函数. 3.下列函数表达式中,哪些是二次函数?哪些不是?若是二次函数,请指出各项对应项的系数. (1)y =1-3x 2(2)y =3x 2+2x (3)y =x (x -5)+2 (4)y =3x 3+2x 2(5)y =x +1x五.课堂训练 1.y =(m +1)xmm 2-3x +1是二次函数,则m 的值为_________________.2.下列函数中是二次函数的是( ) A.y =x +12B. y =3 (x -1)2C.y =(x +1)2-x 2D.y =1x2 -x3.一定条件下,若物体运动的路段s(米)与时间t(秒)之间的关系为s =5t 2+2t,则当t =4秒时,该物体所经过的路程为A.28米B.48米C.68米D.88米4.n 支球队参加比赛,每两队之间进行一场比赛.写出比赛的场次数m 与球队数n 之间的关系式_______________.5.已知y 与x 2成正比例,并且当x =-1时,y =-3.求:(1)函数y 与x 的函数关系式;(2)当x =4时,y 的值;(3)当y =-13时,x 的值.6.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m 的栅栏围住(如图).若设绿化带的BC 边长为x m,绿化带的面积为y m 2.求y 与x 之间的函数关系式,并写出自变量x 的取值范围. 六.目标检测1.若函数y =(a -1)x 2+2x +a 2-1是二次函数,则( ) A.a =1 B.a =±1 C.a ≠1 D.a ≠-1 2.下列函数中,是二次函数的是( ) A.y =x 2-1B.y =x -1C.y =8xD.y =8x23.一个长方形的长是宽的2倍,写出这个长方形的面积与宽之间的函数关系式.4.已知二次函数y =-x 2+bx +3.当x =2时,y =3,求 这个二次函数解析式.926.21二次函数y =ax 2的图象与性质一.阅读课本:P6—8二.学习目标:1.知道二次函数的图象是一条抛物线;2.会画二次函数y =ax 2的图象;3.掌握二次函数y =ax 2的性质,并会灵活应用.三.探索新知:画二次函数y =x 2的图象.【提示:画图象的一般步骤:①列表(取几组x.y 的对应值;②描点(表中x.y 的数值在坐标平面中描点(x,y);③连线(用平滑曲线).】 列表:描点,并连线图象可得二次函数y =x 2的性质:1.二次函数y =x 2是一条曲线,把这条曲线叫做______________.2.二次函数y =x 2中,二次函数a =_______,抛物线y =x 2的图象开口__________. 3.自变量x 的取值范围是____________.4.观察图象,当两点的横坐标互为相反数时,函数y 值相等,所描出的各对应点关于________对称,从而图象关于___________对称.5.抛物线y =x 2与它的对称轴的交点( , )叫做抛物线y =x 2的___.因此,抛物线与对称轴的交点叫做抛物线的_ 6.抛物线y =x 2有____________点(填“最高”或“最低”) . 四.例题分析例1.在同一直角坐标系中,画出函数y =12 x 2,y =x 2,y =2x 2的图象.解:列表并填:y =x 2的图象刚画过,再把它画出来. 归纳:抛物线y =12x 2,y =x 2,y =2x 2的二次项系数a_______0;顶点都是__________;对称轴是_________;顶点是抛物线的最_________点(填“高”或“低”) .…例2.请在例1的直角坐标系中画出函数y =-x 2,y =-12 x 2, y =-2x 2的图象.列表:归纳:抛物线y =-x 2,y =-12 x 2, y =-2x 2的二次项系数a______0,顶点都是________,对称轴是___________,顶点是抛物线的最________点(填“高”或“低”) . 五.理一理:1.抛物线y =ax 2的性质2.抛物线y =x 2与y =-x 2关于________对称,因此,抛物线y =ax 2与y =-ax 2关于_______对称,开口大小______. 3.当a >0时,a 越大,抛物线的开口越___________; 当a <0时,|a | 越大,抛物线的开口越_________; 因此,|a |越大,抛物线的开口越________,反之,|a | 越小,抛物线的开口越________. 六.课堂训练1填表:2.若二次函数y =ax 2的图象过点(1,-2),则a 的值是___________. 3.二次函数y =(m -1)x 2的图象开口向下,则m____________.4.如图,①y =ax 2②y =bx 2③y =cx 2④y =dx 2比较a.b.c.d 的大小,用“>”连接.__________ 七.目标检测1.函数y =37 x 2的图象开口向_______,顶点是_____,对称轴是____,当x =____时,有最___值是_____.2.二次函数y =mx22m 有最低点,则m =_____.3.二次函数y =(k +1)x 2的图象如图所示,则k 的取值范围为_____.4.写出一个过点(1,2)的函数表达式_________________.-4 -3 -2 -1 0 1 2 3 4 ……926.22 二次函数y =ax 2+k 的图象与性质一.阅读课本:P9—10二.学习目标:1.会画二次函数y =ax 2+k 的图象;2.掌握二次函数y =ax 2+k 的性质,并会应用;3.知道二次函数y =ax 2与y =的ax 2+k 的联系.三.探索新知:在同一直角坐标系中,画出二次函数y =x 2+1,y =x 2-1的图象. 解:先列表 描点并画图观察图象得:2.可以发现,把抛物线y =x 2向______平移______个单位,就得到抛物线y =x 2+1;把抛物线y =x 2向_______平移______个单位,就得到抛物线y =x 2-1.3.抛物线y =x 2,y =x 2-1与y =x 2+1的形状_____________. 四.理一理知识点2.抛物线y =2x 2向上平移3个单位,就得到抛物线__________________; 抛物线y =2x 2向下平移4个单位,就得到抛物线__________________.因此,把抛物线y =ax 2向上平移k(k >0)个单位,就得到抛物线_______________; 把抛物线y =ax 2向下平移m(m >0)个单位,就得到抛物线_______________. 3.抛物线y =-3x 2与y =-3x 2+1是通过平移得到的,从而它们的形状__________, 由此可得二次函数y =ax 2与y =ax 2+k 的形状__________________. 五.课堂巩固训练 1.填表2.将二次函数y =5x 2-3向上平移7个单位后所得到的抛物线解析式为_________________.3.写出一个顶点坐标为(0,-3),开口方向与抛物线y =-x 2的方向相反,形状相同的抛物线解析式_____________.4.抛物线y =4x 2+1关于x 轴对称的抛物线解析式为______________________. 六.目标检测 1.填表2.抛物线y =-13 x 2-2可由抛物线y =-13 x 2+3向___________平移_________个单位得到的.3.抛物线y =-x 2+h 的顶点坐标为(0,2),则h =_______________.4.抛物线y =4x 2-1与y 轴的交点坐标为_____________,与x 轴的交点坐标为_________.926.23 二次函数y =a(x-h)2的图象与性质4一.阅读课本:P10—11二.学习目标:1.会画二次函数y =a(x-h)2的图象;2.掌握二次函数y =a(x-h)2的性质,并要会灵活应用; 三.探索新知:画出二次函数y =-12 (x +1)2,y -12 (x -1)2的图象,并考虑它们的开口方向.对称轴.顶点以及最值.增减性.先列表:描点并画图1.观察图象,填表:2.请在图上把抛物线y =-12x 2也画上去(草图).①抛物线y =-12 (x +1)2 ,y =-12 x 2,y =-12 (x -1)2的形状大小____________.②把抛物线y =-12 x 2向左平移_______个单位,就得到抛物线y =-12 (x +1)2;把抛物线y =-12 x 2向右平移_______个单位,就得到抛物线y =-12 (x +1)2.四.整理知识点2.对于二次函数的图象,只要|a |相等,则它们的形状_________,只是_________不同. 五.课堂训练2.抛物线y =4 (x -2)2与y 轴的交点坐标是___________,与x 轴的交点坐标为________. 3.把抛物线y =3x 2向右平移4个单位后,得到的抛物线的表达式为____________________. 把抛物线y =3x 2向左平移6个单位后,得到的抛物线的表达式为____________________. 4.将抛物线y =-13(x -1)x 2向右平移2个单位后,得到的抛物线解析式为____________.5.写出一个顶点是(5,0),形状.开口方向与抛物线y =-2x 2都相同的二次函数解析式________________________. 六.目标检测1.抛物线y =2 (x +3)2的开口______________;顶点坐标为__________________;对称轴是_________; 当x >-3时,y______________;当x =-3时,y 有_______值是_________. 2.抛物线y =m (x +n)2向左平移2个单位后,得到的函数关系式是y =-4 (x -4)2, 则m =__________,n =___________.3.若将抛物线y =2x 2+1向下平移2个单位后,得到的抛物线解析式为_______________. 4.若抛物线y =m (x +1)2过点(1,-4),则m =_______________.926.24 二次函数y =a(x -h)2+k 的图象与性质一.阅读课本:第12页~第13页上方.二.学习目标:1.会画二次函数的顶点式y =a (x -h)2+k 的图象;2.掌握二次函数y =a (x -h)2+k 的性质;3.会应用二次函数y =a (x -h)2+k 的性质解题.三.探索新知:画出函数y =-12 (x +1)2-1的图象,指出它的开口方向.对称轴及顶点.最值.增减性.列表:由图象归纳:2.把抛物线y =-12 x 2向____平移_____个单位,再向____平移_______个单位,就得到抛物线y =-12 (x +1)2-1.四.理一理知识点2.抛物线y =a (x -h)2+k 与y =ax 2形状___________,位置________________.五.课堂练习2.y =6x 2+3与y =6 (x -1)2+10_____________相同,而____________不同. 3.顶点坐标为(-2,3),开口方向和大小与抛物线y =12x 2相同的解析式为( )A.y =12(x -2)2+3B.y =12 (x +2)2-3C.y =12 (x +2)2+3D.y =-12(x +2)2+34.二次函数y =(x -1)2+2的最小值为__________________.5.将抛物线y =5(x -1)2+3先向左平移2个单位,再向下平移4个单位后,得到抛物线的解析式为____________. 6.若抛物线y =ax 2+k 的顶点在直线y =-2上,且x =1时,y =-3,求a.k 的值.7.若抛物线y =a (x -1)2+k 上有一点A(3,5),则点A 关于对称轴对称点A ’的坐标为______________. 六.目标检测2.抛物线y =-3 (x +4)2+1中,当x =_______时,y 有最________值是________.3.足球守门员大脚开出去的球的高度随时间的变化而变化,这一过程可近似地用下列哪幅图表示( )AB C D4.将抛物线y =2 (x +1)2-3向右平移1个单位,再向上平移3个单位,则所得抛物线的表达式为______________. 5.一条抛物线的对称轴是x =1,与x 轴有唯一的公共点,且开口方向向下,则这条抛物线的解析式为_.(任写一个)926.31 二次函数y =ax 2+bx +c 的图象与性质一.阅读课本:第14页~第15页上方.二.学习目标:1.配方法求二次函数一般式y =ax 2+bx +c 的顶点坐标.对称轴;2.熟记二次函数y =ax 2+bx +c 的顶点坐标公式; 3.会画二次函数一般式y =ax 2+bx +c 的图象. 三.探索新知:1.求二次函数y =12 x 2-6x +21的顶点坐标与对称轴.(解:将函数等号右边配方:y =12 x 2-6x +21)2.画二次函数y =12 x 2-6x +21的图象.(解:y =12 x 2-6x +21配成顶点式为_______________________.)列表:3.用配方法求抛物线y =ax 2+bx +c(a ≠0)的顶点与对称轴. 四.理一理知识点:五.课堂练习1.用配方法求二次函数y =-2x 2-4x +1的顶点坐标.2.用两种方法求二次函数y =3x 2+2x 的顶点坐标. 3.二次函数y =2x 2+bx+c 的顶点坐标是(1,-2),则b =________,c =_________.4.已知二次函数y =-2x 2-8x -6,当________时,y 随x 的增大而增大;当x =________时,y 有______值是_____. 六.目标检测:1.用顶点坐标公式和配方法求二次函数y =12x 2-2-1的顶点坐标.926.32 二次函数y=ax2+bx+c的性质一.复习知识点:第6课中“理一理知识点”的内容.二.学习目标:1.懂得二次函数y=ax2+bx+c与x轴.y轴的交点的方法;2.知道二次函数中a,b,c以及△=b2-4ac对图象的影响.三.基本知识练习1.求二次函数y=x2+3x-4与y轴的交点坐标为_______________,与x轴的交点坐标____________.2.二次函数y=x2+3x-4的顶点坐标为______________,对称轴为______________.3.一元二次方程x2+3x-4=0的根的判别式△=______________.4.二次函数y=x2+bx过点(1,4),则b=________________.5.一元二次方程y=ax2+bx+c(a≠0),△>0时,一元二次方程有_______________,△=0时,一元二次方程有___________,△<0时,一元二次方程_______________.四.知识点应用1.求二次函数y=ax2+bx+c与x轴交点(含y=0时,则在函数值y=0时,x的值是抛物线与x轴交点的横坐标).例1 求y=x2-2x-3与x轴交点坐标.2.求二次函数y=ax2+bx+c与y轴交点(含x=0时,则y的值是抛物线与y轴交点的纵坐标).例2 求抛物线y=x2-2x-3与y轴交点坐标. 3.a.b.c以及△=b2-4ac对图象的影响.(1)a决定:开口方向.形状(2)c决定与y轴的交点为(0,c)(3)b与-b2a共同决定b的正负性(4)△=b2-4ac⎪⎩⎪⎨⎧<=>轴没有交点与轴有一个交点与轴有两个交点与xxx例3 如图,由图可得:a_______0,b_______0,c_______0,△______0例4 已知二次函数y=x2+kx+9.①当k为何值时,对称轴为y轴;②当k为何值时,抛物线与x轴有两个交点;③当k为何值时,抛物线与x轴只有一个交点.五.课后练习1.求抛物线y=2x2-7x-15与x轴交点坐标__________,与y轴的交点坐标为_______.2.抛物线y=4x2-2x+m的顶点在x轴上,则m=__________.3.如图:由图可得: a_______0,b_______0,c_______0,△=b2-4ac______0六.目标检测:1.求抛物线y=x2-2x+1与y轴的交点坐标为_______________.2.若抛物线y=mx2-x+1与x轴有两个交点,求m的范围.926.33 二次函数y =ax 2+bx +c 解析式求法一.学习目标:1.会用待定系数法求二次函数的解析式;2.实际问题中求二次函数解析式. 二.课前基本练习1.已知二次函数y =x 2+x +m 的图象过点(1,2),则m 的值为________________.2.已知点A(2,5),B(4,5)是抛物线y =4x 2+bx +c 上的两点,则这条抛物线的对称轴为_____________________. 3.将抛物线y =-(x -1)2+3先向右平移1个单位,再向下平移3个单位,则所得抛物线的解析式为___________. 4.抛物线的形状.开口方向都与抛物线y =-12 x 2相同,顶点在(1,-2),则抛物线的解析式为_______________.三.例题分析例1 已知抛物线经过点A(-1,0),B(4,5),C(0,-3),求抛物线的解析式. 例2 已知抛物线顶点为(1,-4),且又过点(2,-3).求抛物线的解析式.例3 已知抛物线与x 轴的两交点为(-1,0)和(3,0),且过点(2,-3).求抛物线的解析式. 四.归纳:用待定系数法求二次函数的解析式用三种方法: 1.已知抛物线过三点,设一般式为y =ax 2+bx +c. 2.已知抛物线顶点坐标及一点,设顶点式y =a(x -h)2+k.3.已知抛物线与x 轴有两个交点(或已知抛物线与x 轴交点的横坐标), 设两根式:y =a(x -x 1)(x -x 2) .(其中x 1.x 2是抛物线与x 轴交点的横坐标) 五.实际问题中求二次函数解析式例4 要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m 处达到最高,高度为3m,水柱落地处离池中心3m,水管应多长? 六.课堂训练1.已知二次函数的图象过(0,1).(2,4).(3,10)三点,求这个二次函数的关系式.2.已知二次函数的图象的顶点坐标为(-2,-3),且图像过点(-3,-2),求这个二次函数的解析式.3.已知二次函数y =ax 2+bx +c 的图像与x 轴交于A(1,0),B(3,0)两点,与y 轴交于点C(0,3),求二次函数的顶点坐标.4.如图,在△ABC 中,∠B =90°,AB =12mm,BC =24mm,动点P 从点A 开始沿边AB 向B 以2mm/s 的速度移动,动点Q 从点B 开始沿边BC 向C 以4mm/s 的速度移动,如果P.Q 分别从A.B 同时出发,那么△PBQ 的面积S 随出发时间t 如何变化?写出函数关系式及t 的取值范围.七.目标检测QPCBA926.34 二次函数y =ax 2+bx +c 的性质一.阅读教科书:P15的探究二.学习目标:几何问题中应用二次函数的最值. 三.课前基本练习1.抛物线y =-(x +1)2+2中,当x =___________时,y 有_______值是__________. 2.抛物线y =12 x 2-x +1中,当x =___________时,y 有_______值是__________.3.抛物线y =ax 2+bx +c(a ≠0)中,当x =___________时,y 有_______值是__________. 四.例题分析:(P15的探究)用总长为60m 的篱笆围成矩形场地,矩形面积S 随矩形一边长l 的变化而变化,当l 是多少时,场地的面积S 最大? 五.课后练习1.已知直角三角形两条直角边的和等于8,两条直角边各为多少时,这个直角三角形的面积最大,最大值是多少?2.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的关系式是h =30t -5t 2.小球运动的时间是多少时,小球最高?小球运动中的最大高度是多少?3.如图,四边形的两条对角线AC.BD 互相垂直,AC +BD =10,当AC.BD 的长是多少时,四边形ABCD 的面积最大?4.一块三角形废料如图所示,∠A =30°,∠C =90°,AB =12.用这块废料剪出一个长方形CDEF,其中,点D.E.F 分别在AC.AB.BC 上.要使剪出的长方形CDEF 面积最大,点E 应造在何处?六.目标检测如图,点E.F.G.H 分别位于正方形ABCD 的四条边上,四边形EFGH 也是正方形.当点E 位于何处时,正方形EFGH 的面积最小?DCBAF EDC BAHGD C926.41 用函数观点看一元二次方程一.阅读课本:第20~22页二.学习目标:1.知道二次函数与一元二次方程的关系.2.会用一元二次方程ax2+bx+c=0根的判别式△=b2-4ac判断二次函数y=ax2+bx+c与x轴的公共点的个数.三.探索新知1.问题:如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线.如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系h=20t-5t2.考虑以下问题:(1)球的飞行高度能否达到15m?如能,需要多少飞行时间?(2)球的飞行高度能否达到20m?如能,需要多少飞行时间?(3)球的飞行高度能否达到20.5m?为什么?(4)球从飞出到落地要用多少时间?2.观察图象:(1)二次函数y=x2+x-2的图象与x轴有____个交点,则一元二次方程x2+x-2=0的根的判别式△=_______0;(2)二次函数y=x2-6x+9的图像与x轴有_ __个交点,则一元二次方程x2-6x+9=0的根的判别式△=_____0;(3)二次函数y=x2-x+1的图象与x轴________公共点,则一元二次方程x2-x+1=0的根的判别式△_______0.四.理一理知识1.已知二次函数y=-x2+4x的函数值为3,求自变量x的值,可以看作解一元二次方程__________________.反之,解一元二次方程-x2+4x=3又可以看作已知二次函数__________________的函数值为3的自变量x的值.一般地:已知二次函数y=ax2+bx+c的函数值为m,求自变量x的值,可以看作解一元二次方程ax2+bx+c =m.反之,解一元二次方程ax2+bx+c=m又可以看作已知二次函数y=ax2+bx+c的值为m的自变量x的值. 2.二次函数y=ax2+bx+c与x轴的位置关系:一元二次方程ax2+bx+c=0的根的判别式△=b2-4ac.(1)当△=b2-4ac>0时抛物线y=ax2+bx+c与x轴有两个交点;(2)当△=b2-4ac=0时抛物线y=ax2+bx+c与x轴只有一个交点;(3)当△=b2-4ac<0时抛物线y=ax2+bx+c与x轴没有公共点.五.基本知识练习1.二次函数y=x2-3x+2,当x=1时,y=________;当y=0时,x=_______.2.二次函数y=x2-4x+6,当x=________时,y=3.3.如图,一元二次方程ax2+bx+c=0的解为________________4.如图一元二次方程ax2+bx+c=3的解为_________________六.课堂训练1.特殊代数式求值:①如图看图填空: (1)a+b+c_______0(2)a-b+c_______0 (3)2a-b _______0②如图2a+b _______0 4a+2b+c_______02.利用抛物线图象求解一元二次方程及二次不等式(1)方程ax2+bx+c=0的根为___________;(2)方程ax2+bx+c=-3的根为__________;(3)方程ax2+bx+c=-4的根为__________;(4)不等式ax2+bx+c>0的解集为________;(5)不等式ax2+bx+c<0的解集为________;(6)不等式-4<ax2+bx+c<0的解集为________.七.目标检测根据图象填空:(1)a_____0;(2)b_____0;(3)c______0;(4)△=b2-4ac_____0;(5)a+b+c_____0;(6)a-b+c_____0;(7)2a+b_____0;(8)方程ax2+bx+c=0的根为__________;(9)当y>0时,x的范围为___________;(10)当y<0时,x的范围为___________;八.课后训练1.已知抛物线y=x2-2kx+9的顶点在x轴上,则k=____________.2.已知抛物线y=kx2+2x-1与坐标轴有三个交点,则k的取值范围___________.3.已知函数y=ax2+bx+c(a,b,c为常数,且a≠0)的图象如图所示,则关于x的方程ax2+bx+c-4=0的根的情况是(A.有两个不相等的正实数根B.有两个异号实数根C.有两个相等实数根D.无实数根4.如图为二次函数y=ax2+bx+c的图象,在下列说法中:①ac<0;②方程ax2+bx+c=0的根是x1=-1,x2=3;③a+b+c>0;④当x>1时,y随x的增大而增大.正确的说法有__________________(把正确的序号都填在横线上).926.42 实际问题与二次函数商品价格调整问题一.阅读课本:第25~26页上方(探究1)二.学习目标:1.懂得商品经济等问题中的相等关系的寻找方法;2.会应用二次函数的性质解决问题. 三.探索新知某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大? 分析:调整价格包括涨价和降价两种情况,用怎样的等量关系呢?解:(1)设每件涨价x 元,则每星期少卖_________件,实际卖出_________件,设商品的利润为y 元. (2)设每件降价x 元,则每星期多卖_________件,实际卖出__________件. 四.课堂训练1.某种商品每件的进价为30元,在某段时间内若以每件x 元出售,可卖出(100-x)件,应如何定价才能使利润最大?2.蔬菜基地种植某种蔬菜,由市场行情分析知,1月份至6月份这种蔬菜的上市时间x(月份)与市场售价P(元/千克)的关系如下表:这种蔬菜每千克的种植成本y(元/千克)与上市时间x(月份)满足一个函数关系,这个函数的图象是抛物线的一段(如图).(1)写出上表中表示的市场售价P(元/千克)关于上市时间x(月份)的函数关系式; (2)若图中抛物线过A.B.C 三点,写出抛物线对应的函数关系式; (3)由以上信息分析,哪个月上市出售这种蔬菜每千克的收益最大? 最大值为多少?(收益=市场售价-种植成本)五.目标检测某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空间.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定介增加x 元,求:(1)房间每天入住量y(间)关于x(元)的函数关系式; (2)该宾馆每天的房间收费z(元)关于x(元)的函数关系式;图①926.43实际问题与二次函数一.阅读课本:第27页探究3二.学习目标:1.会建立直角坐标系解决实际问题;2.会解决桥洞水面宽度问题. 三.基本知识练习1.以抛物线的顶点为原点,以抛物线的对称轴为y 轴建立直角坐标系时,可设这条抛物线的关系式为___________.2.拱桥呈抛物线形,其函数关系式为y =-14 x 2,当拱桥下水位线在AB 位置时,水面宽为12m,这时水面离桥拱顶端的高度h 是( ) A.3mB.2 6 mC.4 3 mD.9m3.有一抛物线拱桥,已知水位线在AB 位置时,水面的宽为4 6 米,水位上升4米,就达到警戒线CD,这时水面宽为4 3 米.若洪水到来时,水位以每小时0.5米的速度上升,则水过警戒线后几小时淹没到拱桥顶端M 处? 四.课堂练习1.一座拱桥的轮廓是抛物线(如图①所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图②所示),其关系式y =ax 2+c 的形式,请根据所给的数据求出a.c 的值;(2)求支柱MN 的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m,高3m 的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.2.如图,有一座抛物线形拱桥,在正常水位时水面AB 的宽为20m,如果水位上升3m 时,水面CD 的宽是10m. (1)建立如图所示的直角坐标系,求此抛物线的解析式.(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km 的速度开往乙地,当行驶1h 时,忽然接到紧急通知:前方连降暴雨,造成水位以每小0.25m 的速度持续上涨(货车接到通知时水位在CD 处,当水位达到桥拱最高点O 时,禁止车辆通行).试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由.若不能,要使货车安全通过此桥,速度应超过每小时多少千米?926.50 二次函数综合应用一.复习二次函数的基本性质二.学习目标:灵活运用二次函数的性质解决综合性的问题. 三.课前训练1.二次函数y =kx 2+2x +1(k <0)的图象可能是( )2.如图: (1)当x 为何范围时,y 1>y 2?(2)当x 为何范围时,y 1=y 2? (3)当x 为何范围时,y 1<y 2?3.如图,是二次函数y =ax 2-x +a 2-1的图象,则a =____________.4.若A(-134 ,y 1),B(-1,y 2),C(53,y 3)为二次函数y =-x 2-4x +5图象上的三点,则y 1.y 2.y 3的大小关系是( )A.y 1<y 2<y 3B.y 3<y 2<y 1C.y 3<y 1<y 2D.y 2<y 1<y 35.抛物线y =(x -2) (x +5)与坐标轴的交点分别为A.B.C,则△ABC 的面积为__________.6.如图,已知在平面直角坐标系中,矩形ABCD 的边AD 在x 轴上,点A 在原点,AB =3,AD =5.若矩形以每秒2个单位长度沿x 轴正方向做匀速运动,同时点P 从A 点出发以每秒1个单位长度沿A →B →C →D 的路线做匀速运动.当点P 运动到点D 时停止运动,矩形ABCD 也随之停止运动. (1)求点P 从点A 运动到点D 所需的时间. (2)设点P 运动时间为t(秒) ①当t =5时,求出点P 的坐标.②若△OAP 的面积为S,试求出S 与t 之间的函数关系式(并写出相应的自变量t 的取值范围). 五.目标检测如图,二次函数y =ax 2+bx +c 的图像经过A(-1,0),B(3,0)两交点,且交y 轴于点C. (1)求b.c 的值;(2)过点C 作CD ∥x 轴交抛物线于点D,点M 为此抛物线的顶点,试确定△MCD 的形状.实际问题与二次函数导学案第1课时如何获得最大利润学习目标:1.知识与技能:能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力。
第4课时2.4二次函数y=ax2+bx+c的图像(1)
1.在直角坐标系中画出函数,,的图像。
(1)根据图像填空:
①抛物线的顶点坐标是,对称轴是,开口向;
②抛物线的顶点坐标是,对称轴是,开口向;
③抛物线的顶点坐标是,对称轴是,开口向;
(2)可以发现:抛物线,,图像的形状,开口大小相同,只是抛物线的位置和对称轴发生了变化。
①把抛物线沿X轴向平移个单位即可得到抛物线;
②把抛物线沿X轴向平移个单位即可得到抛物线;
③把抛物线沿X轴向平移个单位即可得到抛物线.
2.已知抛物线
①将抛物线向上平移1个单位,所得抛物线的解析式是,
②将抛物线向左平移3个单位,所得抛物线的解析式是,
③将抛物线向右平移3个单位,所得抛物线的解析式是,
④将抛物线绕顶点旋转180°,所得抛物线的解析式是,
3.已知抛物线的顶点是(-5,0),且经过点(-3,1),则抛物线的解析式是。
4.已知抛物线
①画出函数图像,写出抛物线的顶点坐标和对称轴;
②求出抛物线与Y轴的交点P的坐标;
③设抛物线的顶点为A,求以P,A,O(为坐标原点)为顶点的三角形的面积;
④设点Q在X轴上,如果△PAQ是以PA为腰的等腰三角形,试求Q点的坐标。
5.填写下表:
性质
大概图像开口方向对称轴顶点坐标函数
第5课时2.4二次函数y=ax2+bx+c的图像(2)
1.在直角坐标系中画出,,的图像
(1)根据图像填空:
①抛物线的顶点坐标是,对称轴是,开口向;
②抛物线的顶点坐标是,对称轴是,开口向;
③抛物线的顶点坐标是,对称轴是,
开口向;
(2)可以发现:抛物线,,图像的形状,开口大小相同,只是抛物线的位置和对称轴发生了变化。
①把抛物线沿X轴向平移个单位即可得到抛物线;
②把抛物线沿Y轴向平移个单位即可得到抛物线;
③把抛物线沿X轴向平移个单位,再沿Y轴向平移个单位,即可得到抛物线.
2. 抛物线的顶点坐标是,对称轴是。
3. 抛物线的顶点坐标是,对称轴是。
4. 抛物线的顶点坐标是,对称轴是。
5. 抛物线的顶点坐标是,对称轴是。
6. 抛物线(a≠0)的顶点坐标是,对称轴是 .
7. 把抛物线沿X轴平移2个单位,再沿Y轴向下平移5个单位,
可以得到抛物线 。
8.确定下列抛物线的开口方向,对称轴及顶点坐标。
(1)y=(x-2) (2)y=2(x-3)+5 (3)y=-(x+2)+3
9.二次函数y=(x+1)-1的图象是下图中的( )
10.抛物线y= (x+2)-1是则函数y=x+4x+19的图象先向上平移b个单位,再向左平移a个单位得到的,则a、b的值分别为( )
A.a=4,b=6 B.a=6,b=4 C.a=2,b=-1 D.无法确定
11. 填写下表:
性质函数大概图像
开口方
向
对称轴顶点坐标
第6课时2.4二次函数y=ax2+bx+c的图像(3) 1.利用配方法解下列一元二次方程
2. 确定下列抛物线的开口方向,对称轴和顶点坐标。
3.将函数y=x-6x+21经过配方可变形为( )
A.y=(x+6)+3 B.y=(x-6)-3
C.y=(x-6)+3 D.y=(x+6)-3
4.函数y=-x+bx+c的图象最高点是(1,-4),则b、c的值分别是( )
A.2,5 B.-2,-5 C.-2,5 D.2,-5 5.已知二次函数y=x-2x+1
(1)求此函数图象的顶点A以及它与y轴交点B的坐标。
(2)求此函数图象与x轴的交点C和D的坐标;
(3)求S
第7课时2.4二次函数y=ax2+bx+c的图像(4)
1.抛物线y=x2+1的图象大致是()
2.下列抛物线中,对称轴是x=3的是 ( )
A.y=-3x B.y=x+6x
C.y=2x+12x-1 D.y=2x-12x+1
3.以P(-2,-6)为顶点的二次函数是()
A y=5(x+2)+6
B y=5(x-2)+6
C y=5(x+2)-6
D y=5(x-2)-6
4.二次函数y=x-3x的图象与x轴两个交点的坐标分别为( )
A(0,0),(0,3) B(0,0),(0,-3) C(0,0),(-3,0) D(0,0),(3,0)
5.下列抛物线中,对称轴都相同的是( )
①y=2x+3x-4;②y=-2x+3x-4;③y=-4x-6x-3;
④y=4x+6x;⑤y=x+3x+
A ①②④
B ①③④
C ①④⑤
D ①③
6.函数y=-x+bx+c的图象最高点是(1,-4),则b、c的值分别是( )
A.2,5 B.-2,-5 C.-2,5 D.2,-5 7.二次函数y=ax+bx+c的图象如右上图所示,下列结论:①a+b+c >0;②a-b+c>0;③abc<0;④2a-b=0,其中正确的个数是( )
A.1个 B.2个 C.3个 D.4个
8. 已知二次函数y=x2+(2k+1)x+k2-1的最小值是0,则k的值是()
A. B.- C. D.-
9.在反比例函数y=中,当x>0时,y随x的增大而增大,则二次函数y=kx+2kx的图象大致是( )
10.如下右图为二次函数y=ax+bx+c的图象,则一次函数y=ax+b的图象不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
11.二次函数y=ax+bx+c和一次函数y=ax+b在同一坐标系中的图象可以是( )
10题图
12.若a<0,b>0,c<0,则抛物线y=ax+bx+c的大致图象为( )
13.函数y=ax+bx+c和y=ax+b在同一坐标系中,正确的是( )
14.如左下图,坐标系中抛物线是函数y=ax+bx+c的图象,则下列式子能成立的是( )
A.abc>0 B.a+b+c<0 C.b<a+c D.2c<3b
15.若二次函数y=ax+bx+c的图象如右上图所示,那么a 0,b 0,c 0(填“>”“<”或“=”
16.已知二次函数y=ax+bx+c(a≠0)的图象如图所示,
则a+b+c 0。
(填“>”、“<”、“=”)
16.已知抛物线y=ax+bx+c经过点(1,2)与(-1,4),则a+c的
值是
17.已知抛物线y=ax+x+c与x轴交点的横坐标为-1,则a+c=
18 .如图所示的抛物线:当x=_____时,y=0;当x<-2或x>0时,
y_____0;当x在_____范围内时,y>0;当x=_____时,y有最大值_____. 19.函数y=(2k+1)x-3x+k中,当k 时,图象是直线,当k 时,图象是抛物线;当k 时,抛物线经过原点。
20.已知抛物线y=5x+(m-4)x+1-m的顶点在y轴的正半轴上,则m
的值为
21.抛物线y=3x+bx+c的顶点坐标为(,0),则b= ,c= 22.函数y=ax-2中,当x=1时,y=-4,则函数的最大值是
23.二次函数y=ax+bx+c的图象如图所示,则a 0,b 0,c 0(填“>”“<”或“=”)
24.已知二次函数y=x+bx+c的图象过(1,0),(2,5)两点,求这个二次函数的表达式。
25.已知二次函数y=ax+bx+c的图象开口向上,且经过(0,-1)和(3,5)两点,图象的顶点到x轴的距离等于3,求这个函数的表达式。
26.已知二次函数y=ax+bx+c的图象经过A(0,1),B(2,-1)两点
(1)求b和c的值 (2)试判断点P(-1,2)是否在此函数图象上
27.二次函数y=(m-2)x+(m+3)x+m+2的图象过点(0,5)(1)求m的值,并写出二次函数的表达式;
(2)求出二次函数图象的顶点坐标、对称轴。
28.已知直线y=-x+2与x轴交于A点,与y轴交于B点,一抛物线经过A、B两点且其对称轴为x=2,求
(1)这条抛物线的解析式; (2)这条抛物线的顶点坐标;(3)这条抛物线与x轴和y轴的交点及原点为顶点坐标的三角形的面积。