X线影像
- 格式:ppt
- 大小:18.69 MB
- 文档页数:163
X线影像质量及评价医学影像技术
1.解剖结构的可见程度:优质的X线影像应该能够清晰地显示出解剖结构,使医生能够准确地判断器官和组织的位置、形态和大小。
如果X线影像模糊或者出现伪影,将会给医生带来困扰,影响疾病的诊断和治疗。
2.对比度:X线影像的对比度是指影像中不同部位之间的灰度差异程度。
高对比度的影像能够清晰地显示组织和器官的边界,使医生更容易地识别病变和异常。
而低对比度的影像则会模糊不清,影响医生对病情的判断。
3.曝光量:X线影像的曝光量直接影响到影像的清晰度和细节展示。
曝光过度会导致影像过亮,影响医生对细小结构的观察;曝光不足则会使影像过暗,细节不清晰,影响诊断的准确性。
4.噪声:X线影像中的噪声会干扰医生对影像的解读。
噪声可能由于放射线源、检查参数设置不正确、设备故障等原因导致。
要获得清晰的影像,医学影像技术人员需要通过优化设备、设置适当的参数,减少噪声的干扰。
5.分辨率:X线影像的分辨率决定了其能够显示的最小细节。
高分辨率的影像能够清晰地显示组织和器官的微小结构,有助于医生对病变的诊断和判断。
低分辨率的影像则会模糊不清,影响医生的诊断准确性。
总的来说,高质量的X线影像不仅对医生准确诊断疾病至关重要,还能减少病患接受X线检查的辐射剂量,降低患者的健康风险。
医学影像技术人员需要不断学习和提升自己的专业技能,保证X线影像的质量达到最佳水平,为患者提供更好的医疗服务。
X 线是一种常用的医学影像技术,在医学诊断和治疗中发挥着重要的作用。
通过利用X 线的穿透性和吸收性,医生可以获取人体内部的影像信息,从而帮助诊断和治疗各种疾病。
本文将介绍X 线在医学影像领域的多个应用,包括诊断和治疗方面。
X 线应用的广泛性1.诊断疾病X 线在医学影像中最常见的应用是诊断骨骼和关节疾病。
通过骨骼X 线拍片,医生可以检测骨折、骨质疏松、关节炎等疾病。
此外,X 线还可以用于检测和诊断肺部疾病,如肺炎、肺结核、肺癌等。
通过胸部X 线,医生可以观察肺部的阴影和异常变化,帮助确定疾病的类型和程度。
2.指导治疗X 线在手术和治疗过程中起到了关键的作用。
在手术中,医生可以使用X 线引导手术操作,确保手术器械位置准确和操作进程。
在经导管介入治疗中,医生可以使用X 线实时观察导管的位置和进展,准确进行血管介入操作。
3.肿瘤治疗X 线被广泛应用于肿瘤放射治疗。
放射治疗通过使用高能X 线或其他辐射源,杀死癌细胞或阻止其生长。
这种治疗方法可以单独使用,也可以与手术或化疗等其他治疗方法结合使用,以提高肿瘤治疗的效果。
4.疾病监测X 线可以用于定期检查和监测疾病的进展。
例如,在肺部肿瘤治疗过程中,医生可以通过定期进行胸部X 线或C T 扫描来观察肿瘤的大小和变化,评估治疗效果。
这对于调整治疗方案或进行进一步的治疗决策非常重要。
X 射线在治疗中的具体应用1.放射治疗放射治疗是使用高能量的X 线束来直接照射肿瘤组织,以杀死癌细胞或抑制其生长。
这种治疗方法通常适用于肿瘤不能手术切除或已扩散到其他部位的情况。
放射治疗可以通过外部放射治疗机器(外照射)或内部放射源(内照射)实施。
外照射是最常见的方式,患者躺在治疗台上,机器会从不同的角度以高能量X 线束照射肿瘤。
内照射通常是将放射性物质直接植入肿瘤或周围组织中,以释放出X 线。
放射治疗可以用于多种癌症,如乳腺癌、前列腺癌、头颈部肿瘤等。
2.放射性碘治疗放射性碘治疗主要用于治疗甲状腺癌和甲状腺功能亢进症。
《医学影像成像原理》名词解释第一章1.X 线摄影(radiography):是X 线通过人体不同组织、器官结构的衰减作用,产生人体医疗情报信息传递给屏-片系统,再通过显定影处理,最终以X线平片影像方式表现出来的技术。
2.X 线计算机体层成像(computed tomography,CT):经过准直器的X线束穿透人体被检测层面;经人体薄层内组织、器官衰减后射出的带有人体信息的X 线束到达检测器,检测器将含有被检体层面信息X 线转变为相应的电信号;通过对电信号放大,A/D 转换器变为数字信号,送给计算机系统处理;计算机按照设计好的方法进行图像重建和处理,得到人体被检测层面上组织、器官衰减系数(¦)分布,并以灰度方式显示人体这一层面上组织、器官的图像。
3.磁共振成像(magnetic resonance imaging,MRI):通过对静磁场(B0)中的人体施加某种特定频率的射频脉冲电磁波,使人体组织中的氢质子(1H)受到激励而发生磁共振现象,当RF 脉冲中止后,1H 在弛豫过程中发射出射频信号(MR 信号),被接收线圈接收,利用梯度磁场进行空间定位,最后进行图像重建而成像的。
4.计算机X 线摄影(computed radiography,CR):是使用可记录并由激光读出X 线影像信息的成像板(IP)作为载体,经X 线曝光及信息读出处理,形成数字式平片影像。
5.数字X 线摄影(digital radiography,DR):指在具有图像处理功能的计算机控制下,采用一维或二维的X 线探测器直接把X 线影像信息转化为数字信号的技术。
6.影像板(imaging plate,IP):是CR 系统中作为采集(记录)影像信息的接收器(代替传统X 线胶片),可以重复使用,但没有显示影像的功能。
7.平板探测器(flat panel detector,FPD):数字X 线摄影中用来代替屏-片系统作为X 线信息接收器(探测器)。
X线照片影像的形成及其影响因素一、X线照片影像的形成1. X线照片影像的特性X线透过被照体时,由于被照体对X线的吸收、散射而减弱,透射线仁按原方向前进(散射线不形成影像),作用于屏-片体系,经显影加工后,则形成了密度不等的X线照片影像。
X线照片影像的形成,是利用了X线具有得穿透、荧光、感光等特性,以及被照体对X线吸收差异的存在。
2. X线相片的影像构成X线相片影像是X线诊断的依据,医生通过对照片的观察,对构成这幅影像的点、线赋予一定的内容,并理解其中的含义,这就是诊断。
对此重要的是,什么样的点和线可以在X线照片上显示出来,并能为人肉眼所识别,这就是医生最关心的影像细节的微小变化。
因为它是疾病早期诊断得征象,X线照片影像的质量问题,实质上指的就是微小细节的信息传递问题。
概括的讲,影像细节的表现主要取决于构成相片影像得四大要素:密度、对比度、锐利度及失真度。
前三者为构成相片影像的物理因素,后者为构成相片的几何因素。
二、X线相片影像的密度(一)定义密度为胶片乳剂膜在光的作用下致黑的程度。
已曝光胶片经冲洗后,还原的银颗粒沉积在胶片上,这种银颗粒对光起吸收和阻挡作用。
银颗粒越多,阻挡的光线越多,透过的光线就越少,照片越黑。
反之,银颗粒越少胶片越透明。
因此,密度可以根据透光率和阻光率来测量。
密度通常以D表示,入射光强度为I,透射光强度为I。
透光率为I / I。
,阻光率为透光率的倒数,即I。
/ I。
所谓密度(也称黑化度、浓度),就是阻光率以10为底数的对数。
D=IgI。
/ I 如透光率为1/10阻光率为10,密度则为1。
透光率为1/100,阻光率为100,密度则为2.。
照片密度可以通过光学密度计来测量,一般地说,适合诊断的密度范围在0.25~2.0之间,借助强光灯可以提高识别最高密度得能力。
(二)密度与感光效应的关系感光效应是X线对胶片得感光作用,而密度是胶片对感光效应的记录。
与感光效应有关的因素如下。
X射线的因素:管电压(Vp)、管电流(A)、照射时间(t)、焦-片距(D。
医学影像学X线摄影理论基础在医学影像学中,X线摄影是一项常见且重要的技术,被广泛应用于临床诊断和治疗过程中。
本文将介绍X线摄影的理论基础,包括X 线的起源、原理、成像技术和安全注意事项等内容。
一、X线的起源与原理X线是1895年由德国物理学家威廉·康拉德·伦琴发现的一种高能电磁辐射。
X线具有穿透力强、能量高以及产生对比效果等特点,使其成为一种理想的医学成像工具。
X线的产生是通过将电子束照射到目标物质上,并使其产生电离辐射而实现的。
具体来说,高能电子轰击物质时,会引起物质内部的电子迁移和能量转换,从而产生X射线辐射。
这些X射线经过滤波器、准直器等设备后,通过特定的探测器捕捉到,并最终转化为影像。
二、X线摄影成像技术在X线摄影中,成像技术的选择是至关重要的。
常见的X线成像技术包括常规X线摄影、数字化X线摄影和计算机断层扫描(CT)。
1. 常规X线摄影常规X线摄影是传统的成像技术,使用感光胶片来记录影像。
这种技术适用于各种不同部位的摄影,如胸部、骨骼等。
常规X线摄影具有较低的成本和简单的操作特点,是临床应用中最常见的X线成像技术之一。
2. 数字化X线摄影数字化X线摄影利用数字探测器将X射线转化为电信号,再经过电子设备的处理和转换,最终生成数字化的影像。
这种技术具有成像速度快、重复性好以及影像质量高等优点。
数字化X线摄影广泛应用于胸部、骨骼和牙科等领域。
3. 计算机断层扫描(CT)计算机断层扫描是一种通过旋转式X射线源和多个探测器进行成像的技术。
CT扫描能够提供更详细、精确的断层结构信息,对于内脏器官和病变的检测具有更高的敏感性和特异性。
CT技术在大量疾病诊断和治疗中发挥着重要的作用。
三、X线摄影的安全注意事项在使用X线摄影技术时,必须严格遵守相关的安全操作规范,以最大限度地减少辐射对人体的影响。
1. 辐射防护操作人员应佩戴适当的防护服和防护设备,以减少接受辐射的风险。
同时,需要通过合理的设备设置和定期的辐射监测来确保工作环境的辐射水平符合安全标准。
医学影像学x线总结医学影像学是一门研究人体器官和组织结构、功能及病变的医学专业,其中X线摄影技术被广泛应用于临床诊断。
本文将对医学影像学X线技术进行总结,并探讨其在临床应用中的重要性。
一、X线摄影技术的原理X线摄影技术是利用X射线的穿透能力,通过投射X射线束到人体,然后接收和记录透过人体的X射线在胶片上所形成的影像,进而提取有关人体结构和病变的信息。
这项技术可以为医生提供直观的影像信息,有助于正确诊断疾病。
二、常见的X线检查1. 胸部X线检查:胸部X线检查广泛应用于肺部疾病的诊断,可以发现肺部肿瘤、肺炎、肺结核等疾病,同时还可以评估心脏和胸廓的形态。
2. 骨骼X线检查:骨骼X线检查主要用于骨折、脱位、骨肿瘤等骨骼疾病的诊断,通过X线片可以准确判断骨折的位置、骨折线的形态以及骨折片段的移位情况。
3. 消化道X线检查:消化道X线检查包括口腔摄影、胃肠道钡餐检查等,可以全面观察消化道的结构和功能,帮助医生诊断消化道疾病,如食管狭窄、胃溃疡、结肠炎等。
4. 泌尿系统X线检查:该检查主要包括尿路造影、膀胱造影和肾盂造影等,可以观察泌尿系统各部分的形态、功能和排泄情况,对泌尿系统结石、肾盂肿瘤等疾病的诊断起到重要作用。
三、X线检查的优势和局限性X线摄影技术作为最早最常用的医学影像学技术之一,具有以下优势:1. 无创性:X线检查无需进行手术或穿刺,避免了传统的侵入性检查方法带来的痛苦和风险。
2. 准确性:X线片能够清晰展现人体内部的结构和病变,为医生提供准确的诊断依据。
3. 快速性:X线检查通常可以在较短时间内完成,加快疾病确诊的速度。
然而,X线检查也存在一些局限性:1. X线只能显示组织的密度差异,对于某些病变的检测较为困难,如早期肿瘤和软组织疾病。
2. X射线对人体组织有一定的辐射损伤作用,需要避免频繁和过量的检查。
3. X线技术对于骨骼结构的分辨并不理想,对于柔软的组织结构难以提供足够的解剖信息。
四、未来的发展方向随着医学影像学技术的进步,X线检查将不断发展和创新。
第十一章 X 线照片影像X 线照射被检体后,形成有射线对比的信息,经投影至胶片上,形成二维图像的潜影,再由显影处理,形成黑白分明的X 线片影像。
第一节 照片密度把胶片乳剂膜在光作用下致黑的程度叫照片影像密度,又叫黑化度,或X 线照片透明度(银粒子颗粒沉积的致密度)。
将X 线照片掛在观片灯上观察,见到照片影像是由黑白不同的密度值组成的图像;胶片最黑部,受X 线照射多,光学密度大,黑化度好,透亮度大,示组织结构密度小胶片最透明区(白色),受X 线照射少或无,光学密度小,黑化度差,不透 亮差,示组织结构密度大1、 产生原理:是胶片上AgBr 经光照后放出Ag + →Ag +在显影液作用下变成银粒子(照片黑色)→银粒子受光照时,吸收光线,显示黑色2、人体组织密度 空气:组织结构密度小,X 线穿过多,落在胶片上的X 线曝光多,银粒子颗粒沉积多,呈黑色照片密度大骨:组织结构密度大,X 线穿过少,落在胶片上X 线少银粒子沉积少或无,照片呈白色,密度小3、照片密度表示方法 用照片透明度与不透明(阻光率)来测量T (透光率)=O (阻光率)= = D (密度)=1g 经研究,人眼对光强的感觉是:若进入眼的光强分别为10、100、1000……时,人眼感到光强是等差级数关系,即1、2、3…..这一关系符合常用对数的数值关系,即:1g10=1 1g100=2 1g1000=3故把光学密度D 定义为:阻光率的对数值,以公式表示为D=1g I I O 1 TI O I I OI I OI如果入射光强为1,透射光强分别为入射光的 、 、则密度值故透光率与D 成反比二、照片密度值及其测定〈自学〉三、影响照片密度的因素 (一)照射量 X 线管电流和照射时间乘积。
用mAS 表示,与D 有关,不同的照射量,在照片上得到不同密度值A —B 段(趾部)斜率低,D 小,反映密度值上升与曝光量不成比例,示感光量不足B —C 段(直线部)呈直线上升,是曝光量最恰当区,D 与mAs 成正比 C —D 段:(肩部)曝光量增加,密度上升少,为曝光过度部分D —E 段(反转部)增加曝光量,密度值反而减小故正确曝光量,照射量与密度成正比,曝光过度或不足,密度变化<照射量变化(二)管电压—决定X 线的硬度(穿透力)照片密度值与管电压n 次方成正比1 10 1 100 1 1000管电压升高时增加X线穿透力,使X线穿物体后达胶片上X线量多,使照片密度增加(三)摄影距离(焦—片距)照片的密度与摄影距离的平方成反比,如距离增加一倍,光源强度减弱四倍,密度降低为获大照片衰度,应尽力缩短摄影距离(四)增感屏(屏—胶组合)X线照射物体→透过光照射增感屏→屏上荧光物质受光照射产生激发状态→放出荧光使胶片感光故屏可吸收X线,转成大量荧光使胶片感光,提高照片密度感光效应增加20—100倍,高速大于低(五)被照体厚度和密度;照片密度随被照体厚度和密度增加而降低(六)胶片感光特性:胶片感光度大,照片密度大,绿敏胶片>普通型(七)照片冲洗因素显影过度(显温,时间)——照片密度增加显影不足(显温,时间)——照片密度降低第二节照片对比度X线对比度:X线透过被照体后,形成在空间的X线强度差异胶片对比度:X线胶片对人体组织吸收X线差异的放大能力,即胶片反差系数(r值)照片对比度:X线照片上各组织间影像在密度上的差别一、照片对比度的概念照片上相邻组织影像的密度差别叫照片对比度(亦叫光学对比度)用K表示(照片对比度)K=D1—D2由图示D1=1g D2=1gI OI1I O I2K=D 1—D 2=1g — 1g =医用X 光片是双面药膜构成,所观对比度D=2 1g= =2 (K=1)+(K=1)=(K=2)二、影响照片对比度的因素(一)X 线对比度 X 线透过物体后,在空间形成X 线强度的差别1、被照体本身因素 人体对X 线的吸收形式主要是光电吸收和康吴吸收(1)被照体对X 线吸收与该物质密度成正比,组织密度小者,吸收X 线少,与高密度组织形成X 线对比度大(2)相同密度的组织,其厚度增加时,对X 线吸收大,X 线对比度发生变化2、射线因素——管电压KV(1)高KV (100KV )摄影时,骨、肌、脂肪对X 线吸收不接原子序数,而决定于每克物质电子数,故其吸收差小,所获照片对比度低(2)低电压摄影时(<40—60KV )骨、肌、脂肪按原子序数的3次方吸收,吸收差大,X 线照片对比度大(3)为获良好对比度,管电压使用范围软组织摄影 20KV —40KV (软X 线摄影)I O I 1 I O I 2 I 2 I 1 100 1普通摄影 40KV —100KV 其中40—60KV 为高对比照片高电压摄影 >100KV —150KV(二)胶片对比度 胶片对穿过人体组织的X 线放大程度又叫反差系数1、胶片对比度系数(r 值)表示胶片时X 线对比度的放大能力r (反差系数)= , 越高,X 线胶片对比度大r 值大者,比r 值小的胶片获对比度大2、屏胶组合使用增感屏投照不仅提高密度,还可提高对比度,图示,屏胶组合时,胶片特性曲线B 左移3、显影处理(1)显影液浓度大,对比度大,反之则小(2)显影液PH 值,PH 值大,对比度大,反之则小(3)显影液温度:一定范围(18—21°)升高,对比度高;过高‘过低、对比度下降。
医学影像学的影像构成
医学影像学的影像构成主要包括X线影像、CT影像、MRI影像和
超声影像四种类型。
每种影像技术都有其独特的特点和应用场景,能
够为医生提供全面的诊断信息。
首先是X线影像,它是最常用的医学影像技术之一。
X线影像通过
透过人体组织的方式,显示出人体内部的骨骼结构和软组织情况。
X
线影像在骨折、肺部感染等疾病的诊断中起着至关重要的作用。
其次是CT影像,也称为计算机断层扫描。
CT影像利用X射线通
过横断面成像的方式,可以显示出更为详细的组织结构。
在脑部和腹
部疾病的诊断中,CT影像能够提供更为清晰的影像,帮助医生做出准
确的诊断。
第三种是MRI影像,磁共振成像。
MRI影像通过利用磁场和无损
高频脉冲波照射人体部位,产生信号并形成图像。
MRI影像在脑部、
关节等部位的检查中具有优势,可以显示出更为清晰的软组织结构。
最后是超声影像,也称为超声波成像。
超声影像利用声波在人体组
织中的传播和反射来形成图像。
超声影像适用于产科、心脏病等领域,具有无辐射、无创伤的特点。
综上所述,医学影像学的影像构成主要包括X线影像、CT影像、MRI影像和超声影像四种技术。
每种影像技术都有其独特的特点和应
用场景,能够为医生提供全面的诊断信息,帮助医生做出准确的诊断
和治疗方案。
医学影像学在临床诊断中发挥着不可替代的作用,为患者的健康提供了重要保障。
X线影像设备的构成1. 概述X线影像设备是一种常用于医疗诊断和治疗的设备,通过使用X射线技术来观察和捕捉人体内部的影像。
它由多个重要组成部分组成,以确保准确和清晰的影像结果。
本文将介绍X线影像设备的主要构成和功能。
2. X射线发生器X射线发生器是X线影像设备的核心部件之一。
它产生X射线,并将其通过X射线管束传输到病患身体部位。
X射线发生器通常由高电压电源和X射线管组成。
高电压电源为X射线管提供所需的高电压,使其能够产生高能量的X射线。
3. X射线管X射线管是X线影像设备的另一个重要组成部分。
它由阴极和阳极组成,通过电子加速和碰撞产生X射线。
当电子从阴极射向阳极时,它们会与阳极材料产生碰撞,释放出X射线。
4. 支架系统支架系统是用于固定X射线发生器和探测器的重要组成部分。
它由电机、轨道和伸缩臂等组成,可以根据需要移动和定位X射线发生器和探测器。
通过支架系统,医生可以选择不同的角度和位置来获取适合诊断的影像。
5. 探测器探测器是用于接收和记录X射线通过人体产生的影像的设备。
它可以是传统的胶片式探测器,也可以是现代的数字探测器。
传统的胶片式探测器使用感光胶片记录影像,而数字探测器将影像转化为数字信号,并通过计算机系统进行处理和存储。
6. 遮挡器和过滤器遮挡器和过滤器用于控制X射线的传播和强度,以获取更清晰的影像。
遮挡器可以阻止X射线传播到不需要成像的部位,从而减少辐射剂量。
过滤器则用于调整X射线的能量和吸收性能,以优化影像的对比度和细节。
7. 控制系统控制系统是用于控制和操作X线影像设备的关键部分。
它包括控制面板、触摸屏和计算机系统等。
通过控制系统,医生可以调整X射线的参数,如曝光时间、电压和电流等,以获得最佳的影像质量。
8. 显示器和存储系统显示器和存储系统用于查看和存储X射线影像。
显示器通常是高分辨率的液晶显示器,可以清晰显示影像细节。
存储系统可以将影像保存为数字文件,并通过计算机网络进行传输和共享。
影像学x线的作用原理
影像学X线的作用原理是通过X射线在物体中的吸收和散射来获得影像信息。
X射线是一种高能量电磁辐射,具有穿透力强、对物质的吸收能力高等特点。
当X射线通过物体时,会与物体中的原子相互作用。
主要包括以下三种过程:
1. 透射:X射线通过物体的空隙或低密度区域时,不会与物体中的原子发生相互作用,从而透射出来。
透射的强度与物质的密度和厚度有关,低密度和薄的物质透射程度较高。
2. 吸收:X射线通过物体的高密度区域时,会与物体中的原子相互作用,被原子内部的电子吸收,并转化为能量。
吸收的程度取决于物质的原子序数和密度,密度较高的物质吸收程度较大。
3. 散射:X射线通过物体时,还会与物体中的原子发生散射作用。
散射分为一次散射和二次散射。
一次散射是由于X射线与物体中的原子发生散射,改变了射线的方向。
二次散射是指一次散射的射线再次与原子发生散射,形成的较弱散射。
散射对于影像质量有一定影响,主要是增加了背景噪音和降低了对比度。
根据吸收和散射过程,通过探测器接收透射和散射的X射线衰减程度,并计算并转化为灰度值,进而形成影像。
这些灰度值可以在显示器上呈现出物体的内部
结构和组织密度等信息,用于诊断和研究。
X线照片影像的形成及其影响因素首先,X射线的发射与质量是影响X线照片影像质量的重要因素之一、X射线的电压和电流的选择对于照片的影像质量有很大影响。
较高的电压能够产生更具穿透力的X射线,但过高的电压会导致图像过曝或烧伤,而较低的电压则会导致图像欠曝。
适当的电流控制可以确保X射线的稳定发射,以防止出现曝光不均匀或曝光不足的情况。
其次,影像质量还与成像设备的性能有关。
包括X射线源的稳定性、成像仪的成像灵敏度以及成像分辨率等。
X射线源的稳定性直接影响到X射线的发射量和发射质量的稳定性,而成像仪的灵敏度决定了对X射线的接收能力,分辨率则决定了图像的清晰度。
此外,体内组织结构的异常情况也会对X线照片影像产生影响。
例如,骨骼密度的变化、肿瘤的存在、身体内部的金属植入物等,都会引起X射线的衰减和散射,从而产生图像上的结构改变。
这就需要医生和技师在拍摄时根据患者的具体情况进行相应调整,以获取更准确的诊断信息。
此外,放射影像质量还受到射线与物体之间的距离和角度的影响。
较短的拍摄距离使得X射线更集中,从而产生更高的解剖细节,而较长的拍摄距离有助于减少散射辐射。
角度的选择也会影响到图像的可视化效果,如胸部摄影时,选择不同的拍摄角度可以更好地展示肺部的阴影。
另外,曝光参数的选择也对图像质量有重要影响。
包括曝光时间、曝光系数和对比度的选择等。
适当的曝光时间可以保证图像的清晰度,而曝光系数的选择可以影响图像上不同组织结构的灰度值分布。
对比度的选择可以使得图像上的不同组织结构更为清晰可见。
总结来说,X线照片影像的形成受到X射线的发射与质量、成像设备的性能、体内组织结构的异常情况、射线与物体之间的距离和角度、曝光参数的选择等多个因素的影响。
正确调整这些因素可以获得更清晰、更准确的医学影像。