直线与椭圆-弦长公式复习课程
- 格式:doc
- 大小:112.00 KB
- 文档页数:4
直线与椭圆的位置关系教案高三数学二轮复习专题教学目标:1.通过数形结合与代数运算弄清直线与椭圆位置关系的判断方法。
2.掌握直线与与椭圆相交、相离、相切时各自特点与相关题型。
3.掌握解决直线与椭圆综合问题的方法(联立设而不求用韦达定理解参数,重运算、巧设、巧算、巧解、特殊情况)高考中直线与圆锥曲线的综合应用压轴试题,具体表现为弦长与面积问题,最值与范围问题、定点与定值问题、存在性问题等。
教学方法:充分发挥学生在学习中的主体地位,引导学生活动、观察、思考、合作、探究、归纳、交流、反思,促进形成研究氛围和合作意识,提升运算能力。
教学过程:一、复习回顾直线与椭圆的位置关系及其判断1.位置关系:相交、相切、相离2.判别方法(代数法)联立直线与椭圆的方程消元得到一元二次方程组(1)△>0直线与椭圆相交有两个公共点;(2)△=0直线与椭圆相切有且只有一个公共点;(3)△<0直线与椭圆相离无公共点.3.直线与椭圆相交时弦长公式设直线方程y =kx +m ,椭圆方程x 2a 2+y 2b 2=1 (a >b >0).直线与椭圆的两个交点为A (x 1,y 1),B (x 2,y 2),则|AB |=(x 1-x 2)2+(y 1-y 2)2=x x kx m kx m ⎡⎤-++-+⎣⎦221212()()() =1+k 2·(x 1+x 2)2-4x 1x 2或|AB |=1+1k2·(y 1+y 2)2-4y 1y 2. 4.对于中点弦问题,常用的解题方法是点差法,步骤为: ①设点:即设出弦的两端点坐标;②代入:即代入椭圆方程;③作差:即两式相减,再用平方差公式展开;④整理:即转化为斜率与中点坐标的关系式,然后求解. 二、题型设计及其讲解例 1.已知椭圆221259x y +=,直线l :45400x y -+=,椭圆上是否存在一点,到直线l 的距离最小?最小距离是多少?点拨分析:法一:数形结合、切线求解法二:椭圆上设点,运用点到直线的距离公式强调运算法三:运用椭圆的参数方程思考:最大距离为多少?例2 已知椭圆C :x 2a 2+y 2b 2=1 (a >b >0)的离心率为63,短轴一个端点到右焦点的距离为 3 。