直线与椭圆的位置关系(2课) 椭圆弦长公式)
- 格式:ppt
- 大小:543.50 KB
- 文档页数:22
第40讲 直线和椭圆的位置关系[玩前必备]一、直线与椭圆的位置关系1.位置关系的判断直线与椭圆方程联立方程组,消掉y ,得到Ax 2+Bx +C =0的形式(这里的系数A 一定不为0),设其判别式为Δ,(1)Δ>0⇔直线与椭圆相交;(2)Δ=0⇔直线与椭圆相切;(3)Δ<0⇔直线与椭圆相离.2.弦长公式(1)若直线y =kx +b 与椭圆相交于两点A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2|x 1-x 2|=1+1k2|y 1-y 2|. (2)焦点弦(过焦点的弦):最短的焦点弦为通径长2b 2a,最长为2a . [玩转典例]题型一 直线与圆的位置关系的判断例1 若直线y =kx +1与椭圆x 25+y 2m=1总有公共点,则m 的取值范围是( ) A .(1,+∞)B .(0,+∞)C .(0,1)∪(1,5)D .[1,5)∪(5,+∞)例2 已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C : (1)有两个不重合的公共点;(2)有且只有一个公共点;(3)没有公共点.[玩转跟踪]1.(2020·全国高三课时练习(理))已知直线y =kx -k -1与曲线C :x 2+2y 2=m(m>0)恒有公共点,则m 的取值范围是( )A .[3,+∞)B .(-∞,3]C .(3,+∞)D .(-∞,3)2.(2020·全国高三课时练习)若直线2244mx ny x y +=+=和圆没有交点,则过点(,)m n 的直线与椭圆22194x y +=的交点个数为( ) A .2个 B .至多一个 C .1个 D .0个题型二 椭圆的弦长问题例3 如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,过椭圆右焦点F 作两条互相垂直的弦AB 与CD .当直线AB 的斜率为0时,|AB |=4.(1)求椭圆的方程;(2)若|AB |+|CD |=487,求直线AB 的方程.[玩转跟踪]1.已知椭圆x 22+y 2=1与直线y =x +m 交于A ,B 两点,且|AB |=423,则实数m 的值为( ) A .±1B .±12 C. 2 D .±22.椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1,右焦点为F 2,离心率e =12,过F 1的直线交椭圆于A ,B 两点,且△ABF 2的周长为8.(1)求椭圆E 的方程;(2)若直线AB 的斜率为3,求△ABF 2的面积.题型三 中点弦问题例4 (1)已知椭圆x 22+y 2=1,则斜率为2的平行弦中点的轨迹方程为________________. (2)焦点是F (0,5 2),并截直线y =2x -1所得弦的中点的横坐标是27的椭圆的标准方程为________________. 例5 如图,已知椭圆x 22+y 2=1的左焦点为F ,O 为坐标原点,设过点F 且不与坐标轴垂直的直线交椭圆于A ,B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G横坐标的取值范围.[玩转跟踪]1.过椭圆x 216+y 24=1内一点P (3,1),且被点P 平分的弦所在直线的方程是( ) A .4x +3y -13=0B .3x +4y -13=0C .4x -3y +5=0D .3x -4y +5=02.已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称,求实数m 的取值范围.题型四 椭圆大题例6 设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433. (1)求椭圆的方程;(2)设A ,B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点,若AC ―→·DB ―→+AD ―→·CB―→=8,O 为坐标原点,求△OCD 的面积.[玩转跟踪]1.已知动点M 到两定点F 1(-m,0),F 2(m,0)的距离之和为4(0<m <2),且动点M 的轨迹曲线C 过点N ⎝⎛⎭⎫3,12. (1)求m 的值;(2)若直线l :y =kx +2与曲线C 有两个不同的交点A ,B ,且OA ―→·OB ―→=2(O 为坐标原点),求k 的值.[玩转练习]1.若直线mx +ny =4和圆O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数为( ) A .至多一个B .2C .1D .02.椭圆4x 2+9y 2=144内有一点P (3,2),则以P 为中点的弦所在直线的斜率为( )A .-23B .-32C .-49D .-943.已知直线y =-x +1与椭圆x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,若椭圆的离心率为22,焦距为2,则线段AB 的长是( ) A.223B.423C. 2 D .24.设F 1,F 2分别是椭圆x 24+y 2=1的左、右焦点,若椭圆上存在一点P ,使(OP ―→+OF 2―→)·PF 2―→=0(O 为坐标原点),则△F 1PF 2的面积是( )A .4B .3C .2D .15.(多选)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,点M (2,1)在椭圆C 上,直线l 平行于OM 且在y 轴上的截距为m ,直线l 与椭圆C 交于A ,B 两个不同的点.下面结论正确的有( )A .椭圆C 的方程为x 28+y 22=1B .k OM =12C .-2<m <2D .m ≤-2或m ≥26.(多选)已知B 1,B 2是椭圆x 2a 2+y 2b 2=1(a >b >0)短轴上的两个顶点,点P 是椭圆上不同于短轴端点的任意一点,点Q 与点P 关于y 轴对称,则下列四个命题中正确的是( )A .直线PB 1与PB 2的斜率之积为定值-a 2b 2 B .PB 1―→·PB 2―→>0C .△PB 1B 2的外接圆半径的最大值为a 2+b 22aD .直线PB 1与QB 2的交点M 的轨迹为双曲线7.已知椭圆M :x 2a 2+y 2=1,圆C :x 2+y 2=6-a 2在第一象限有公共点P ,设圆C 在点P 处的切线斜率为k 1,椭圆M 在点P 处的切线斜率为k 2,则k 1k 2的取值范围为( ) A .(1,6)B .(1,5)C .(3,6)D .(3,5)8.(一题两空)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为12,点A 在椭圆C 上,|AF 1|=2,∠F 1AF 2=60°,过F 2与坐标轴不垂直的直线l 与椭圆C 交于P ,Q 两点,N 为线段PQ 的中点.则椭圆C 的方程为________;若点M 的坐标为⎝⎛⎭⎫0,18,且MN ⊥PQ ,则线段MN 所在的直线方程为_____________.9.中心为原点,一个焦点为F (0,52)的椭圆,截直线y =3x -2所得弦中点的横坐标为12,则该椭圆的方程是____________.10.过点M (-2,0)的直线m 与椭圆x 22+y 2=1交于P 1,P 2两点,线段P 1P 2的中点为P ,设直线m 的斜率为k 1(k 1≠0),直线OP 的斜率为k 2,则k 1k 2的值为__________.11.(2020·上饶模拟)已知两定点A (-1,0)和B (1,0),动点P (x ,y )在直线l :y =x +2上移动,椭圆C 以A ,B 为焦点且经过点P ,则椭圆C 的离心率的最大值为________.12.(一题两空)已知椭圆C 的两个焦点为F 1(-1,0),F 2(1,0),且经过点E ⎝⎛⎭⎫3,32. (1)椭圆C 的方程为____________.(2)过F 1的直线l 与椭圆C 交于A ,B 两点(点A 位于x 轴上方),若AF 1―→=2F 1B ―→,则直线l 的斜率k 的值为________.13.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),长半轴与短半轴的比值为2. (1)求椭圆C 的方程;(2)设经过点A (1,0)的直线l 与椭圆C 相交于不同的两点M ,N .若点B (0,1)在以线段MN 为直径的圆上,求直线l 的方程.14.在直角坐标系xOy 中,长为2+1的线段的两端点C ,D 分别在x 轴,y 轴上滑动,CP ―→= 2 PD ―→.记点P 的轨迹为曲线E .(1)求曲线E 的方程;(2)经过点(0,1)作直线l 与曲线E 相交于A ,B 两点,OM ―→=OA ―→+OB ―→,当点M 在曲线E 上时,求直线l 的方程.15.如图,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,点A 为椭圆C 上任意一点,点A 关于原点O 的对称点为点B ,有|AF 1|+|BF 1|=4,且∠F 1AF 2的最大值为π3. (1)求椭圆C 的标准方程;(2)若A ′是点A 关于x 轴的对称点,设点N (-4,0),连接NA 与椭圆C 相交于点E ,直线A ′E 与x 轴相交于点M ,试求|NF 1|·|MF 2|的值.。
1.直线和椭圆位置关系判定方法概述1直线斜率存在时221y kx bmx ny =+⎧⎨+=⎩⇒222()210m k n x kbnx b +++-=当0∆>时直线和椭圆相交当0∆=时直线和椭圆相切当0∆<时直线和椭圆相离2直线斜率不存在时22221x x y ab =⎧⎪⎨+=⎪⎩判断y 有几个解注:01无论直线斜率存在与否,关键是看联立后的方程组有几组解,而不是看""∆。
02直线和椭圆位置关系的判断只有这种“坐标法”,无几何法。
2.直线和椭圆相交时1弦长问题弦长公式22121221111AB k x x k y y a k∆=+-=+=+-注:2121212()4x x x x x x -=+-而12x x +和12x x 可用韦达定理解决,不必求出1x 和2x 的精确值,“设而不求”思想初现。
2三角形面积1过x 轴上一定点H 的直线l 与椭圆22221x y a b +=交于A 、B 两点,求AOB S ∆1212AOB S OH y y ∆=- 02过y 轴上一定点H 的直线l 与椭圆22221x y b a+=交于A 、B 两点,求AOB S ∆1212AOB S OH x x ∆=- 03弦任意,点任意12S ∆=弦长×点线距注:仍然蕴含“设而不求”思想。
3弦的中点问题01中点弦所在直线方程问题02平行弦中点轨迹03共点弦中点轨迹04其他问题类型题一:直线与椭圆位置1.已知直线2+=kx y 和椭圆12322=+y x ,当k 取何值时,此直线与椭圆:(1)相交;(2)相切;(3)相离。
2.已知直线2+=kx y 与椭圆2222=+y x 相交于不同的两点,求k 的取值范围。
3.点P 在椭圆284722=+y x 上,则点P 到直线01623=--y x 的距离的最大值为_____,最小值为________.类型题二:弦长公式1.已知椭圆:1922=+y x ,过左焦点1F 作倾斜角为6 的直线交椭圆于B A ,两点,求弦AB 的长。
直线与椭圆的弦长公式
1.椭圆与直线的关系
椭圆是一种闭合曲线,可以由一组参数来表示。
椭圆与一般的直线是可以关联的,可以根据一定的关系,通过椭圆的参数来求解椭圆与直线的弦长。
2.根据给定参数公式求解椭圆与直线的弦长
当椭圆的参数为$(h,k),a,b$时,其与直线的交点可以求得。
而这条直线与椭圆相切时对应的弦长,可以用下面的公式来计算:
\begin{equation}
S=2a\pi \cdot \int_{x_0}^{x_1} \sqrt{\frac{1+(2hx+b^2-a^2)^2}{4a^2(x-h)^2+b^2}} \, \mathrm{d}x
\end{equation}
其中,$x_{0}$和$x_{1}$是椭圆最高点$(-h,k+b)$和最低点$(-h,k-b)$的横坐标,即$x |_{0}=-h+\frac{a^2-b^2}{2h}$,$x |_{1}=-h-\frac{a^2-
b^2}{2h}$。
3.应用
椭圆与直线的弦长公式,可以应用在多种场景中,其中最常见的就是利用椭圆与直线的弦长关系来求解数学问题。
比如,根据已知的线段长度得出直线与椭圆的弦长,从而可以解决许多古代测地学、运动学和结构学中的问题。
椭圆与直线的弦长公式,也可以用来解决有关扇形、正多边形、椭圆形和抛物线的许多问题。
直线与椭圆位置关系(经典)本文介绍了直线与椭圆的位置关系以及弦长计算方法。
1.点与椭圆的位置关系对于椭圆$x^2/a^2+y^2/b^2=1$,点$P(x,y)$在椭圆内部的充要条件是$x^2/a^2+y^2/b^21$,在椭圆上的充要条件是$x^2/a^2+y^2/b^2=1$。
2.直线与椭圆的位置关系设直线$l: Ax+By+C=0$,椭圆$C: x^2/a^2+y^2/b^2=1$,联立$l$与$C$,消去某一变量$(x$或$y)$得到关于另一个变量的一元二次方程,此一元二次方程的判别式为$\Delta$,则$l$与$C$相离的充要条件是$\Delta0$。
3.弦长计算计算椭圆被直线截得的弦长,往往是设而不求,即设弦两端坐标为$P_1(x_1,y_1)$,$P_2(x_2,y_2)$,则$|P_1P_2|=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}=1+kx_1-x_2=1+\frac{1}{k}(y_1-y_2)$($k$为直线斜率)。
题目:已知椭圆$\frac{x^2}{5m}+\frac{y^2}{m}=1$,直线$y=kx+1$,求实数$m$的取值范围使得直线与椭圆有公共点。
解法一:将直线方程代入椭圆方程,得到关于$x$的一元二次方程,其判别式为$\Delta=m-5k-1$,要使直线与椭圆有交点,需要$\Delta\geq0$,即$m\geq5k+1$。
另外要注意,当$m=5k+1$时,直线与椭圆可能只有一个交点,在这种情况下也算有公共点。
因此,实数$m$的取值范围为$m\geq1$且$m\neq5$。
解法二:观察椭圆方程,发现其长轴在$x$轴上,短轴在$y$轴上,因此,当$m5$时,椭圆焦点在$y$轴上,与直线的交点只有$1$个或$3$个。
因此,要使直线与椭圆有公共点,需要$m\geq5$。
另外,当$m=5$时,椭圆退化成一个点,直线与该点有交点,因此也算有公共点。
直线与椭圆的位置关系1.直线与椭圆的位置关系.设直线l :Ax +By +C =0,椭圆C :12222=+b y a x 联立⎪⎩⎪⎨⎧=++=+012222C By Ax b y a x 得02=++p nx mx (1)若l 与C 相离的⇔Δ<0;(2)l 与C 相切⇔Δ=0;(3)l 与C 相交于不同两点⇔Δ>0.2.弦长公式 设直线与椭圆交于点P 1(x 1,y 1),P 2(x 2,y 2)则|P 1P 2|=221221)()(y y x x -+- 212212111y y kx x k -+=-+=(k 为直线斜率) 一,直线与椭圆的位置关系例题1、判断直线03=+-y kx 与椭圆141622=+y x 的位置关系例题2、若直线)(1R k kx y ∈+=与椭圆1522=+my x 恒有公共点,求实数m 的取值范围.二、弦长问题例题3、 已知长轴为12,短轴长为6,焦点在x 轴上的椭圆,过它对的左焦点1F 作倾斜解为3π的直线交椭圆于A ,B 两点,求弦AB 的长.例4、已知椭圆1222=+y x 的左右焦点分别为1F ,2F ,若过点P (0,-2)及1F 的直线交椭圆于A,B 两点,求⊿ABF 2的面积练习、已知椭圆1422=+y x 及直线m x y +=. (1)当m 为何值时,直线与椭圆有公共点?(2)若直线被椭圆截得的弦长为5102,求直线的方程.三、中点弦问题例题5、已知椭圆C 的焦点分别为12(F F -,长轴长为6,设直线2y x =+交椭圆C 于A 、B 两点,求线段AB 的中点坐标。
例题6、如果焦点是F (0,±52)的椭圆截直线3x -y -2=0所得弦的中点横坐标为21,求此椭圆方程.例7. 已知椭圆1222=+y x (1)求过点⎪⎭⎫ ⎝⎛2121,P 且被P 平分的弦所在直线的方程;(2)求斜率为2的平行弦的中点轨迹方程;(3)过Q(2,1)引椭圆的割线,求截得的弦的中点的轨迹方程;(4)椭圆上有两点A 、B ,O 为原点,且有直线OA 、OB 斜率满足K OA ·K OB =-1/2,求线段AB 中点M 的轨迹方程.四、对称问题例题8、已知椭圆13422=+y x C :,试确定m 的取值范围,使得对于直线m x y l +=4:,椭圆C 上有不同的两点关于该直线对称.五、最值问题类型1:焦点三角形角度最值-------最大角法(求离心率问题)例1. 已知椭圆C :22221(0)x y a b a b+=>>两个焦点为12,F F ,如果曲线C 上存在一点Q ,使12FQ F Q ⊥,求椭圆离心率的最小值。
第2课时 椭圆方程及性质的应用必备知识·自主学习导思 1.直线与椭圆的位置关系有哪些? 2.弦长公式是什么?设P(x 0,y 0),椭圆x 2a 2 +y 2b 2 =1(a>b>0),则点P 与椭圆的位置关系如表所示:位置关系 满足条件 P 在椭圆外 x 20 a 2 +y 20 b 2 >1 P 在椭圆上 x 20 a 2 +y 20 b 2 =1 P 在椭圆内x 20 a 2 +y 20 b 2<1判断直线和椭圆位置关系的方法直线y =kx +m 与椭圆x 2a 2 +y 2b 2 =1(a >b >0)的位置关系的判断方法:联立⎩⎪⎨⎪⎧y =kx +m ,x 2a 2+y 2b 2=1, 消去y ,得关于x 的一元二次方程.当Δ>0时,方程有两个不同解,直线与椭圆相交; 当Δ=0时,方程有两个相同解,直线与椭圆相切; 当Δ<0时,方程无解,直线与椭圆相离. 3.弦长公式设直线l :y =kx +m(k≠0,m 为常数)与椭圆x 2a 2 +y 2b 2 =1(a>b>0)相交,两个交点分别为A(x 1,y 1),B(x 2,y 2).弦长公式①:|AB|=1+k 2 ·(x 1+x 2)2-4x 1x 2 . 弦长公式②:|AB|=1+1k2 ·(y 1+y 2)2-4y 1y 2 .1.辨析记忆(对的打“√”,错的打“×”).(1)若直线的斜率一定,则当直线过椭圆的中心时,弦长最大.( ) (2)直线x 2 -y =1被椭圆x 24+y 2=1截得的弦长为 5 .( )(3)已知椭圆x 2a 2 +y 2b 2 =1(a >b >0)与点P(b ,0),过点P 可作出该椭圆的一条切线.( )(4)直线y =k(x -a)(k≠0)与椭圆x 2a 2 +y 2b 2 =1的位置关系是相交.( )提示:(1)√.根据椭圆的对称性可知,直线过椭圆的中心时,弦长最大.(2)√.由x 2 -y =1得y =x 2 -1,代入x 24 +y 2=1,解得两交点坐标A(0,-1),B(2,0).|AB|=(0-2)2+(-1-0)2 = 5 .(3)×.因为P(b ,0)在椭圆内部,过点P 作不出椭圆的切线.(4)√.直线y =k(x -a)(k≠0)过点(a ,0)且斜率存在,所以直线y =k(x -a)与椭圆x 2a 2 +y 2b 2 =1的位置关系是相交.2.直线y =kx -k +1(k≠0)与椭圆x 29 +y 24 =1的位置关系是( )A .相交B .相切C .相离D .不确定【解析】选A.直线y =kx -k +1=k(x -1)+1(k≠0)过定点(1,1),且该点在椭圆内部,因此直线必与椭圆相交.3.(2020·沈阳高二检测)椭圆ax 2+by 2=1()a>0,b>0 与直线y =1-x 交于A ,B 两点,过原点与线段AB 中点的直线的斜率为32 ,则ba的值为( ) A .33 B .233 C .932 D .2327【解析】()x 1,y 1 ,B ()x 2,y 2 ,由⎩⎪⎨⎪⎧ax 2+by 2=1y =1-x 得()a +b x 2-2bx +b -1=0, 则x 1+x 2=2b a +b .设线段AB 的中点为C ,则x C =b a +b .将x C =b a +b 代入y =1-x 得到y C =aa +b.因为k OC =aa +b b a +b=a b =32 ,故b a =233 .4.(教材二次开发:习题改编)椭圆x 216 +y 24 =1上的点到直线x +2y - 2 =0的最大距离是________.【解析】设直线x +2y +c =0与椭圆x 216 +y 24=1相切.由⎩⎪⎨⎪⎧x +2y +c =0,x 216+y 24=1,消去x 整理得8y 2+4cy +c 2-16=0.由Δ=16(32-c 2)=0得c =±4 2 .当c =4 2 时,符合题意(c =-4 2 舍去).即x +2y +4 2 =0与椭圆x 216 +y 24 =1相切,椭圆x 216 +y 24 =1上的点到直线x +2y - 2 =0的最大距离即为两条平行线之间的距离d =|-2-42|12+22 =10 .答案:10关键能力·合作学习类型一 直线与椭圆的位置关系(数学运算) 【典例】1.若直线mx +ny =4与⊙O :x 2+y 2=4没有交点,则过点P(m ,n)的直线与椭圆x 29+y 24=1的交点个数为( ) A .2个 B .至多一个 C .1个 D .0个2.已知椭圆E :x 28 +y 24 =1,直线l :y =x +m 与椭圆E 有两个公共点,则实数m 的取值范围是__________. 【解析】4m 2+n 2>2,所以m 2+n 2<4.所以-2<m<2,-2<n<2.所以点P(m ,n)在椭圆x 29 +y 24 =1内,故过点P(m ,n)的直线与椭圆x 29 +y 24 =1有2个交点.2.由⎩⎪⎨⎪⎧x 28+y 24=1,y =x +m , 消去y 得3x 2+4mx +2m 2-8=0.因为直线l 与椭圆E 有两个公共点, 所以Δ=16m 2-12(2m 2-8)>0, 解得-2 3 <m <2 3 ,所以实数m 的取值范围是(-2 3 ,2 3 ). 答案:(-2 3 ,2 3 )直线与椭圆位置关系的判断方法【补偿训练】在平面直角坐标系Oxy 中,经过点(0, 2 )且斜率为k 的直线l 与椭圆x 22 +y 2=1有两个不同的交点P 和Q ,求k 的取值范围.【解析】由已知条件知直线l 的方程为y =kx + 2 ,代入椭圆方程得x 22 +(kx + 2 )2=1,整理得⎝⎛⎭⎫12+k 2 x 2+2 2 kx +1=0, 直线l 与椭圆有两个不同的交点P 和Q 等价于Δ=8k 2-4⎝⎛⎭⎫12+k 2 =4k 2-2>0,解得k <-22 或k >22, 所以k 的取值范围为⎝⎛⎭⎫-∞,-22 ∪⎝⎛⎭⎫22,+∞ . 类型二 弦长及中点弦问题(数学运算)【典例】过椭圆x 216 +y 24 =1内一点M(2,1)引一条弦,使弦被M 点平分.(1)求此弦所在的直线方程. (2)求此弦长.【思路导引】(1)方法一:联立方程,消元后利用根与系数的关系和中点坐标公式求解. 方法二:点差法(2)设弦的两端点分别为A(x 1,y 1),B(x 2,y 2),利用弦长公式求解.【解析】(1)方法一:设所求直线方程为y -1=k(x -2).代入椭圆方程并整理, 得(4k 2+1)x 2-8(2k 2-k)x +4(2k -1)2-16=0. 又设直线与椭圆的交点为A(x 1,y 1),B(x 2,y 2),则x 1,x 2是方程的两个根, 于是x 1+x 2=8(2k 2-k )4k 2+1.又M 为AB 的中点,所以x 1+x 22 =4(2k 2-k )4k 2+1 =2,解得k =-12 .故所求直线的方程为x +2y -4=0.方法二:设直线与椭圆的交点为A(x 1,y 1),B(x 2,y 2). 又M(2,1)为AB 的中点,所以x 1+x 2=4,y 1+y 2=2.又A ,B 两点在椭圆上,则x 21 +4y 21 =16,x 22 +4y 22 =16. 两式相减得(x 21 -x 22 )+4(y 21 -y 22 )=0.于是(x 1+x 2)(x 1-x 2)+4(y 1+y 2)(y 1-y 2)=0.所以y 1-y 2x 1-x 2 =-x 1+x 24(y 1+y 2) =-12 ,即k AB =-12 .又直线AB 过点M(2,1), 故所求直线的方程为x +2y -4=0.(2)设弦的两端点分别为A(x 1,y 1),B(x 2,y 2),由⎩⎪⎨⎪⎧x +2y -4=0,x 216+y 24=1,得x 2-4x =0, 所以x 1+x 2=4,x 1x 2=0, 所以|AB|=1+k 2·(x 1+x 2)2-4x 1x 2=1+⎝⎛⎭⎫-122·42-4×0 =2 5 .直线被椭圆截得的弦长的求法思路 (1)求两交点坐标,转化为两点间距离. (2)用公式来求.设直线斜率为k ,直线与椭圆两交点为A(x 1,y 1),B(x 2,y 2),则|AB|=1+k 2 ·|x 1-x 2|=1+1k2 ·|y 1-y 2|. 提醒:在解决直线与椭圆相交问题时,一般要消元化为一元二次方程,常用根与系数的关系,此时易忽视对所化一元二次方程判断判别式大于0.已知动点P 与平面上两定点A(- 2 ,0),B( 2 ,0)连线的斜率的积为定值-12 .(1)试求动点P 的轨迹方程C ;(2)设直线l :y =kx +1与曲线C 交于M ,N 两点,当|MN|=423时,求直线l 的方程. 【解析】(1)设动点P 的坐标是(x ,y),由题意得,k PA ·k PB =-12 .所以y x +2 ·y x -2 =-12 ,化简整理得x 22+y 2=1.故P 点的轨迹方程C 是x 22 +y 2=1(x≠± 2 ).(2)设直线l 与曲线C 的交点M(x 1,y 1),N(x 2,y 2),由⎩⎪⎨⎪⎧y =kx +1,x 22+y 2=1,得(1+2k 2)x 2+4kx =0.所以x 1+x 2=-4k1+2k 2 ,x 1·x 2=0.|MN|=1+k 2 ·(x 1+x 2)2-4x 1·x 2 =423,整理得k 4+k 2-2=0, 解得k 2=1或k 2=-2(舍). 所以k =±1,经检验符合题意. 所以直线l 的方程是y =±x +1, 即x -y +1=0或x +y -1=0.类型三 与椭圆有关的综合问题(逻辑推理、数学运算)【典例】已知椭圆E :x 2a 2 +y 2b 2 =1(a >b >0)的左右焦点分别为F 1,F 2,上顶点为M ,且△MF 1F 2为面积是1的等腰直角三角形. (1)求椭圆E 的方程;(2)若直线l :y =-x +m 与椭圆E 交于A ,B 两点,以AB 为直径的圆与y 轴相切,求m 的值. 【思路导引】(1)根据已知条件求出a ,b ,从而得到椭圆方程. (2)依据以AB 为直径的圆的圆心到y 轴的距离等于半径,列方程求m. 【解析】(1)由题意可得M(0,b),F 1(-c ,0),F 2(c ,0),由△MF 1F 2为面积是1的等腰直角三角形得12 a 2=1,b =c ,且a 2-b 2=c 2,解得b =c =1,a= 2 ,则椭圆E 的方程为x 22 +y 2=1.(2)设A(x 1,y 1),B(x 2,y 2),联立⎩⎪⎨⎪⎧x 22+y 2=1,-x +m =y ⇒3x 2-4mx +2m 2-2=0,有Δ=16m 2-12(2m 2-2)>0, 即- 3 <m < 3 ,x 1+x 2=4m3 ,x 1x 2=2m 2-23 ,可得AB 中点横坐标为2m3 ,|AB|=1+1 ·(x 1+x 2)2-4x 1x 2 = 2 ·16m 29-8m 2-83 =433-m 2 ,以AB 为直径的圆与y 轴相切, 可得半径r =12 |AB|=2|m|3 ,即233-m 2 =2|m|3,解得m =±62 ∈(- 3 , 3 ),则m 的值为±62.解决直线和椭圆综合问题的注意点(1)根据条件设出合适的直线的方程,当不知直线是否有斜率时需要分两种情况讨论. (2)在具体求解时,常采用设而不求、整体代换的方法,可使运算简单.(3)不要忽视判别式的作用,在解题中判别式起到了限制参数范围的作用,这一点容易忽视. 【补偿训练】已知椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的右焦点为F ,直线l :y = 3 x 与椭圆C 相交于A ,B两点(A 在B 上方),若AF ⊥BF ,则椭圆C 的离心率为________.【解析】由椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的右焦点为F ,直线l :y = 3 x 与椭圆C 相交于A ,B 两点,AF ⊥BF ,可知三角形OAF 是正三角形,A ⎝⎛⎭⎫12c ,32c ,所以|FB|= 3 c ,由椭圆的定义可得 3 c +c =2a , 可得e =c a =23+1 = 3 -1.答案: 3 -1备选类型 椭圆方程及其性质的综合应用(逻辑推理、数学运算)【典例】如图所示,已知椭圆E :x 2a 2 +y 2b 2 =1(a>b>0)过点(0, 2 ),且离心率e =22.(1)求椭圆E 的方程;(2)设直线l :x =my -1(m ∈R )交椭圆E 于A ,B 两点,判断点G ⎝⎛⎭⎫-94,0 与以线段AB 为直径的圆的位置关系,并说明理由.【思路导引】(1)由椭圆经过的一点及离心率公式,再结合a 2=b 2+c 2即可求出a ,b ,c 的值,从而可得椭圆E 的方程.(2)方法一:判断点与圆的位置关系,只需把点G 与圆心的距离d 与圆的半径r 进行比较,若d>r ,则点G 在圆外;若d =r ,则点G 在圆上;若d<r ,则点G 在圆内.方法二:只需判断GA → ·GB → 的符号,若GA → ·GB → =0,则点G 在圆上;若GA → ·GB →>0,则点G 在圆外;若GA → ·GB → <0,则点G 在圆内.【解析】(1)由已知得⎩⎪⎨⎪⎧b =2,c a =22,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a =2,b =2,c =2.所以椭圆E 的方程为x 24 +y 22=1.(2)方法一:设点A(x 1,y 1),B(x 2,y 2),AB 的中点为H(x 0,y 0).由⎩⎪⎨⎪⎧x =my -1,x 24+y 22=1得(m 2+2)y 2-2my -3=0, 所以y 1+y 2=2m m 2+2,y 1y 2=-3m 2+2,从而y 0=m m 2+2.所以|GH|2=⎝⎛⎭⎫x 0+94 2+y 20 =⎝⎛⎭⎫my 0+54 2+y 20 =(m 2+1)y 20 +52 my 0+2516 .|AB|24 =(x 1-x 2)2+(y 1-y 2)24 =(1+m 2)(y 1-y 2)24 =(1+m 2)[(y 1+y 2)2-4y 1y 2]4=(1+m 2)(y 20 -y 1y 2), 故|GH|2-|AB|24 =52 my 0+(1+m 2)y 1y 2+2516 =5m 22(m 2+2) -3(1+m 2)m 2+2 +2516 =17m 2+216(m 2+2)>0,所以|GH|>|AB|2 , 故点G ⎝⎛⎭⎫-94,0 在以线段AB 为直径的圆外. 方法二:设点A(x 1,y 1),B(x 2,y 2), 则GA → =⎝⎛⎭⎫x 1+94,y 1 ,GB →=⎝⎛⎭⎫x 2+94,y 2 . 由⎩⎪⎨⎪⎧x =my -1,x 24+y 22=1得(m 2+2)y 2-2my -3=0,所以y 1+y 2=2m m 2+2,y 1y 2=-3m 2+2,从而GA → ·GB →=⎝⎛⎭⎫x 1+94 ⎝⎛⎭⎫x 2+94 +y 1y 2= ⎝⎛⎭⎫my 1+54 ⎝⎛⎭⎫my 2+54 +y 1y 2=(m 2+1)y 1y 2+54 m(y 1+y 2)+2516=-3(m 2+1)m 2+2+52m 2m 2+2+2516=17m 2+216(m 2+2)>0,所以cos 〈GA → ,GB →〉>0.又GA → ,GB →不共线,所以∠AGB 为锐角. 故点G ⎝⎛⎭⎫-94,0 在以线段AB 为直径的圆外.解决与椭圆有关的综合问题的思路直线与椭圆的综合问题常与不等式、三角函数、平面向量以及函数的最值问题等知识联系在一起综合考查,解决这类问题常需要挖掘出题目中隐含的数量关系、垂直关系等,然后利用方程根与系数的关系构造等式或函数关系式进行合理的转化,这其中要注意利用根的判别式来确定参数的限制条件.椭圆的两个焦点坐标分别为F 1(- 3 ,0)和F 2( 3 ,0),且椭圆过点⎝⎛⎭⎫1,-32 . (1)求椭圆方程;(2)过点⎝⎛⎭⎫-65,0 作不与y 轴垂直的直线l 交该椭圆于M ,N 两点,A 为椭圆的左顶点,试判断∠MAN 的大小是否为定值,并说明理由. 【解析】(1)由题意设椭圆方程为x 2a 2 +y 2b 2 =1(a>b>0),将c = 3,a 2=b 2+c 2,代入椭圆方程得x 2b 2+3 +y 2b 2 =1, 又因为椭圆过点⎝⎛⎭⎫1,-32 ,得1b 2+3 +34b 2 =1,解得b 2=1,所以a 2x 24+y 2=1.(2)设直线MN 的方程为x =ky -65,联立直线MN 和椭圆的方程⎩⎨⎧x =ky -65,x24+y 2=1,得(k 2+4)y 2-125 ky -6425=0,设M(x 1,y 1),N(x 2,y 2),A(-2,0),y 1y 2=-6425(k 2+4) ,y 1+y 2=12k 5(k 2+4),则AM → ·AN →=(x 1+2,y 1)·(x 2+2,y 2)=(k 2+1)y 1y 2+45 k(y 1+y 2)+1625 =0,所以∠MAN =π2.课堂检测·素养达标1.若直线y =x +2与椭圆x 2m +y 23 =1有两个公共点,则m 的取值范围是( )A .m>1B .m>1且m≠3C .m>3D .m>0且m≠3【解析】x 2m +y 23=1中,m>0且m≠3,而直线y =x +2与椭圆x 2m +y 23=1有两个公共点,则⎩⎪⎨⎪⎧y =x +2,x 2m +y 23=1,化简可得()m +3 x 2+4mx +m =0, 所以Δ=()4m 2-4m ()m +3 =12m ()m -1 >0, 可得m>1或m<0,又因为m>0且m≠3,得m>1且m≠3.2.如果椭圆x 236 +y 29 =1的弦被点(4,2)平分,则这条弦所在的直线方程是( )A .x -2y =0B .x +2y -4=0C .2x +3y -12=0D .x +2y -8=0【解析】选D.设这条弦的两端点为A(x 1,y 1),B(x 2,y 2),斜率为k ,则⎩⎪⎨⎪⎧x 21 36+y 219=1,x 2236+y 229=1,两式相减再变形得x 1+x 236 +k y 1+y 29 =0.又弦中点为(4,2),故k =-12,故这条弦所在的直线方程为y -2=-12 (x -4),整理得x +2y -8=0.3.过椭圆x 225 +y 29=1的左焦点且斜率为1的弦AB 的长是____.【解析】椭圆的左焦点为(-4,0),由⎩⎨⎧y =x +4,x 225+y 29=1,得34x 2+200x +175=0, 所以x 1+x 2=-20034 ,x 1x 2=17534 .所以|AB|= 2 ×(x 1+x 2)2-4x 1x 2 = 2 ×⎝⎛⎭⎫-200342-4×17534 =9017. 答案:90174.已知椭圆x 2a 2 +y 22 =1(a > 2 )的左、右焦点分别为F 1,F 2.过左焦点F 1作斜率为-2的直线与椭圆交于A ,B 两点,P 是AB 的中点,O 为坐标原点,若直线OP 的斜率为14 ,则a 的值是________.【解析】设A(x 1,y 1),B(x 2,y 2),P(x 0,y 0),则⎩⎪⎨⎪⎧x 21a 2+y 21 b 2=1,x 22 a 2+y 22 b 2=1,两式相减得(x 1-x 2)(x 1+x 2)a 2 =-(y 1-y 2)(y 1+y 2)b 2 ,所以x 1+x 2y 1+y 2 =-a 2b 2 ·y 1-y 2x 1-x 2,所以x 0y 0 =2a 2b 2 =4,所以a 2=2b 2=4, 所以a =2. 答案:25.(2020·南昌高二检测)已知直线y =kx -1与焦点在x 轴上的椭圆C :x 24 +y 2b 2 =1(b>0)总有公共点,则椭圆C 的离心率取值范围是________. 【解析】因为椭圆焦点在x 轴上,所以b 2<4, 因为b>0,所以0<b<2;因为直线y =kx -1与椭圆总有公共点, 所以04 +(-1)2b 2 ≤1,因为b>0,所以b≥1, 综上1≤b<2,e =c a =1-b 2a2 =1-b 24 ∈⎝⎛⎦⎤0,32 .答案:⎝⎛⎦⎤0,32。