透射电子显微镜生物样品常规制样技术
- 格式:ppt
- 大小:1.63 MB
- 文档页数:15
电子显微镜中的样品制备技术电子显微镜已成为现代材料科学、生物医学和纳米技术等领域的重要工具。
在电子显微镜中,样品制备技术是获得高质量显微图像的前提和基础。
本文将介绍电子显微镜中常见的样品制备方法及其优缺点,以及发展趋势和未来展望。
一、常规样品制备方法1. 切割法切割法是常见的制备厚度为几十微米到数百纳米的样品。
它采用超薄切片机或离心切片机,将待观察的样品切成薄片。
切割时需要使用钻头或刀片,因此会对样品产生一定的物理损伤。
优点:制备快速,薄片厚度可控。
缺点:易产生物理损伤,较难对液态、柔软、脆性或粘性样品进行切割。
2. 磨削法磨削法是制备几微米到数十纳米厚度的样品。
它使用极细的研磨粒子,将样品表面磨削平整。
这种方法适用于金属、半导体和陶瓷等硬质材料,但对于柔软或易变形的物质效果不佳。
优点:适用于硬质材料,制备速度较快。
缺点:对柔软或易变形的物质效果不佳。
3. 薄膜法薄膜法是制备数十纳米以下的厚度,常见于电子器件等领域。
它使用蒸镀、溅射或离子束沉积等方法,在基底上制备所需厚度的薄膜。
这种方法制备出的薄膜平整度高、精度好。
优点:适用于制备薄膜结构,制备速度较快。
缺点:需要设备的辅助支持,且对于大型体积的样品需要进行打薄等后续制备。
二、先进样品制备方法电子显微镜对于颗粒物、生物样品、纳米材料等领域的要求越来越高,因此发展出了以下先进样品制备方法。
1. 离子切割法离子切割法是用离子束制造纳米结构的一种新型制备方法。
该技术在常温下进行,尤其适合对生物样品进行纳米加工。
先利用离子束在样品表面制造一个几百纳米至几微米的V形切槽,再使用扫描电子显微镜或透射电子显微镜对切槽部分进行裂解,使其成为两个平行的翼片。
优点:样品制备过程中不存在溶剂和温度等对样品的影响。
缺点:需要比电子束切割等技术更高的技术要求,且需要显微镜等高端仪器的支持。
2. 离子束雕刻法离子束雕刻法是将离子束聚焦在样品表面发生物理和化学效应,制造出所需的凹凸形状,制备尺度小于100纳米的电子器件、纳米结构和生物体系的一种技术。
透射电镜生物样品制作过程透射电镜生物样品制作过程大致经过取材、固定、脱水、浸透、包埋、切片及染色等步骤。
一. 取材取材时要注意的要点是:快、小、冷、净、准、避免机械损伤。
取材方法:将固定液滴在冰台上的卡片上,在麻醉后的动物身上快速用剪刀剪取一块组织,用预冷的过的缓冲液将剪下的组织洗净,迅速放到卡片上的固定液中,用刀片切去被镊子夹到和剪刀剪过的组织,后按实验的目的将组织切成0.5~1mm2的立方或横截面为1mm2的长方体。
用牙签将切好的组织块转移到装有固定液的小瓶中,贴好标签并置于4℃的冰箱中。
二.固定以下操作尽可能在4℃的环境下,使用的溶液也要保存在4℃的冰箱中。
1、戊二醛固定:用镊子轻轻的将组织块从固定液中取出,放在卡片上的固定液中,利用双面刀片把组织块切成小块状,放进盛有1~1.5ml的0.1%的戊二醛的固定液的细管中,将吸管放进真空箱中,将大气压抽到760托后取出,使组织块在戊二醛溶液中固定1小时。
2、漂洗:经戊二醛固定的组织块要用1~1.5ml的0.1%PBS缓冲溶液漂洗,漂洗的次数为5次,在漂洗到第四次时可以将组织留在PBS漂洗液中过夜,放入4℃的冰箱中。
第二天早晨再进行第五次漂洗。
3、四氧化锇固定:向漂洗过的组织中加入0.5ml的0.1%四氧化锇固定液,固定时间为2个小时。
由于四氧化锇具有毒性,因此操作在通风橱里进行。
4、漂洗四氧化锇:用0.1%PBS缓冲溶液漂洗剩余的四氧化锇,然后再漂洗两次,其时间间隔为10min。
三.脱水为了保证包埋介质完全渗入组织内部,必须事先将组织内的水分驱除干净,即用一种和水及包埋剂均能相混溶的液体来取代水,常用的脱水剂是乙醇和丙酮。
1、酒精脱水:用浓度梯度依次为30%、50%、70%、90%的酒精,依次浸泡组织,其浸泡的时间一般为10min。
当在70%梯度的酒精时,样品可以放置过夜。
2、丙酮脱水:用浓度梯度为90%、100%的丙酮浸泡组织,在纯丙酮中浸泡三次。
透射电镜制样步骤以及注意事项透射电子显微镜(Transmission Electron Microscope,简称TEM)是目前最常用的高分辨率电子显微镜,可以用于观察物质的微观结构。
制备TEM样品的过程非常重要,下面将详细介绍TEM制样的步骤以及需要注意的事项。
制备TEM样品的步骤一般包括样品的选择、固定与固化、切片、薄化、网格制备和贴膜等。
第一步是样品的选择,样品应具有研究价值且适合观察。
例如,生物样品可以是细胞、组织或器官的薄片,金属样品可以是扁平的块状、粉末或薄膜等。
第二步是固定与固化。
对于生物样品,常用的固定方法包括浸泡法、灌注法和切片冷冻法;对于无机样品,可以使用固定剂将样品固定在固定剂中。
第三步是切片。
将固定好的样品切割成薄片,一般要求薄片的厚度在100 nm以下,通常使用超薄切片机来进行切割。
第四步是薄化。
将切割好的样品进行薄化处理,使其达到TEM观察所需的薄度。
常见的薄化方法有机械薄化、电化学薄化和离子薄化等。
第五步是网格制备。
将薄化好的样品放置在铜网格上,网格的选取应该根据所研究样品的性质和需要进行选择。
最后一步是贴膜。
将组织切片或带有样品的网格进行贴膜,以保护样品并提高图像的对比度。
在以上步骤中,需要注意的事项有:1.样品在制备过程中要避免受到污染或氧化,尽量在纯净无尘的环境中进行操作。
2.固定剂的选择要合理,不同的样品可能需要使用不同的固定剂,应根据需要进行选择。
3.切片时要注意刀片的尖锐度和切割角度,以免对样品造成损伤或变形。
4.薄化过程中要控制好加工参数,以保证样品的均匀薄化。
5.制作网格时应选择合适的网格尺寸和类型,以适应观察需求。
6.贴膜时要使薄膜均匀平整,并避免出现气泡或杂质。
总之,TEM制样是一项复杂而关键的过程,要保证样品的质量和可观察性,需要仔细选择方法、控制操作参数、注意样品的保护与处理。
合理的样品制备能够获得高质量的TEM图像,并提供准确的实验数据和结论。
透射电子显微镜TEM之样品制备方法1TEM 样品台样品台的顶端2对样品的要求1. 样品一般应为厚度小于100nm的固体。
2. 感兴趣的区域与其它区域有反差。
3. 样品在高真空中能保持稳定。
4. 不含有水分或其它易挥发物,含有水分或其他易挥发物的试样应先烘干除去。
5. 对磁性试样要预先去磁,以免观察时电子束受到磁场的影响。
TEM样品常放置在直径为3mm的200目样品网上,在样品网上常预先制作约20nm厚的支持膜。
3纳米粉末样品的制备方法1. 纳米颗粒都小于铜网的小孔,因此要先制备对电子束透明的支持膜。
2. 将支持膜放在铜网上,再把粉末放在膜上,送入电镜分析。
3. 粉末或颗粒样品制备的关键取决于能否使其均匀分散到支持膜上。
4. 用超声波分散器将需要观察的粉末在分散介质(不与粉末发生作用)中分散成悬浮液。
5. 用滴管滴几滴在覆盖有支持膜的电镜铜网上,待其干燥(或用滤纸吸干)后, 即成为电镜观察用的粉末样品。
6. 微米粉末样品通过研磨转为纳米颗粒,如催化剂等。
4块状样品的制备方法4.1超薄切片法超薄切片方法多用于生物组织、高分子和无机粉体材料等。
超薄切片过程图4.2离子轰击减薄法离子轰击减薄法多用于矿物、陶瓷、半导体及多相合金等。
1. 将待观察的试样按预定取向切割成薄片,再经机械减薄抛光等过程预减薄至30-40μm的薄膜。
2. 把薄膜钻取或切取成尺寸为2.5-3mm的小片。
3. 装入离子轰击减薄装置进行离子轰击减薄和离子抛光。
原理:在高真空中,两个相对的冷阴极离子枪,提供高能量的氩离子流,以一定角度对旋转的样品的两面进行轰击。
当轰击能量大于样品材料表层原子的结合能时,样品表层原子受到氩离子击发而溅射、经较长时间的连续轰击、溅射,最终样品中心部分穿孔。
穿孔后的样品在孔的边缘处极薄,对电子束是透明的,就成为薄膜样品。
4.3电解抛光减薄法电解抛光减薄方法适用于金属与部分合金。
4.4聚焦离子束法适用于半导体器件的线路修复和精确切割。
透射电镜样品制备方法
首先,样品的准备是透射电镜制备的第一步。
在进行透射电镜
样品制备之前,需要选择合适的样品。
样品可以是固体材料、生物
组织、纳米材料等,根据研究的目的和对象进行选择。
在选择样品
的过程中,需要考虑样品的形态、尺寸、结构等因素,以确保样品
能够满足透射电镜观察和分析的要求。
其次,样品的制备过程需要严格控制。
对于固体材料样品,通
常需要将样品切割成薄片或薄膜,以确保透射电镜的电子束能够穿
透样品并产生清晰的像像。
对于生物组织样品,通常需要进行化学
固定、脱水、包埋等处理,以保持样品的形态和结构。
对于纳米材
料样品,通常需要将样品分散在适当的溶剂中,并在透射电镜网格
上制备成薄膜。
在样品制备的过程中,需要注意避免样品的污染和
损坏,确保样品的原貌和结构不受影响。
最后,在透射电镜样品制备完成后,需要进行适当的检测和验证。
可以通过光学显微镜、扫描电子显微镜等手段对样品进行初步
的观察和分析,以确保样品的质量和完整性。
在透射电镜观察之前,还需要对样品进行真空干燥等处理,以避免在透射电镜中产生气泡
和水膜等影响观察效果的问题。
总之,透射电镜样品制备是透射电镜观察和分析的基础,正确的样品制备方法对于获得准确、可靠的实验结果至关重要。
在进行透射电镜样品制备时,需要选择合适的样品、严格控制制备过程,并进行适当的检测和验证,以确保样品的质量和完整性。
希望本文提供的透射电镜样品制备方法能够对相关研究工作有所帮助。
透射电镜制样方法
透射电镜制样方法主要包括以下步骤:
1. 样品制备:首先需要选择合适的样品,并进行必要的前处理。
根据需要,可以使用传统的金相方法,如切片、打磨和腐蚀等来制备样品;也可以使用更先进的方法,如离子切片、聚焦离子束等来制备样品。
2. 高真空处理:将样品置于高真空环境下进行处理,以去除气体和水分的影响。
这可以通过在真空槽中加热样品、通入惰性气体等方法来实现。
3. 制备薄片:将制备好的样品制备成足够薄的薄片,通常厚度要求在几十纳米至几百纳米之间。
这可以通过使用超薄切片机或聚焦离子束来实现。
4. 电导涂层:为了提高样品的导电性,可以在样品表面涂上金薄层或碳薄层。
这可以通过蒸镀、溅射、离子镀等方法来实现。
5. 透射电镜成像:将制备好的样品放入透射电镜中,调整仪器参数,如加速电压、透镜聚焦等,进行成像。
可以使用像差校正技术、电子衍射等方法来提高成像质量。
需要注意的是,不同样品的制备方法会有一定差异,制备薄片时要注意避免样品的破裂和变形,电导涂层要均匀且致密,成像时要注意样品与探针的相对位置等
细节问题。
此外,透射电镜制样方法还包括一些先进的技术,如原位制备、低温制备、离子减薄等,可以根据需要选择适合的方法进行制备。