圆练习题及答案
- 格式:doc
- 大小:547.84 KB
- 文档页数:8
《圆的周长、面积》练习题一.选择题(共10题,共20分)1.把一个圆的半径按n:1的比放大,放大后与放大前圆的面积比是()。
A.n:1B.2n:1C.:1 D.:22.圆的面积与它半径成()比例。
A.正B.反C.不成3.强强要在方格纸上画一个圆,要求点(1,4)、(3,2)、(3,6)恰好在圆周上(如图),这个圆的圆心应该在()上。
A.(3,5)B.(4,4)C.(3,4)D.(5,4)4.圆的周长是它的半径的()倍。
A.πB.2πC.3.14D.6.285.画圆时,圆的周长为15.7cm,那么圆规两脚间的距离为()。
A.2.5cmB.5cmC.15.7cm6.一个圆的直径与一个正方形的边长相等,比较它们的面积()。
A.相等B.圆面积大C.正方形面积大D.不能确定7.如图。
以大圆的半径为直径画一小圆。
大圆的周长是小圆周长的()倍。
A.2B.4C.68.一个直径为2厘米的半圆面,它的周长是()厘米。
A.6.28B.3.14C.4.14D.5.149.在同圆或等圆中,扇形的大小和()有关。
A.直径B.半径C.圆心角10.一个圆的半径扩大2倍,那么面积和周长()。
A.面积和周长扩大2倍B.面积扩大4倍,周长扩大2倍 C.周长扩大4倍,面积扩大2倍二.判断题(共10题,共20分)1.如果圆的半径扩大2倍,那么它的周长扩大6倍,它的面积扩大9倍。
()2.把一张圆形纸片从不同方向折叠,折痕都经过圆心。
()3.任何一个圆的周长都是它直径长度的π倍。
()4.圆周率π=3.14。
()5.有两个面积相等的圆,他们的周长也一定相等。
()6.通过圆心的线段是半径。
()7.在一个圆内,剪去一个扇形后,剩下的部分仍是扇形。
()8.半圆的面积是圆面积的一半,半圆的周长也是圆周长的一半。
()9.量角器是把半圆分成180份制成的。
()10.周长相等的长方形正方形和圆,正方形的面积最大。
()三.填空题(共10题,共17分)1.把一个圆平均分成若干(偶数)等份,剪开后可以拼成一个近似的(),这个长方形的长相当于圆的(),宽相当于圆的()。
初三圆的练习题及答案初三圆的练习题及答案在初三数学学习中,圆是一个重要的几何概念。
掌握圆的性质和相关的计算方法对于解题非常关键。
本文将为大家提供一些圆的练习题及其答案,希望能够帮助大家更好地理解和应用圆的知识。
一、填空题1. 半径为5cm的圆的面积是多少?答案:面积=πr²=π×5²=25π cm²2. 已知一个圆的半径为8cm,求该圆的周长。
答案:周长=2πr=2π×8=16π cm3. 如果一个圆的面积是36π cm²,求该圆的半径。
答案:面积=πr²,36π=πr²,r²=36,r=6 cm二、选择题1. 以下哪个选项是圆的定义?A. 一个平面上的所有点到一个固定点的距离相等。
B. 一个平面上的所有点到一个固定点的距离之和相等。
C. 一个平面上的所有点到一个固定直线的距离相等。
D. 一个平面上的所有点到一个固定点的距离比例相等。
答案:A. 一个平面上的所有点到一个固定点的距离相等。
2. 以下哪个选项是圆的面积公式?A. 面积=πr²B. 面积=2πrC. 面积=πdD. 面积=πr答案:A. 面积=πr²三、计算题1. 已知一个圆的直径为12cm,求该圆的面积和周长。
答案:半径r=直径/2=12/2=6 cm面积=πr²=π×6²=36π cm²周长=2πr=2π×6=12π cm2. 一个圆的周长为18π cm,求该圆的半径和面积。
答案:周长=2πr=18π cm,解得r=9 cm面积=πr²=π×9²=81π cm²四、应用题1. 一个圆形花坛的半径为5 m,围绕花坛建一个小路,小路的宽度为2 m。
求小路的面积。
答案:外圆的半径=花坛半径+小路宽度=5+2=7 m内圆的半径=花坛半径=5 m小路的面积=外圆面积-内圆面积=π(外圆半径²-内圆半径²)=π(7²-5²)=π(49-25)=24π m²2. 一个圆形游泳池的直径为10 m,池边修建一条环形的跑道,跑道的宽度为2 m。
圆形练习题含答案一、选择题1. 圆的周长公式是()。
A. C = πdB. C = 2πrC. C = πrD. C = πd + 2r答案:B2. 半径为2厘米的圆的面积是()平方厘米。
A. 12.56B. 3.14C. 6.28D. 25.12答案:A3. 一个圆的直径是10厘米,那么它的半径是()厘米。
A. 5B. 10C. 15D. 20答案:A二、填空题1. 一个圆的半径是3厘米,那么它的直径是______厘米。
答案:62. 圆的面积公式是S = ______。
答案:πr²3. 如果一个圆的周长是31.4厘米,那么它的半径是______厘米。
答案:5三、计算题1. 求半径为4厘米的圆的周长和面积。
解:周长C = 2πr = 2 × 3.14 × 4 = 25.12厘米面积S = πr² = 3.14 × 4² = 50.24平方厘米2. 一个圆的直径是8厘米,求它的周长和面积。
解:半径r = 直径d ÷ 2 = 8 ÷ 2 = 4厘米周长C = πd = 3.14 × 8 = 25.12厘米面积S = πr² = 3.14 × 4² = 50.24平方厘米四、应用题1. 一个圆形花坛的直径是20米,如果绕花坛走一圈,需要走多少米?解:半径r = 直径d ÷ 2 = 20 ÷ 2 = 10米周长C = πd = 3.14 × 20 = 62.8米2. 一个圆形水池的半径是5米,它的占地面积是多少平方米?解:面积S = πr² = 3.14 × 5² = 3.14 × 25 = 78.5平方米五、判断题1. 圆的周长总是它的直径的π倍。
()答案:正确2. 半径为1厘米的圆的面积是3.14平方厘米。
()答案:错误(正确面积应为π × 1² = 3.14平方厘米)六、简答题1. 为什么圆的面积公式是S = πr²?答:圆的面积可以通过无限分割成无数个微小的扇形,然后将这些扇形累加起来得到。
初三数学圆练习题及答案一、选择题1. 圆的半径为5,圆心到直线的距离为3,则直线与圆的位置关系是()。
A. 相离B. 相切C. 相交D. 内含2. 已知圆的周长为6π,求圆的直径。
A. 3B. 6C. 9D. 123. 圆的半径为2,圆心到圆上一点的距离为2,则该点位于()。
A. 圆内B. 圆上C. 圆外D. 不能确定二、填空题4. 圆的直径为10,求圆的面积,结果保留π。
5. 已知圆的半径为3,求圆的周长。
6. 圆心到圆上任意一点的距离都等于半径,这个性质称为圆的()。
三、解答题7. 已知圆的半径为5,求圆的面积。
解:根据圆的面积公式,面积A=πr²,其中r为半径。
将半径r=5代入公式,得:A = π × 5² = 25π所以,圆的面积为25π。
8. 已知圆的周长为12π,求圆的半径。
解:根据圆的周长公式,周长C=2πr,其中r为半径。
将周长C=12π代入公式,得:12π = 2πr解得:r = 6所以,圆的半径为6。
9. 已知圆心到直线的距离为4,求直线与圆的交点个数。
解:根据圆的性质,当圆心到直线的距离小于半径时,直线与圆相交。
由于题目中未给出半径,无法确定直线与圆的交点个数。
需要更多信息才能解答此题。
答案:1. C2. B3. B4. 25π5. 6π6. 对称性7. 25π8. 6。
初三数学圆精选练习题及答案1.正确答案为C。
圆的切线垂直于圆的半径。
2.正确答案为A。
AB>2CD。
3.图中能用字母表示的直角共有4个。
4.正确答案为B。
CD-AB=4cm,根据勾股定理可得AB与CD的距离为14cm。
5.正确答案为120°。
圆周角等于弧所对圆心角的两倍,2×60°=120°。
6.正确答案为130°。
圆周角等于圆心角的两倍,2×100°=200°,而∠ACB为圆周角减去弧所对圆心角,200°-70°=130°。
7.正确答案为B。
根据正弦定理可得S AOB=(1/2)×20×20×sin120°=503cm2.8.正确答案为D。
由于OA=AB,所以∠OAB=∠OBA=30°,而∠BCO=90°-∠OAB=60°,所以∠BOC=2∠BCO=120°。
又因为∠XXX∠OCA=30°,所以∠AOC=120°,所以∠BOD=60°-∠OAB=30°,∠XXX∠OED=∠XXX°。
9.正确答案为A。
根据勾股定理可得d=20√3,所以R2=(d/2)2+202=400,r2=(d/2)2+102=100,所以R=20,r=10,两圆内切。
10.正确答案为225°。
圆锥的侧面展开图为一个扇形,圆心角为360°-2arctan(5/3),约为225°。
11.若一条弦把圆分成1:3两部分,则劣弧所对的圆心角的度数为 $120^\circ$。
12.在圆 $\odot O$ 中,若直径 $AB=10$ cm,弦$CD=6$ cm,则圆心 $O$ 到弦 $CD$ 的距离为 $2\sqrt{19}$ cm。
13.在圆 $\odot O$ 中,弦 $AB$ 所对的圆周角等于其所在圆周的一半。
圆的周长练习题及答案一、选择题1. 圆的周长公式是什么?A. C = πdB. C = 2πrC. C = πr²D. C = 2r答案:B2. 已知圆的半径为3厘米,其周长是多少?A. 18厘米B. 36厘米C. 6厘米D. 9厘米答案:B3. 如果一个圆的周长为44厘米,那么它的直径是多少?A. 7厘米B. 11厘米C. 14厘米D. 22厘米答案:C二、填空题4. 一个圆的直径为10厘米,其周长是______厘米。
答案:31.4厘米5. 如果圆的半径增加1厘米,其周长将增加______厘米。
答案:2π厘米6. 一个圆的周长是25.12厘米,那么它的半径是______厘米。
答案:4厘米三、计算题7. 一个自行车轮的直径是70厘米,求自行车轮转10圈的总路程。
答案:首先计算自行车轮的周长:C = πd = 3.14 × 70 = 219.8厘米。
然后计算10圈的总路程:219.8 × 10 = 2198厘米。
8. 已知一个圆的周长是628厘米,求这个圆的直径。
答案:使用周长公式C = πd,解得d = C ÷ π = 628 ÷ 3.14 ≈ 200厘米。
四、解答题9. 一个圆形花坛的周长是188.4米,求这个花坛的直径。
答案:根据周长公式C = πd,我们可以得到d = C ÷ π = 188.4 ÷ 3.14 ≈ 60米。
10. 一个圆的半径从2厘米增加到5厘米,求圆周长的变化量。
答案:首先计算原来的周长:C1 = 2πr1 = 2 × 3.14 × 2 = 12.56厘米。
然后计算增加后的周长:C2 = 2πr2 = 2 × 3.14 × 5 = 31.4厘米。
周长的变化量为:ΔC = C2 - C1 = 31.4 - 12.56 = 18.84厘米。
五、应用题11. 一个圆形游泳池的周长是100.48米,游泳池的深度是2米。
圆的练习题一.选择题1.⊙O是△ABC的外接圆,直线EF切⊙O于点A,若∠BAF=40°,则∠C等于()A、20°B、40°C、50°D、80°2.如图,BC是⊙O的直径,P是CB延长线上一点,P A切⊙O于点A,如果P A=, PB=1,那么∠APC等于()3.某工件形状如图所示,圆弧BC的度数为,AB=6厘米,点B到点C的距离等于AB,∠BAC=,则工件的面积等于()(A)4π(B)6π(C)8π(D)10π4.下列语句中正确的是()(1)相等的圆心角所对的弧相等;(2)平分弦的直径垂直于弦;(3)长度相等的两条弧是等弧;(4)经过圆心的每一条直线都是圆的对称轴.(A)1个(B)2个(C)3个(D)4个5.如图,两个等圆⊙O和⊙的两条切线OA、OB,A、B是切点,则∠AOB等于() (A)(B)(C)(D)6.如图,⊙A、⊙B、⊙C、⊙D、⊙E相互外离,它们的半径都是1,顺次连结五个圆心得到五边形ABCDE,则图中五个扇形(阴影部分)的面积之和是()(A)π(B)1。
5π(C)2π(D)2。
5π7。
在Rt△ABC中,已知AB=6,AC=8,∠A=.如果把Rt△ABC绕直线AC旋转一周得到一个圆锥,其表面积为S;把Rt△ABC绕直线AB旋转一周得到另一个圆锥,其表面积为S,那么S∶S()(A)2∶3(B)3∶4(C)4∶9(D)5∶128.圆锥的母线长为13cm,底面半径为5cm,则此圆锥的高线长为() A.6 cm B.8 cm C.10 cm D.12 cm9.已知⊙O1和⊙O2相外切,它们的半径分别是1厘米和3厘米.那么半径是4厘米,且和⊙O1、⊙O2都相切的圆共有()(A)1个(B)2个(C)5个(D)6个10.已知圆的半径为6。
5厘米,如果一条直线和圆心距离为6。
5厘米,那么这条直线和这个圆的位置关系是()(A)相交(B)相切(C)相离(D)相交或相离二.填空题1.已知:如图,AB是⊙O的直径,弦CD⊥AB于P,CD=10cm,AP︰PB=1︰5.则:⊙O的半径为。
圆精选练习题及答案一一、选择题(共8题,每题有四个选项,其中只有一项符合题意。
每题3分,共24 分):1. 下列说法正确的是()A.垂直于半径的直线是圆的切线B. 经过三点一定可以作圆C.圆的切线垂直于圆的半径D. 每个三角形都有一个内切圆2. 在同圆或等圆中,如果AB = 2CD ,则AB与CD的关系是()(A)AB > 2CD (B)AB = 2CD (C)AB V 2CD (D)AB = CD3. 如图(1),已知PA切O O于B,OP交AB于C,则图中能用字母表示的直角共有()个A.3B.4C.5D.6⑵4. 已知O O的半径为10cm,弦AB// CD,AB=12cm,CD=16cr则AB和CD的距离为()A.2cmB.14cmC.2cm 或14cmD.10cm 或20cm5. 在半径为6cm的圆中,长为2 - cm的弧所对的圆周角的度数为()A.30 °B.100C.120°D.130 °6. 如图(2),已知圆心角/ AOB勺度数为100° ,则圆周角/ ACB的度数是()A.80 °B.100 °C.120°D.130 °7. O O的半径是20cm,圆心角/ AOB=120 ,AB是O O弦,则S. AOB等于()A.25 .3 cmB.50 、3 cnfC.100 \ 3 cn iD.200 、3 cnf8. 如图(3),半径0A 等于弦AB,过B 作O 0的切线BC,取BC=AB,O 交O 0于E,AC 交O 0于点D,则BD 和DE 的度数分别为()、填空题:(每小题4分,共20分):11. 一条弦把圆分成1 :3两部分,贝U 劣弧所对的圆心角的度数为 12. 如果O O 的直径为10cm,弦AB=6cm 那么圆心O 到弦AB 的距离为 13. 在O O 中,弦AB 所对的圆周角之间的关系为 14. 如图(4), 。
九年级数学上册《圆》练习题及答案解析学校:___________姓名:___________班级:___________一、单选题1.下列说法正确的是()A.直径是弦,弦是直径B.过圆心的线段是直径C.圆中最长的弦是直径D.直径只有二条2.下列语句不正确的有()个.①直径是弦;①优弧一定大于劣弧;①长度相等的弧是等弧;①半圆是弧.A.1B.2C.3D.43.如图,在①O中,点B,O,C和点A,O,D分别在同一条直线上,则图中有()条弦.A.2B.3C.4D.54.下列说法正确的是()A.劣弧一定比优弧短B.面积相等的圆是等圆C.长度相等的弧是等弧D.如果两个圆心角相等,那么它们所对的弧也相等5.下列由实线组成的图形中,为半圆的是()A.B.C.D.6.下列说法正确的是()A.平分弦的直径垂直于弦B .半圆(或直径)所对的圆周角是直角C .相等的圆心角所对的弧相等D .若一条直线与一个圆有公共点,则二者相交二、填空题7.如图,已知在Rt△ABC 中,①ACB =90°,分别以AC ,BC ,AB 为直径作半圆,面积分别记为S 1,S 2,S 3,若S 3=9π,则S 1+S 2等于_____.8.如图,Rt ABC 中,90ACB ∠=︒,以点C 为圆心,BC 为半径的圆交AB 于D ,交AC 于点E ,40BCD ∠=︒,则A ∠=______.9.如图,圆中扇子对应的圆心角α(180α)与剩余圆心角β的比值为黄金比时,扇子会显得更加美观,若黄金比取0.6,则βα-的度数是__________.10.数学家赵爽在注解《周髀算经》时给出了“赵爽弦图”,如图所示,它是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,若直角三角形较短直角边长为6,大正方形的边长为10,则小正方形的边长为________.11.如图,在O 中,AB 为直径,8AB =,BD 为弦,过点A 的切线与BD 的延长线交于点C ,E 为线段BD 上一点(不与点B 重合),且OE DE =.(1)若35B ∠=︒,则AD 的长为______(结果保留π);(2)若6AC =,则DE BE=______.三、解答题12.如图,在Rt ABC 中,90ACB ∠=︒,以AC 为直径作O ,交AB 于点D ,E 为BC 的中点,连接DE 并延长交AC 的延长线于点E .(1)求证:DF 是O 的切线;(2)若2CF =,4DF =,求O 的半径.13.如图,点A ,B 分别在①DPE 两边上,且PA PB =,点C 在①DPE 平分线上.(1)连接AC ,BC ,求证:AC BC =;(2)连接AB 交PC 于点O ,若60APB ∠=︒,6PA =,求PO 的长;(3)若PO OC ,且点O 是PAB △的外心,请直接写出四边形P ACB 的形状.参考答案与解析:1.C【详解】解:A 、直径是弦,但弦不一定是直径,不符合题意;B 、过圆心的弦是直径,但线段不一定是直径,不符合题意;C 、圆中最长的弦是直径,符合题意;D 、直径有无数条,不符合题意,故选C .2.B【分析】根据圆的概念、等弧的概念、垂径定理、弧、弦直径的关系定理判断即可.【详解】解:①直径是弦,①正确;①在同圆或等圆中,优弧大于劣弧,①错误;①在同圆或等圆中,长度相等的弧是等弧,①错误;①半圆是弧,①正确;故不正确的有2个.故选:B .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3.B【详解】根据弦的概念,AB 、BC 、EC 为圆的弦,共有3条弦.故选B.4.B【分析】根据圆的相关概念、圆周角定理及其推论进行逐一分析判断即可.【详解】解:A.在同圆或等圆中,劣弧一定比优弧短,故本选项说法错误,不符合题意;B.面积相等的圆是等圆,故本选项说法正确,符合题意;C.能完全重合的弧才是等弧,故本选项说法错误,不符合题意;D.必须在同圆或等圆中,相等的圆心角所对的弧相等,故本选项说法错误,不符合题意.故选:B .【点睛】本题主要考查了圆周角定理及其推论、等弧、等圆、以及优弧和劣弧等知识,解题关键是理解各定义的前提条件是在同圆或等圆中.5.B【分析】根据半圆的定义即可判断.【详解】半圆是直径所对的弧,但是不含直径,故选B .【点睛】此题主要考查圆的基本性质,解题的根据熟知半圆的定义.6.B【分析】利用圆与圆的位置关系、垂径定理、圆周角定理等有关圆的知识进行判断即可【详解】A 、平分弦(不是直径)的直径垂直于弦,故本选项错误;B 、半圆或直径所对的圆周角是直角,故本选项正确;C 、同圆或等圆中,相等的圆心角所对的弧相等,故本选项错误;D 、若一条直线与一个圆有公共点,则二者相交或相切,故本选项错误,故选B .【点睛】本题考查直线与圆的位置关系,垂径定理,圆心角、弧、弦的关系,圆周角定理.能清楚的知道每个定理的条件和它对应的结论是解题的关键.7.9π.【分析】根据勾股定理和圆的面积公式,可以得到S 1+S 2的值,从而可以解答本题.【详解】解:①①ACB =90°,①AC 2+BC 2=AB 2,①S 1=π(2AC )2×12,S 2=π(2BC )2×12,S 3=π(2AB )2×12, ①S 1+S 2=π(2AC )2×12+π(2BC )2×12=π(2AB )2×12=S 3, ①S 3=9π,①S 1+S 2=9π,故答案为:9π.【点睛】本题考查勾股定理,解答本题的关键是利用数形结合的思想解答.8.20°.【分析】由半径相等得CB=CD,则①B=①CDB,在根据三角形内角和计算出①B=12(180°-①BCD)=70°,然后利用互余计算①A的度数.【详解】解:①CB=CD,①①B=①CDB,①①B+①CDB+①BCD=180°,①①B=12(180°-①BCD)=12(180°-40°)=70°,①①ACB=90°,①①A=90°-①B=20°.故答案为20°.【点睛】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了三角形内角和定理.9.90°##90度【分析】根据题意得出α=0.6β,结合图形得出β=225°,然后求解即可.【详解】解:由题意可得:α:β=0.6,即α=0.6β,①α+β=360°,①0.6β+β=360°,解得:β=225°,①α=360°-225°=135°,①β-α=90°,故答案为:90°.【点睛】题目主要考查圆心角的计算及一元一次方程的应用,理解题意,得出两个角度的关系是解题关键.10.2【分析】在Rt①ABC中,根据勾股定理求出AC,即可求出CD.【详解】解:如图,①若直角三角形较短直角边长为6,大正方形的边长为10,①AB =10,BC =AD =6,在Rt ①ABC 中,AC 8,①CD =AC ﹣AD =8﹣6=2.故答案为:2.【点睛】本题主要考查了勾股定理,熟练掌握勾股定理是解决问题的关键.11. 149π 2539 【分析】(1)根据圆周角定理求出①AOD =70°,再利用弧长公式求解;(2)解直角三角形求出BC ,AD ,BD ,再利用相似三角形的性质求出DE ,BE ,可得结论.【详解】解:(1)①270AOD ABD ∠=∠=︒,①AD 的长704141809ππ⋅⋅==; 故答案为:149π; (2)连接AD ,①AC 是切线,AB 是直径,①AB AC ⊥,①10BC ,①AB 是直径,①90ADB ∠=︒,①AD CB ⊥,①1122AB AC BC AD ⋅⋅=⋅⋅,①245 AD=,①325 BD==,①OB OD=,EO ED=,①EDO EOD OBD ∠=∠=∠,①DOE DBO△∽△,①DO DE DB DO=,①43245DE=,①52 DE=,①325395210 BE BD DE=-=-=,①5252393910DEBE==.故答案为:25 39.【点睛】本题主要考查圆的相关知识,相似三角形的判定和性质,解直角三角形等知识,熟练掌握各性质及判定定理,正确寻找相似三角形解决问题是解题的关键.12.(1)见解析(2)3【分析】(1)连接OD、CD,由AC为①O的直径知①BCD是直角三角形,结合E为BC的中点知①CDE=①DCE,由①ODC=①OCD且①OCD+①DCE=90°可得答案;(2)设①O的半径为r,由OD2+DF2=OF2,即r2+42=(r+2)2可得r=3,即可得出答案.(1)解:如图,连接OD、CD.①AC为①O的直径,①①ADC=90°,①①CDB=90°,即①BCD是直角三角形,①E为BC的中点,①BE=CE=DE,①①CDE=①DCE,①OD=OC,①①ODC=①OCD,①①ACB=90°,①①OCD+①DCE=90°,①①ODC+①CDE=90°,即OD①DE,①DE是①O的切线;(2)解:设①O的半径为r,①①ODF=90°,①OD2+DF2=OF2,即r2+42=(r+2)2,解得:r=3,①①O的半径为3.【点睛】本题主要考查了圆切线的判定与性质,等腰三角形的性质与判定,直角三角形斜边上的中线,勾股定理等等,熟知圆切线的性质与判定是解题的关键.13.(1)证明见解析(2)(3)正方形,理由见解析【分析】(1)证明①P AC①①PBC即可得到结论;(2)根据已知条件得到①APC=①BPC=30°,OP①AB于O,求得AO=3,再利用勾股定理即可得到结论;P A B C在以O为圆心,OP为半径的圆上,再证明①APB=①PBC=①BCA=①CAP=90°,可得(3)先证明,,,OBP BPC POB根据正方形的判定定理即可得到结论.四边形APBC为矩形,再证明45,90,(1)证明:①点C在①DPE平分线上,① APC BPC ∠=∠ ,又①P A =PB ,PC =PC ,①①P AC ①①PBC (SAS );.AC BC(2)解:①,,60,PA PB APOBPO APB ①①APC =①BPC =30°,OP ①AB 于O ;①P A =6,①AO =3, 22633 3.OP(3) 解:如图,①点O 是①P AB 的外心,①OA =OB =OP ,而OP =OC , ,,,P A B C 在以O 为圆心,OP 为半径的圆上,,AB PC 为圆的直径,①①APB =①PBC =①BCA =①CAP =90°,①四边形APBC 为矩形,PC 平分,APB ∠45,APC BPC,OP OB 45,90,OBP BPC POB①四边形APBC 为正方形.【点睛】本题考查了圆的综合题,全等三角形的判定和性质,正方形的判定,圆的确定,圆周角定理,正确的识别图形是解题的关键.。
圆练习题及答案【练习题一】题目:已知圆的半径为5厘米,求圆的周长和面积。
【答案】圆的周长公式为:C = 2πr将半径r = 5厘米代入公式,得:C = 2π * 5 = 10π ≈ 31.42厘米圆的面积公式为:A = πr²将半径r = 5厘米代入公式,得:A = π * 5² = 25π ≈ 78.54平方厘米【练习题二】题目:一个圆的直径是10厘米,求这个圆的半径和周长。
【答案】已知圆的直径d = 10厘米,半径r是直径的一半,所以:r = d / 2 = 10 / 2 = 5厘米圆的周长公式为:C = πd将直径d = 10厘米代入公式,得:C = π * 10 ≈ 31.42厘米【练习题三】题目:在一个圆中,弦AB的长度为8厘米,弦AB的圆心距为3厘米,求圆的半径。
【答案】设圆的半径为r厘米,弦AB的圆心距为3厘米,根据勾股定理,我们有:r² = (r - 3)² + 4²解这个方程,得:r² = r² - 6r + 9 + 166r = 25r = 25 / 6 ≈ 4.17厘米【练习题四】题目:一个圆的面积是78.54平方厘米,求圆的半径。
【答案】根据圆的面积公式:A = πr²已知面积A = 78.54平方厘米,我们可以求出半径r:78.54 = πr²r² = 78.54 / π ≈ 25r = √25 = 5厘米【练习题五】题目:已知圆的周长是31.42厘米,求圆的半径。
【答案】根据圆的周长公式:C = 2πr已知周长C = 31.42厘米,我们可以求出半径r:31.42 = 2πrr = 31.42 / (2π) ≈ 5厘米【练习题六】题目:在一个圆中,有一条弧长为5π厘米,圆心角为60度,求圆的半径。
【答案】已知弧长L = 5π厘米,圆心角θ = 60度,根据弧长公式:L = rθ / 180 * π将已知数值代入公式,得:5π = r * 60 / 180 * π5 = r * 60 / 180r = 5 * 180 / 60r = 15厘米以上是六道关于圆的练习题及其答案,希望对你有所帮助。
圆的有关练习题1.如图,AB 是⊙O 的弦,半径OA =2,∠AOB=120°,则弦AB 的长是( B ). (A )22 (B )32 (C )5 (D )532.如图,⊙O 的半径等于1,弦AB 和半径OC 互相平分于点M.求扇形OACB 的面积(结果保留π)解:∵弦AB 和半径OC 互相平分∴OC ⊥AB OM=MC=21OC=21OA 在Rt △OAM 中,sinA=21=OA OM ∴∠A=30° 又∵OA=OB ∴∠B=∠A=30° ∴∠AOB=120° ∴S 扇形=33601120ππ=⋅⋅3.如图,△ABC 内接于⊙O,AB =6,AC =4,D 是AB 边上一点,P 是优弧BAC 的中点,连结PA 、PB 、PC 、PD.(1)当BD 的长度为多少时,△PAD 是以AD 为底边的等腰三角形?并证明; (2)若cos∠PCB=55,求PA 的长. 解:(1)当BD =AC =4时,△PAD 是以AD 为底边的等腰三角形 ∵P 是优弧BAC 的中点 ∴弧PB =弧PC∴PB=PC∵BD=AC =4 ∠PBD=∠PCA ∴△PBD≌△PCA ∴PA=PD 即△PAD 是以AD 为底边的等腰三角形(2)由(1)可知,当BD =4时,PD =PA ,AD =AB-BD =6-4=2 过点P 作PE ⊥AD 于E ,则AE =21AD=1∵∠PCB=∠PAD ∴cos ∠PAD=cos ∠PCB=55=PA AE ∴PA=5 4、如图2,已知BD 是⊙O 的直径,⊙O 的弦AC ⊥BD 于点E ,若∠AOD=60°,则∠DBC 的度数为( A )A.30° B.40° C.50° D.60°5.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,若AB=10,CD=8,则线段OE 的长为 3 .图2E DC BAo4题图 5题图 6题图6.如图,已知△ABC 中,AB=BC ,以AB 为直径的⊙O 交AC 于点D ,过D 作DE ⊥BC ,垂足为E ,连结OE ,CD=3,∠ACB=30°.(1)求证:DE 是⊙O 的切线; (2)分别求AB ,OE 的长; (3)填空:如果以点E 为圆心,r 为半径的圆上总存在不同的两点到点O 的距离为1,则r 的取值范围为 .(1)∵AB 是直径,∴∠ADB=90° (1分),)2(.//,.,BC DE BC OD BO AO CD AD BC AB ⊥∴==∴= 分又又∴OD ⊥DE ,∴DE 是⊙O 的切线. (3分) (2)在 30,3,=∠=∆ACB CD CBD Rt 中, .2,223330cos =∴===∴AB CDBC)6(.27)23(1,)5(.2332121,30,3,2222分中在分中在=+=+=∆=⨯==∴=∠=∆OE OD OE ODE Rt CD DE ACB CD CDE Rt (3).127127+<<-r (7分) 8. 如图,在半径为10的⊙O 中,OC 垂直弦AB 于点D , AB =16,则CD 的长是 4 .ABC O D8题ABO ·C第13题9. 有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有( B ) A .4个 B .3个 C . 2个 D . 1个10. 将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上.点A 、B 的读数分别为86°、30°,则∠ACB 的大小为( B ) A .15︒ B .28︒ C .29︒D .34︒11.如图,AB 是圆O 的直径,点D 在O 上∠AOD=130°,BC∥OD 交圆O 于C,则∠A= 40° .12.小明家的房前有一块矩形的空地,空地上有三棵树A 、B 、C ,小明想建一个圆形花坛,使三棵树都在花坛的边上.(1)请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹).(2)若△ABC 中AB=8米,AC=6米,∠BAC=90,试求小明家圆形花坛的面积.答案 用尺规作出两边的垂直平分线 作出圆(3分) ⊙O 即为所求做的花园的位置.(图略) (2)解:∵∠BAC=90,AB=8米,AC=6米, ∴BC=10米∴ △ABC 外接圆的半径为5米……5分∴小明家圆形花坛的面积为25π平方米 . …… 6分13.如图,点A 、B 、C 在⊙O 上,AB ∥CD ,∠B =22°,则∠A =__44______°.14题图(第11题)OC BDA14.如图,AB 是⊙O 的直径,弦DE 垂直平分半径OA ,C 为垂足,弦DF 与半径OB 相交于点P ,连结EF 、EO ,若DE =23,∠DPA =45°.(1)求⊙O 的半径; (2)求图中阴影部分的面积.15、如图,△ABC 内接于⊙O ,∠A =40°,则∠BOC 的度数为( D ) A. 20° B. 40° C. 60 D. 80° 16、如图,AB 是⊙O 的直径,C 是的中点,CE ⊥AB 于 E ,BD 交CE 于点F .(1)求证:CF ﹦BF ;(2)若CD ﹦6, AC ﹦8,则⊙O 的半径为 5 , CE 的长是524. 解:(1) 证明:∵AB 是⊙O 的直径,∴∠ACB ﹦90° 又∵CE ⊥AB , ∴∠CEB ﹦90° ∴∠2﹦90°-∠A ﹦∠1 又∵C 是弧BD 的中点∴∠1﹦∠A ∴∠1﹦∠2, ∴ CF ﹦BF …4分 17、如图,在⊙O 中,OA =AB ,OC ⊥AB ,则下列结论错误的是 DACBD(第16题图)EF O (第15题CBOA .弦AB 的长等于圆内接正六边形的边长 B .弦AC 的长等于圆内接正十二边形的边长 C .AC BC =D .∠BAC =30°18、已知:AB 是⊙O 的弦,D 是AB 的中点,过B 作AB 的垂线交AD 的延长线于C . (1)求证:AD =DC ; (2)过D 作⊙O 的切线交BC 于E ,若DE =EC ,求sin C . 证明:连BD ∵BD AD =∴∠A =∠ABD ∴AD =BD …………………2分∵∠A +∠C =90°,∠DBA +∠DBC =90°∴∠C =∠DBC ∴BD =DC ∴AD =DC ………4分 (2)连接OD ∵DE 为⊙O 切线 ∴OD ⊥DE …………………………5分∵BD AD =,OD 过圆心 ∴OD ⊥AB 又∵AB ⊥BC ∴四边形FBED 为矩形∴DE ⊥BC …6分∵BD 为Rt △ABC 斜边上的中线∴BD =DC ∴BE =EC =DE ∴∠C =45° ∴sin ∠C =2219.在⊙O 中直径为4,弦AB =23,点C 是圆上不同于A 、B 点,那么∠ACB 度数_60或120° 20.如图,AB 为⊙O 的弦,⊙O 的半径为5,OC ⊥AB 于D ,交⊙O 于C 且CD =l ,则弦AB 长是 .20题图 21题图 22题图 23题图 24题图 21、如图,已知AB 为⊙O 的直径,点C 在⊙O 上,∠C=15°,则∠BOC 的度数为( B )A .15° B. 30° C . 45°D .60°BOA C O A CB 第17题图BE CDAOO A D B EC第18题图AB COAB C Ox第28题图y22.如图,已知直线AB 是⊙O 的切线,A 为切点,OB 交⊙O 于点C ,点D 在⊙O 上,且∠OBA=40°,则∠ADC=___ 25___.23.如图,点A 、B 、P 在⊙O 上,点P 为动点,要是△ABP 为等腰三角形,则所有符合条件的点P 有(D )A 1个 B 2个 C 3个 D 4个24、如图是一条水铺设的直径为2米的通水管道横截面,其水面宽1.6米,则这条管道中此时最深为 0.4 米25、如图,⊙O 中,弦AB 、CD 相交于点P , 若30A ∠=︒,70APD ∠=︒,则B ∠等于(C ) (A )30︒ (B )35︒ (C )40︒ (D )50︒26、如图,在⊙O 中,∠ACB =34°,则∠AOB 的度数是( D ).A.17° B.34° C.56° D.68°27题图27、如图,⊙O 中,MAN 的度数为320°,则圆周角∠MAN =______20°______.28、如图所示,△ABC 的三个顶点的坐标分别为A (-1,3)、B (-2,-2)、C (4,-2),则△ABC 外接圆半径的长度为 13 .29.如图,AB 是⊙O 的直径,弦DC 与AB 相交于点E ,若∠ACD=60°,∠ADC=50°,则∠ABD= ,∠CEB= .16.60°,100°.29题图 30题图30.如图,AB 是O 的直径,C 为圆周上一点,30ABC ∠=︒,O 过点B 的切线与CO 的延长线交于点D .求证:(1)CAB BOD ∠=∠; (2)ABC ∆≌ODB ∆.DCBOA第26题图A OCB 第25题图BCAD PO∵AB 是O 的直径,∴90ACB ∠=︒,由30ABC ∠=︒,∴60CAB ∠=︒又OB OC =,∴30OCB OBC ∠=∠=︒∴60BOD ∠=︒,∴CAB BOD ∠=∠.…… 4分 (2)在Rt ABC ∆中,30ABC ∠=︒,得12AC AB =,又12OB AB =,∴AC OB =.由BD 切O 于点B ,得90OBD ∠=︒.在ABC ∆和ODB ∆中,CAB BODACB OBD AC OB ∠=∠∠=∠⎧=⎪⎨⎪⎩∴ABC ∆≌ ODB ∆ …… 8分 31题图 31. 如图,△ABC 内接于⊙O ,AC 是⊙O 直径,∠ACB =500,D 是BAC 一点,∠D =_︒4032.如图,在正方形ABCD 中,AB=4,0为对角线BD 的中点,分别以OB ,OD 为直径作⊙O 1,⊙02. 。
(1)求⊙O 1的半径; (2)求图中阴影部分的面积.33.如图,⊙O 的半径等于1,弦AB 和半径OC 互相平分于点M.求扇形OACB 的面积(保留π) 解:∵弦AB 和半径OC 互相平分∴OC ⊥AB OM=MC=21OC=21OA 在Rt △OAM 中,sinA=21=OA OM ∴∠A=30°又∵OA=OB ∴∠B=∠A=30° ∴∠AOB=120° ∴S 扇形=33601120ππ=⋅⋅ 33题图 34题图34.如图,已知A 、B两点的坐标分别为()、(0,2),P 是△AOB 外接圆上的一点,且∠AOP=45°,则点P 的坐标为)13,13(++.38.如图,⊙O 是△ABC 的外接圆,FH 是⊙O 的切线,切点为F ,FH ∥BC ,连结AF 交BC 于E ,∠ABC 的平分线BD 交AF 于D ,连结BF . (1)证明:AF 平分∠BAC ; (2)证明:BF =FD ; (3)若EF =4,DE =3,求AD 的长. 证明(1)连结OF ∵FH 是⊙O 的切线 ∴OF ⊥FH ……………1分∵FH ∥BC ,∴OF 垂直平分BC ………2分 ∴BF FC = ∴AF 平分∠BAC …………3分 (2)证明:由(1)及题设条件可知∠1=∠2,∠4=∠3,∠5=∠2 ……………4分∴∠1+∠4=∠2+∠3∴∠1+∠4=∠5+∠3 ……………5分 ∠FDB =∠FBD ∴BF =FD ………………6分 (3)解: 在△BFE 和△AFB 中∵∠5=∠2=∠1,∠F =∠F ∴△BFE ∽△AFB ………………7分∴BF AF FE BF=, ……………8分 ∴2BF FE FA =⋅ ∴2BF FA FE = ……………………9分 ∴274944FA ==∴AD =4974-=214…………………10分。