解应用题类似,故称为方程法.
题型一
题型二
题型三
已知函数模型的应用题
【例1】 灌满开水的热水瓶放在室内,如果瓶内开水原来的温度
是θ1 ℃,室内气温是θ0 ℃,t min后,开水的温度可由公式θ=θ0+(θ1θ0)e-kt求得,这里k是一个与热水瓶类型有关的正的常量.现有一只某
种类型的热水瓶,测得瓶内水温为100 ℃,过1 h后又测得瓶内水温
∴2=
e2 ; ∴k=2ln
2,∴y=e2tln 2=22t.
∴当t=5时,y=22×5=1 024.
答案:2ln 2
1 024
题型一
题型二
题型三
建立函数模型的应用题
【例2】 某投资公司投资甲、乙两个项目所获得的利润分别是
M(单位:亿元)和N(单位:亿元),它们与投资额t(单位:亿元)的关系有
1
数问题,即实际问题函数化;
第三步:运用所学的数学知识和数学方法解答函数问题,得出函
数问题的解;
第四步:将所得函数问题的解还原成实际问题的结论,要注意检
验所得的结论是否符合实际问题的意义.
题型一
题型二
题型三
【变式训练2】 大西洋鲑鱼每年都要逆流而上,游回产地产卵.记
鲑鱼的游速为v(单位:m/s),鲑鱼的耗氧量的单位数为Q,研究中发现
− 2 log3 100
= 1.
1
∴ 2 log3 2 = 1, ∴ 2 = 9, 即Q2=9Q1.
1
1
故鲑鱼要想把游速提高1 m/s,其耗氧量单位数应变为原来的9倍.
题型一
题型二
题型三
易混易错题
易错点 求函数最值时忽略了实际情况对函数定义域的限制