第四章第5节实验室a谱仪
- 格式:ppt
- 大小:2.89 MB
- 文档页数:9
3B SCIENTIFIC ® PHYSICSInstrucciones de uso05/16 CW/ALF/UD1 Electrónica de operación2 Bobinas de desviación3 Imán anular4 Tubo de Braun 5Anillo metálicoEl osciloscopio didáctico se activa parcialmente con tensiones superiores a los 60 V. ∙ El cableado se debe realizar con la alimentación de red apagada. ∙ Se deben utilizar cables de seguridad ∙ Como el tubo de vidrio está evacuado se corre el peligro de implosión.∙El tubo no se debe golpear o exponer a esfuerzos mecánicosEl funcionamiento del aparato en colegios e instituciones de formación debe estar supervisado siempre porpersonal especializado y responsable. Con el osciloscopio didáctico se puede demostrar la desviación de un rayo de electrones por medio de campos eléctricos y magnéticos, tal y como se aplica en un aparato de televisión o en osciloscopios de técnicas de medida. El osciloscopio se compone básicamente de un tubo de Braun, al cual se le suministra tensiónpor medio de enchufes de 4 mm y que está rodeado de un anillo metálico grande en el cual se pueden fijar bobinas de desviación.El tubo de Braun es un tubo cónico de vidrio en cuyo cuello se encuentra un cátodo incandescente a una distancia de aproximadamente cinco milímetros y un ánodo en forma de un disco con un agujero central. Los electrones que salen del cátodo son acelerados en dirección hacia el ánodo. Un parte de ellos cruza el agujero central del ánodo para formar un rayo que incide sobre una pantalla fluorescente de silicato de cinc y produce allí un destello fluorescente verde. La focalización del rayo se realiza por un lado por el cilindro de Wehnelt que rodea el cátodo, el cual se encuentra a un potencial negativo con respecto al cátodo. Por otro lado, el tubo se encuentra bajo una presión parcial de neón de aprox.1 Pa y así se logra una concentración del rayo de electrones por choques sucesivos con los átomos de neón, lo cual al mismo tiempo lo hace visible.Además en el tubo se encuentran dos placas de desviación paralelas al rayo, las cuales se pueden conectar al generador de dientes de sierra integrado o a una fuente de tensiónexterna. El generador de dientes de dientes de sierra suministra tensiones con una frecuencia variable de 3,5 hasta 650 Hz con una amplitud de 100 V con respecto al potencial del ánodo.Tensión del ánodo: 200...350 V CC Corriente del ánodo: max. 1 mA Tensión de caldeo: 6...12 V CC Tensión del Wehnelt: -50...0 V CC Tamaño de las placas d. desv.: 12 x 20 mm² Espacio entre las placas: 14 mm Bobinas de desviación: 300 + 300 Esp.R i = 4,2 Ω L = 6 mHTensión de dientes de sierra: V pp = 100 Vf = 3,5..650 Hz4.0 Electrónica de operaciónFig. 1: Electrónica de operación.Entradas: A Ánodo K Cátodo H Caldeo W Cilindro de Wehnelt ┴ Masa PE Tierra de protección Salidas: -U xPlaca de desviación izquierda +U x Placa de desviación derecha Generador de dientes de sierra:Frecuencia sencillaFrecuencia doble Frecuencia triple Frecuencia: Frecuencia de dientes de sierra4.1 Puesta en funcionamientoPara la alimentación de tensión del osciloscopio didáctico se requieren aparatos de tensión que suministren las siguientes tensiones: 200-350 V CC ajustable, 0-50 V CC ajustable, 6-12 V CC.Para ello es especialmente apropiada la fuente de alimentación de red 1001011 / 1001012 y 1003307 / 1003308, la cual pone a disposición todas estas tensiones necesariias. Observación:El osciloscopio didáctico funciona, dependiendo del tubo incorporado, por regla general, con ten-siones de ánodo de hasta aprox. 300 V. Sin em-bargo, la tensión de ánodo no debe sobrepasar los 350 V.∙ Se desconecta la fuente de alimentación. ∙ Se conectan las entradas del osciloscopiodidáctico con las salidas de la fuente de alimentación de red, de acuerdo con las tensiones indicadas.Se ajustan los reguladores de tensión de tal forma que no se sobrepasen los valores límites. ∙ Se conecta la fuente de alimentación de red. Después de 10 a 30 segundos se observa en la pantalla un punto verde, el cual muestra el rayo de electrones incidentes. Para que el tubo sea lo más sencillo y claro posible para los objetivos didácticos, se a desistido de colocar en el tubo algunas instalaciones adicionales para la aceleración o focalización ulteriores del rayo. Por esta razón no se puede focalizar el rayo tan nítidamente como se hace en los osciloscopios de técnicas de medidas.∙ Se varía la tensión del cilindro de Wehnelthasta que el punto tenga su mínima dimensión.El rayo de electrones se puede observar en el tubo como un hilo rojo, pero debido a la baja luminosidad sólo se puede observar en un recinto con luz atenuada o a oscuras.4.2 Instalaciones de desviación 4.2.1 Desviación eléctricaPor medio de las placas de desviación dentro del tubo se puede desviar el rayo de electrones horizontalmente, aplicando una tensión de max. 100 V. Para la mayoría de las aplicaciones se toma esta tensión del generador de dientes de sierra.. El rayo se mueve entonces desde la izquierda hacia la derecha y salta luego a su posición inicial y repite este movimiento con una frecuencia ajustable. En esta forma es posible resolver en el tiempo y hacer visiblesdesviaciones verticales, por ejemplo por medio de un campo magnético alternante.4.2.2 Desviación magnéticaSe fijan bobinas en el anillo metálico que rodea el cuello del tubo. Entre dos casquillos de conexión vecinos se tienen respectivamente 300 espiras. Si se cablean ambos casquillos externos, la corriente fluye por 600 espiras. Según la regla de la mano derecha, el rayo de electrones será desviado perpendicularmente a la dirección del campo magnético y a la dirección del rayo de electrones. Cuando las bobinas se montan orientadas hacia adentro, ya se puede notar el efecto de corrientes en la gama de miliamperios.4.2.3 Ajuste del rayoEn el soporte central del tubo se encuentra un imán anular movible, que se puede fijar por medio de un tornillo. Éste sirve para ajustar el punto de incidencia de los electrones sobre la pantalla fluorescente teniendo la desviación desconectada4.3 Generador de dientes de sierraLas salidas del generador se encuentran por debajo del casquillo portatubo y llevan los nombres -U x resp. +U x.La tensión de dientes de sierra (frecuentemente llamada "Rampa“) es una tensión periódica variable linealmente en el tiempo en subida o en bajada y que retorna en un salto a su valor inicial.¡Cuidado!: La tensión de dientes de sierra tiene como referencia la tensión de ánodo de +250 V. Se tienen dos botones ajustes para la frecuencia, con el botón superior se hace el ajuste burdo y con el inferior el ajuste fino.5.1 Desviación eléctrica de los electrones∙Realice el cableado de acuerdo con la fig. 2. ∙Se desconecta la alimentación de tensión delosciloscopio didáctico∙Se conectan las placas de desviación con la salida del generador de dientes de sierra.∙Se ajusta el rayo de electrones al lado izquierdo de la pantalla fluorescente (aprox. 1 cm del extremo).∙Se fija el ajuste burdo del generador en el nivel más bajo (segunda posición a la izquierda)..∙Se conecta la fuente de alimentación.El punto luminoso verde aparece en la pantalla después de 10 a 30 segundos. El punto se mueve de izquierda a derecha.∙Con el ajuste fino se reduce la frecuencia hasta que se pueda ver claramente el movimiento del punto en la pantalla.5.2 Desviación magnética del rayo deelectrones∙Realice el cableado de acuerdo con la fig. 3. ∙Se fija una bobina en el anillo metálico.∙Se conectan los contactos de la bobina con la fuente de alimentación de CC.∙Se ajusta el rayo de electrones en el centro de la pantalla fluorescente..∙Se conecta la fuente de alimentación de CC y se varía la corriente de la bobina.El rayo se desvía perpendicularmente a la dirección de vuelo de los electrones y a la del campo magnético.∙Se cambian, la polaridad, la orientación y el número de espiras de la bobina y se observan los efectos en la pantalla.5.3 Resolución en el tiempo de una tensiónalternaAparatos necesarios adicionalmente:1 Generador de funciones (50 Ω, en lo posible con amplificador) o una fuente de alimentación de CA,Opcional: 1 Multímetro con medidor de frecuencias (Tensión mínima. 150 V).∙Realice el cableado de acuerdo con la fig. 4. ∙Se siguen las indicaciones del punto 5.1, pero sin reducir la frecuencia; se fija el ajuste burdo en la posición media. Si se tiene a disposición un multímetro con frecuencímetro, antes de conectar la fuente de tensión, se conecta en paralelo con las placas de desviación a la salida del generador de dientes de sierra. (¡Cuidado!: La tensión del generador de dientes de sierra es peligrosa al contacto directo)∙Se fija una bobina en el anillo metálico.∙Se conectan los contactos de la bobina con el generador de funciones (si se tiene un amplificador, se conecta con éste)∙En el generador de funciones se ajusta una frecuencia entre 30 y 100 Hz.El rayo se desvía hacia arriba durante el movimiento de izquierda a derecha∙Si es necesario se aumenta la tensión de salida para obtener una desviación mayor. Debido a la rápida repetición no se puede reconocer bien la tensión alternante, porque elregistro en la pantalla por lo general no se repite en un punto fijo dentro de un período (o sea en una fase fija), y por ello se sobreponen varios cuadros desplazados entre sí. Este problema aparece cuando la frecuencia del generador de dientes de sierra no concuerda con la frecuencia de la señal del generador funciones a la entrada. ∙Se busca con el ajuste fino de la frecuencia hasta encontrar un cuadro fijo de un período de oscilación.¿Con qué frecuencias además se observa en pantalla un cuadro fijo?5.4 Figuras de LissajousAparatos necesarios adicionalmente:1 Generador de funciones (50 Ω, en lo posible con amplificador) o una fuente de alimentación de CA o2 generadores de funciones.∙Realice el cableado de acuerdo con la fig. 5. ∙Una bobina se fija en el anillo metálico en un eje horizontal orientada hacia adentro.∙Las entradas de la bobina se conectan con la fuente de alimentación de CA o con el segundo generador de funciones (ajustado a una tensión senoidal de 50 Hz)(verde, amarillo). La amplitud se fija de tal forma que la línea que aparece en la pantalla sea la mitad del diámetro de la pantalla.∙Con el imán anular se orienta la línea en la horizontal.∙Una bobina adicional se monta hacia adentro en el anillo metálico con su eje orientado en la vertical. ∙Las entradas de la bobina (verde, amarillo) se conectan con el primer generador de funciones (ajustado a una tensión senoidal de 50 Hz).En la pantalla aparece una elipse que se deforma rápida o lentamente dependiendo de si las señales de entrada concuerda bien entre sí. Así por cada ciclo aparece dos veces una línea inclinada.∙La amplitud del primer generador de funciones se ajusta de tal forma que la inclinación de la línea sea de 45° y que durante la transición se observe un círculo. Así ya se podrán observar las figuras de Lissajous más sencillas. Las formas de las mismas dependen de las relaciones de las frecuencias y de los desfases entre las ondas. Generado por una leve desviación de la frecuencia con respecto a la frecuencia nominal de ambos generadores (por lo general es suficiente la falta de precisión de los aparatos) se observa un desfase que se mueve automáticamente y hace que se observen todas las figuras correspondientes a una determinada relación de frecuencias.∙Se ajusta la frecuencia del primer generador de frecuencia en un múltiplo de la frecuencia horizontal (50 Hz).Se deben observar las figuras de Lissajous para las relaciones de frecuencia 2:1, 3:1, 4:1….∙Otras figuras de Lissajous se observan con fracciones de enteros de la frecuencia horizontal (p. ej.: 3:2 (75 Hz), 4:3 (66,7 Hz).Fig.2 Desviación eléctrica de los electrones (izquierda: con fuente de alimentación 1001011 / 1001012, derecha: con fuente de alimentación 1003307 / 1003308).fuente de alimentación 1003311 / 1003312, derecha: con fuente de alimentación 1003307 / 1003308).Fig.4 Resolución en el tiempo de una tensión alterna (izquierda: con fuente de alimentación 1001011 / 1001012 y generador de funciones 1009956 / 1009957, derecha: con fuente de alimentación 1003307 / 1003308 ygenerador de funciones 1009956 / 1009957).Fig.5 Figuras de Lissajous (izquierda: con fuente de alimentación 1001011 / 1001012 y 2x generador de funciones 1009956 / 1009957, derecha: con fuente de alimentación 1003307 / 1003308 y 2x generador defunciones 1009956 / 1009957).3B Scientific GmbH • Rudorffweg 8 • 21031 Hamburgo ▪ Alemania • 。
Agilent 7890A气相色谱仪分流/不分流进样(0-100 psi 和 0-150 psi)、填充柱进样、冷柱头进样、程序升温汽化进样口和挥发性物质分析接口内置的 Agilent 7683 自动进样器控制功能。
如要实现高效率、室温顶空、微量液萃取和不同范围的进样体积,您只需简单地添加进样器和样品盘模块即可可选择的进样技术,包括顶空进样、吹扫捕集和阀进样主要特点Agilent 7890A气相色谱仪1突破性的微板流路控制技术实现了柱箱内可靠的无泄漏连接,提高了工作效率和数据完整性,为复杂的GC分析提供了通用、可靠的解决方案2安捷伦仪器监测和智能诊断软件可跟踪配件的使用情况,监测色谱峰形变化,在问题发生之前提醒您进行处理3每个分流/不分流(SSL进样口)都采用了新的方便的扳转式顶盖设计,使您能在30秒内更换进样口衬管 - 无需特殊的工具或培训4品种齐全的选件和附件使您能够配置恰好满足您实验室目前需求的系统, 并能方便地进行升级,以满足不断变化的应用和分析通量的需求²强大的、操作界面友好的GC软件简化了方法设置和系统操作,缩短了培训时间;您可选择正好符合您实验室需求的软件包5在品质卓越的6890进样口, 检测器和GC柱箱上建立的分析方法, 您可以完全放心地将其转移到7890A GC上6其它功能和详细信息请参看仪器样本和资料库中的技术规格文件7填充柱进样、冷柱头进样、程序升温汽化进样口和挥发性物质分析接口内置的 Agilent 7683 自动进样器控制功能进样口两个进样口三个检测器(第三个检测器是TCD)四个检测器信号柱温箱最大升温速率:120°C/min(如使用120 V 电源最大升温速率75°C/min,参见表1)。
•最长运行时间: 999.99 min(16.7 h)。
•柱箱冷却降温( 22°C 室温),从450°C 到50°C 需要4.0 min (采用柱箱插入附件时为3.5 min)电子压力控制范围:0 到100 psig每个EPC单元都使用专用的进样口和检测器选项进行了优化。
实验四半导体α谱仪测量铝箔厚度一.实验目的1、了解金硅面垒半导体探测器α谱仪的工作原理、特性。
2、掌握α谱仪的调整技术,及使用α谱仪测量α粒子能谱的方法。
3、学会用α谱仪测量能量损失求薄箔厚度的方法。
4、测定241Am核素α衰变的相对强度。
二.实验内容1、调整一台α谱仪到最佳工作状态,测定谱仪能量分辨率。
2、用精密脉冲发生器代替α源进行能量刻度。
3、测量241Am α粒子通过铝箔的能量损失,确定铝箔厚度。
4、用精密脉冲发生器测定加探测器结电容后的谱仪电子学及探测器噪声对谱线展宽的贡献,求出放射源及探测器窗的厚度不均对谱线造成的展宽。
5、测定241Am α衰变的决对强度。
6、*用偏置放大器来扩展能谱,测定241Am α衰变的相对强度。
三.实验原理半导体α谱仪的组成如图4-1所示。
图4-1 α谱仪系统示意图金硅面垒探测器是用一片N型硅,蒸上一薄薄的金层(100-200 Å),接近金层的那一层硅具有P型硅的特性,这种方式形成的PN结靠近表面层,结区即为探测粒子的灵敏区。
探测器工作时加反向偏压。
α粒子在灵敏区内损失能量转变为与其能量成正比的电脉冲信号,经放大并由多道分析器测量脉冲信号按幅度的分布,从而给出带电粒子的能谱。
偏置放大器的作用是当多道分析器的道数不够用时,利用它切割,展宽脉冲幅度,以利于脉冲幅度的精确分析。
为了提高谱仪的能量分辨率,探测器要放在真空中。
另外金硅面垒探测器一般具有光敏的特性,在使用过程中,应有光屏蔽措施。
金硅面垒型半导体α谱仪具有能量分辨率高,能量线性范围宽,脉冲上升时间快,体积小和价格便宜等优点。
带电粒子进入灵敏区,损失能量产生电子空穴对。
形成一对电子空穴所需的能量W和半导体材料有关,与入射粒子的类型和能量无关。
对于硅,在300 K时,W为3.62 eV,77 K时为3.76 eV。
对于锗,在77 K时W为2.96 eV。
若灵敏区的厚度大于入射粒子在硅中的射程,则带电粒子的能量E全部损失其中,产生的总电荷量Q等于EeW⋅,EW为产生的电子空穴对数,e为电子电量。
第四章紫外-可分光光度计一、名词解释1.分光光度计:是指能够从含有各种波长的混合光中将每一单色光分离出来并测量其强度的仪器。
2.吸收光谱:不同的物质会吸收不同波长的光。
改变入射光的波长,并依次记录物质对不同波长光的吸收程度,就得到该物质的吸收光谱。
3.液浓度的乘积成正比。
4.摩尔吸光系数(ε)和比吸光系数(a):摩尔吸光系数ε:摩尔吸光系数表示在一定波长下测得的液层厚度为 1cm, 溶液浓度c为1mol/L时的稀溶液吸光度值。
吸光系数a与入射光波长、溶液温度、溶剂性质及吸收物质的性质等多种因素有关。
当其它因素固定不变时,吸光系数只与吸收物质的性质有关,可作为该物质吸光能力大小的特征数据。
5.颜色互补光:如果将两种颜色的单色光按一定的强度比例混合,可以成为白光,这样的两种光互称为互补光。
6.单色器:将来自光源的复合光分解为单色光并分离出所需波段光束的装置,是分光光度计的关键部件。
主要由入射狭缝、出射狭缝、色散元件和准直镜组成。
7.吸收池:又称为比色皿、比色杯、样品池或液槽等,是用来盛放被测溶液的器件,同时也决定着透光液层厚度、特定波长光的透光度等多种参数,应具有良好的透光度和较强的耐腐蚀性。
8.光电管:是利用碱金属的外光电效应制成的光电装换元件,按电极结构不同可分为中心阳极式、中心阴极式和平行平板式;按管内充气与否又可分为真空光电管与充气光电管。
按使用范围不同分为紫敏光电管和红敏光电管两种。
9.光电倍增管:是在光电管的阴极和阳极之间增加了若干个倍增电极构成。
光电倍增管大大增加了光照的灵敏度。
10.波长准确度:指仪器波长指示器上所示波长值与仪器此时实际输出的波长值之间的符合程度。
可用二者之差来衡量分光光度计的准确性。
11.波长重复性:是指在对同一个吸收带或发射线进行多次测量时,峰值波长测量结果的一致程度。
通常取测量结果的最大值与最小值之差来作为衡量分光光度计的准确性指标之一。
12.光度准确度:是指仪器在吸收峰上读出的透射率或吸光度与已知真实透射率或吸光度之间的偏差。
第四章光现象第5节光的色散1.白光可以分解成红、橙、黄、绿、蓝、靛、紫七种颜色的光;红、橙、黄、绿、蓝、靛、紫七种颜色的光可以复合成白光。
2.光的三原色:红、绿、蓝三种颜色的光。
3.光谱:太阳光通过三棱镜可以分解成红、橙、黄、绿、蓝、靛、紫几种颜色的光,它们按一定顺序排列,叫做太阳的可见光谱。
4.红外线(1)光谱上红光以外的部分有一种看不见的能量辐射叫红外线。
(2)任何物体都可辐射红外线。
(3)热作用强是红外线的主要特征。
此外,红外线还可用于红外遥感等。
5.紫外线(1)在光谱上紫光以外的部分存在一种看不见的能量辐射叫紫外线。
(2)紫外线有较强的生理作用,此外,紫外线还有荧光效应等。
知识点1:光的色散17世纪,英国物理学家牛顿使太阳光发生色散,才揭示了光的秘密。
如图所示,让一束太阳光(白光)照射到三棱镜上,通过三棱镜偏折后照到白屏上,在白屏上形成一条彩色的光带,颜色依次是红、橙、黄、绿、蓝、靛、紫,这就是光的色散。
太阳光通过三棱镜后,分解成七色光带这个现象的产生表明:第一,白光不是单色光,而是由各种单色光组成的复色光;第二,不同的单色光通过棱镜时偏折的程度是不同的。
实验中红光偏折的程度最小,紫光偏折的程度最大。
各单色光偏折的程度从小到大按照红、橙、黄、绿、蓝、靛、紫的顺序排列。
【例】一束白光经过三棱镜后,不但改变了光的,而且可分解成七种单色光,这种现象称为光的。
答案:传播方向;色散点拨:白光经过三棱镜的两次折射,其传播方向将发生变化,由于组成白光的七种单色光的偏折能力不同,故经棱镜折射后会形成一条彩色的光带。
知识点2:色光的三原色人们发现,红、绿、蓝三种色光混合能产生各种不同颜色的光,如图所示。
因此把红、绿、蓝三种色光叫做色光的三原色。
【例】彩色电视机荧光屏上呈现出的各种颜色,都是由三种基本色光混合而成的,这三种基本色光是( )A.红、黄、蓝B.红、绿、蓝C.黄、绿、蓝D.红、黄、绿答案:B点拨:红、绿、蓝三种色光混合能产生各种颜色的光,我们把红、绿、蓝三种色光叫做色光的三原色。
Agilent 7890A 气相色谱仪操作指南本操作指南旨在为您提供使用Agilent 7890A气相色谱仪的基本步骤和指导。
请仔细阅读本指南,并在操作前确保已正确安装和接线气相色谱仪。
1. 开机与系统初始化1.打开气相色谱仪电源,仪器开始自检。
2.等待仪器自检完成后,进入系统初始化界面。
3.系统初始化完成后,系统将自动进入操作界面。
2. 气路连接1.将进样器与气相色谱仪进样口连接。
2.将检测器与气相色谱仪检测器接口连接。
3.连接载气瓶,确保载气压力在规定范围内。
3. 进样器操作1.选择合适的进样器类型(如注射器、自动进样器等)。
2.安装进样器并调整进样器位置,确保进样器与进样口对齐。
3.设置进样器参数,如进样量、注射器体积等。
4. 色谱柱操作1.选择合适的色谱柱并安装到色谱柱架上。
2.根据色谱柱类型和应用要求,设置色谱柱温度、载气流速等参数。
5. 检测器操作1.选择合适的检测器类型(如FID、ECD、MS等)。
2.根据检测器类型和应用要求,设置检测器温度、氮气流量等参数。
6. 方法创建与优化1.在操作界面中选择“方法”菜单,创建新方法。
2.输入方法名称、选择色谱柱、进样器、检测器等。
3.设置方法参数,如柱温、载气流速、检测器温度等。
4.根据需要,对方法进行优化,如调整保留时间、峰宽等。
7. 数据采集与处理1.开始运行方法,进行数据采集。
2.数据采集过程中,可实时观察色谱图、峰面积等数据。
3.数据采集完成后,对色谱图进行处理,如基线校正、峰识别等。
8. 实验结束与仪器清洗1.实验结束后,关闭气相色谱仪电源。
2.拆卸进样器、色谱柱等,进行清洗和维护。
3.定期对气相色谱仪进行维护和检查,确保仪器正常工作。
请注意,本操作指南仅供参考。
在实际操作过程中,请根据实验要求和仪器说明书进行操作。
如有疑问,请联系Agilent技术支持。
9. 常见问题与解决方法在操作Agilent 7890A气相色谱仪过程中,可能会遇到一些常见问题。
直读光谱仪操作手册第一章光电光谱分析的基本原理一、光谱分析简介1、电磁辐射的基本特征光谱是按照波长(或波数、频率)顺序排列的电磁辐射。
天空的彩虹、自然界的极光等均是人们早期观察到的光谱,但它们仅是电磁辐射的很小的一部分可见光谱。
还有大量的不能被人们直接看到的和感觉到的光谱,如γ射线、x射线、紫外线、红外线、微波及无线电波等,这些也都是电磁辐射,它们只是频率或波长不同而已。
电磁辐射实际是一种以巨大速度通过空间而传播的能量(光量子流),具有波动性和微粒性。
就波动性而言,电磁辐射在空间的传播具有波的性质,如同声波、水波的传播一样,可以用速度、频率、波长和振幅这样一些参数来描述,并且传播时不用任何介质,且易于通过真空。
在真空中所有电磁辐射的速度相同,常用光速(c)来表示,c的数值为:2.99792*103米/秒。
在一定的介质中,它们之间的关系为δ=V/C=1/λ式中:V-------频率,单位时间内的波数;λ…………波长,为沿波的传播方向、相邻两个波间相位相同的两点之间的距离;δ…………波数,单位长度内波长的个数。
C是光速。
就电磁辐射的微粒性来说,每个光量子均有其特征的能量ε,它们与波长或频率之间的关系可以用普朗克(Planck)公式表示:ε=hv=h(c/λ)波长是相邻间相位相同的两点之间的距离式中:h是普朗克常数,其值为6.626*10-34 焦耳/秒2、电磁波谱区域电磁辐射按波长顺序排列称磁波谱。
他们是物质内部运动的一种客观反映,也就是说任一波长的光量子的能量ε与物质的内能变化△E=E2-E1=ε=hv=h(c/λ)如果已知物质由一种状态,E2过渡到另一种状态E1时,其能量差为△E=E2-E1便可按照公式计算出相应的光量子的波长。
下表列出了各辐射区域、波长范围及相应的能及跃迁类型。
对于成分分析主要应用近紫外及可见光区。
表一电磁波谱区域注:1米=103毫米=106微米=109纳米=1012皮米3、光谱分析内容光谱分析是根据物质的特征光谱来研究化学组成、结构和存在状态的一类分析领域。
LabSpark750ABC光谱仪操作规程一.实验室环境要求:➢实验室内温度:恒定在20~25℃之间某一温度➢实验室内湿度:≤70%。
➢仪器工作场所应防止震动,如周边有较大震动,宜采取减震措施。
➢实验室保持清洁,尽可能不与酸碱等腐蚀性物质在一起。
➢防止电磁干扰,环境存在强电磁场时,实验室宜采取屏蔽措施。
➢供电:220V,50Hz单相;有单独地线;在工厂自发电时慎用仪器,局域电压的大幅波动有可能对仪器造成损坏。
二.仪器使用要求:➢氩气:纯度%。
氧气减压器控制压力,二级表头分压力~MPa,当一级表头总压力到1MPa时,需要更换一瓶新的氩气。
➢仪器温度:仪器采用内部恒温系统,通常设定35℃,每台仪器可能不同,实际温度要求在30~37℃之间某温度恒定。
➢仪器真空度:小于150 mT(20Pa),最好在100 mT(13Pa)以内,并恒定于某一值。
分析有色金属仪器,真空值可高于该值。
➢有间歇式真空的,真空泵自动在设定范围内启动、停止。
一般设定范围~。
➢仪器长时间关机想要启用时,环境相对湿度≥70%时,要提前4小时开启空调,待室内温度、湿度满足要求后开启仪器,仪器通电后只进行“加热”进行自恒温,启动真空泵抽真空。
其他操作待12小时后再进行。
如室内湿度过大,仪器电器部分易短路损坏➢强雷雨天气慎用,以免雷击造成电路板烧毁。
➢仪器除非长时间不用,建议不要关机。
经常开关机会对仪器的稳定性及寿命造成影响。
仪器分析使用时功率在2000W左右,待机功率500W左右。
➢仪器所用电脑为专用设备,建议不作他用。
上网、插带病毒存储设备会使电脑感染病毒,导致程序不能运行。
三.开关机步骤➢开机:1.打开氩气总阀,调节出气压力在合适位置。
2.按下交流接触器绿色按钮。
3.打开稳压电源。
4.按下接线插座上按钮,灯亮为打开。
5.启动光谱仪主。
按仪器右下方绿色“启动”开关,如有真空泵控制开关,同时按下。
6.打开电脑及显示器。
7.进入主分析操作界面。
使用说明书GC112A气相色谱仪付印声明此说明书之内容,修改时将不经通告。
本企业对此说明书中所例材料用于其它目的的可营销性及适用性,不作任何保证,或者默许的保证。
对因此引起的由于使用本材料造成的意外或导致的损坏,本企业将概不负责。
未经本企业的事先书面许可,此说明书之部分或全部均不准复印、翻印或译成它种语言。
安全须知警告信息是提醒您注意可能招致您或他人受到伤害或损坏本仪器的环境和条件。
说明信息是提醒您值得关注的重要信息或留意可能会影响本仪器正常工作的环境和条件。
目次1综述1.1 仪器的技术指标及使用要求……………………………………………(1-3) 1.2 仪器成套性及可选配附件………………………………………………(1-5) 1.3 仪器的工作原理…………………………………………………………(1-7) 1.4 仪器的主机结构…………………………………………………………(1-8) 1.5 色谱柱箱…………………………………………………………………(1-9) 1.6 进样器……………………………………………………………………(1-10) 1.7 气路控制系统……………………………………………………………(1-13)2微机温度控制器2.1 面板与键盘………………………………………………………………(2-2) 2.2 微机温度控制器的操作…………………………………………………(2-12)3检测器系统3.1 氢火焰离子化检测器(FID) ……………………………………………(3-1) 3.2 FID检测器与主机的联接………………………………………………(3-3) 3.3 FID检测器的工作方式…………………………………………………(3-4) 3.4 FID微电流放大器及面板设置…………………………………………(3-7)4仪器安装运行4.1 电源的要求………………………………………………………………(4-1) 4.2 气源的准备和处理………………………………………………………(4-2) 4.3 外气路的连接……………………………………………………………(4-3) 4.4 安装填充柱………………………………………………………………(4-6) 4.5 如何连接色谱数据处理设备……………………………………………(4-12) 4.6 FID恒温分析操作………………………………………………………(4-13) 4.7 FID程升分析操作………………………………………………………(4-15) 4.8 FID检测器使用注意事项………………………………………………(4-16)5毛细管柱分析系统5.1 毛细管流路介绍………………………………………………………(5-2) 5.2 毛细管进样器的安装…………………………………………………(5-5) 5.3 尾吹接头与氢火焰检测器的连接……………………………………(5-8) 5.4 安装毛细管柱…………………………………………………………(5-10) 5.5 分流进样毛细管柱分析操作…………………………………………(5-12) 5.6 皂膜流量计的使用……………………………………………………(5-15)6仪器的保养6.1 仪器的维护………………………………………………………………(6-1) 6.2 氢火焰离子化检测器的清洗……………………………………………(6-2) 6.3 进样器清洗………………………………………………………………(6-3) 6.4 色谱信号判断及故障排除………………………………………………(6-4)7GC112A-TCD热导池检测器及恒流电源7.1 GC112A-TCD热导池检测器工作原理…………………………………(7-1) 7.2 GC112A-TCD热导池检测器技术指标…………………………………(7-3) 7.3 GC112A-TCD热导池检测器的安装……………………………………(7-4) 7.4 GC112A-TCD热导池检测器恒流电源的安装…………………………(7-6) 7.5 GC112A-TCD热导池检测器恒流电源面板及设置……………………(7-9) 7.6 GC112A-TCD热导池检测器气路系统的连接…………………………(7-10) 7.7 选用GC112A-TCD热导池检测器时的色谱柱安装……………………(7-11) 7.8 GC112A-TCD热导池检测器恒温分析操作……………………………(7-12) 7.9 GC112A-TCD热导池检测器程序升温分析操作………………………(7-14) 7.10 GC112A-TCD热导池检测器检测器的维护……………………………(7-15)附表一 气体流量表 (I)1 综述GC112A型气相色谱仪系微机化、高性能、低价格、全新设计的通用型气相色谱仪,具有高稳定可靠、结构简洁合理、操作方便、外型美观等优点。
2019初二物理-第四章-第五节-光的色散(含解析)一、单选题1.关于红外线夜视仪的作用,下列说法正确的是()A.夜视仪发出红外线照射到温度高的目标上而发现目标B.夜视仪发出红外线照射到温度低目标上而发现目标C.夜视仪接收到温度高的目标发出的红外线而发现目标D.夜视仪接收到温度低的目标发出的红外线而发现目标2.小明对自动感应门很感兴趣,想了解其原理.他查阅有关资料后得知,自动感应门有两种类型:一种是感应装置接受到人所发出的红外线,将门打开;另一种是感应装置发出微波来感知向门移动的物体,将门打开.以下设计方案能探究某自动门是哪种类型的是()A.速度相同的两个人分别向门靠近,观察门的反应B.人以两种不同速度分别向门靠近,观察门的反应C.门打开后,人在门前静止一段时间,观察门的反应D.白天和黑夜让人向门靠近,观察门的反应3.下列关于红外线和紫外线在生活中的应用的说法中,正确的是()A.电视遥控器是靠紫外线来实现对电视机遥控的B.红外线、紫外线都能穿过所有物体C.红外线、紫外线和可见光不一样,遇到障碍物不能发生反射现象D.钞票上隐藏的荧光标记在紫外线的照射下会显现出来4.下列说法错误的是()A.太阳的热主要以红外线的形式传到地球上的B.过量的紫外线照射对人体有害C.紫外线是人眼看不见的光D.医院和食品店常用红外线消毒5.下列是我们日常生活中常见的光现象,对它们的解释正确的是()A.人离平面镜越近,所成的像越大B.近视眼镜是凸透镜C.在岸上看到水中的鱼,看到的是鱼的实像D.红光照在穿白色上衣、蓝色裙子的演员身上,观众看到她的上衣呈红色,裙子呈黑色6.下列说法中正确的是()A.红外线遥感是利用红外线的可遥控性B.红外线自动感应门是利用红外线的热作用强的特性C.红外线摄影是利用红外线的化学作用强的特性D.红外线夜视仪是利用夜晚人体辐射红外线,而其他物体吸收红外线的原理制作的二、多选题7.下列说法正确的是()A.光谱的顺序是红外线、红、橙、黄、绿、蓝、靛、紫、紫外线B.红外线携带能量,能使温度计示数升高C.红外线是红色的,只是颜色较弱D.物体的温度高的时候辐射红外线,温度低的时候不辐射红外线8.夏季,雨后天空中有大量的小水滴,在太阳光的照射下常会出现如图所示的彩色光带,就该情景中的现象,下列说法中正确的是()A.小水滴相当于三棱镜,只对光起反射作用B.太阳光是由多种色光组成的,彩虹的形成是光的色散现象C.彩虹是由光的直线传播形成的D.彩虹的形成是光的色散现象9.通过对八年级上学期物理的学习,同学们感到收获颇多,下面是一位同学的学习笔记的一部分内容,其中正确的是()A.物体沿着直线且速度不变的运动,叫做匀速直线运动B.声音和光都不能在真空中传播C.红、绿、蓝是光的三原色,它们按不同比例混合后,可以产生各种颜色的光D.同一种物质的熔点和它的凝固点是相同的10.下列说法正确的是()A.色散现象说明白光是由色光组成的B.卫星与地面站利用电磁波传递信息,在真空中电磁波传播速度约为3×108m/sC.用大小不同的力敲击同一个音叉,音叉发声的音调不同D.煤、石油、太阳能都是不可再生能源11.下列关于紫外线的说法中,正确的是()A.紫外线在光谱的紫端以外,是一种看不见的光B.由于紫外线有杀菌作用,因此人们要多照射紫外线C.适当的紫外线照射有助于人体合成维生素D,能促进身体对钙的吸收D.紫外线对人体有害,人们要尽量避免紫外线的照射12.下列有关光的现象中,说法错误的是()A.彩色电视机的彩色是用红、绿、蓝三种色光按不同的比例混合得到的B.人们在湖边看到“白云”在水中飘动是由光的折射形成的C.漫反射中有些光线不遵循光的反射定律D.只有镜面反射光路才具有可逆性三、填空题13.雨后彩虹,十分壮丽,彩虹是太阳光在传播过程中遇到空气中的水滴发生________产生的。
《分析仪器的使用与维护》试题库内容第四章气相色谱仪1题号:04001第04章 题型:选择题 难易程度:容易 试题:FID 点火前需要加热至100C 的原因是()A. 易于点火 C.防止水分凝结产生噪音B. 点火后为不容易熄灭D.容易产生信号答案:C试题:对气相色谱柱分离度影响最大的是()A. 色谱柱柱温B.载气的流速C.柱子的长度 D.填料粒度的大小答案:A4 题号:04004第04章 题型:选择题 难易程度:适中 试题:单柱单气路7 题号:04007第04章 题型:选择题 难易程度:适屮 试题:稳压阀是用来调节气体流量和稳定气体压力。
对波纹管双腔式稳压阀其入口压力不得超过(),出口压力--般2题号:04002第04章题型:选择题 试题:TCD 的基本原理是依据被测组分与载气()的不同A.相对极性B.电阻率C.相对密度 答案:D3 题号:04003 第04章 题型:选择题难易程度:适屮 D.导热系数 难易程度:容易气相色谱仪的工埠骡盈孵矗胖篦裁恶編品空减压阀,转子流量计,色谱柱, 稳压阀,色谱柱,转子流量计, 减压阀,色谱柱,转子流量计,A. B. C. 答案P ・5减压阀, 稳压阀,减压阀,麵号:04005第04章题型: ......... 空 检测器后放空 检测器后放空 检测器后放空选择题 难易程度: 容易试题:固定其他条件, 色谱柱的理论塔板高度,将随载气的线速增加而(A.基本不变 C.减小答案:D6 题号:04006B. 变大 D. 先减小后增大第04章题型:选择题难易程度:较难试题:稳流阀的作用是保持载气流速稳定。
稳流阀工作的条件是保持气体入口 O A. 压力稳定C. 温度稳B. 流速稳定 D. 载气种类固定保持在(A.0. 3MPa, 0. 1-0. 3 MPaC・ 0. 6MPa , 0. 1-0. 6 MPa 答案:B8题号:04008第04章试题:毛细管色谱气路中连接补充气路A.保持色谱峰稳定C.提高检测的灵敏度答案:C9题号:04009第04章试题:衡量色谱柱总分离效能的指标是)OB.0. 6MPa , 0. 1-0. 3MPaD. 1. OMPa , 0. 1-0. 6 MPa题型:选择题难易程度:适中(尾吹气)的目的是()。
分析化学教材(系列一)目录第一章绪论第二章误差和分析数据处理第三章滴定分析法概论第四章酸碱滴定法第五章配位滴定法第六章氧化还原滴定法第七章沉淀滴定法和重量分析法第八章电位法和永停滴定法第九章光谱分析法概论第十章紫外可见分光光度法第十一章荧光分析法第十二章红外吸收光谱法第十三章原子吸收分光光度法第十四章核磁共振波谱法第十五章质谱法第十六章色谱分析法概论第十七章气相色谱法第十八章高效液相色谱法第十九章平面色谱法第二十章毛细管电泳法第二十一章色谱联用分析法附录一元素的相对原子质量(2005)附录二常用化合物的相对分子质量附录三中华人民共和国法定计量单位附录四国际制(SI)单位与cgs单位换算及常用物理化学常数附录五常用酸、碱在水中的离解常数(25℃)附录六配位滴定有关常数附录七常用电极电位附录八难溶化合物的溶度积常数(25℃,I=0)附录九标准缓冲溶液的pH(0—95℃)附录十主要基团的红外特征吸收峰附录十一质子化学位移表附录十二质谱中常见的中性碎片与碎片离子附录十三气相色谱法用表参考文献英文索引中文索引目录第三版前言第二版前言第一版前言第1章绪论第2章误差和分析数据处理第3章重量分析法第4章滴定分析法概论第5章酸碱滴定法第6章络合滴定法第7章沉淀滴定法第8章氧化还原滴定法第9章取样与样品预处理方法附录附录Ⅰ中华人民共和国法定计量单位附录Ⅱ分析化学中常用的物理化学常数及物理量附录Ⅲ国际相对原子质量表附录Ⅳ常用相对分子质量表附录Ⅴ酸、碱在水中的离解常数附录Ⅵ常用标准缓冲溶液的pH(0~60℃)附录Ⅶ络合滴定有关常数附录Ⅷ标准电极电位及条件电位表附录Ⅸ难溶化合物的溶度积(Ksp)符号表第1章概论1.1定量分析概述1.1.1分析化学的任务和作用1.1.2定量分析过程1.1.3定量分析方法1.2滴定分析法概述1.2.1滴定分析法对反应的要求和滴定方式1.2.2基准物质和标准溶液1.2.3滴定分析中的体积测量1.2.4滴定分析的计算思考题习题第2章误差与分析数据处理2.1有关误差的一些基本概念2.1.1误差的表征——准确度与精密度2.1.2误差的表示——误差与偏差2.1.3误差的分类——系统误差与随机误差2.2随机误差的分布2.2.1频率分布2.2.2正态分布2.2.3随机误差的区间概率2.3有限数据的统计处理2.3.1数据的集中趋势和分散程度的表示——对μ和σ2.3.2总体均值的置信区间——对μ的区别间估计2.3.3显著性检验2.3.4异常值的检验2.4测定方法的选择与测定准确度的提高2.5有效数字思考题习题第3章酸碱平衡与酸碱滴定法3.1酸碱反应3.1.2酸碱反应的平衡常数3.1.3活度与浓度,平衡常数的几种形式3.2酸度对弱酸(碱)形态分布的影响3.2.1一元弱酸溶液中各种形态的分布3.2.2多元酸溶液中各种形态的分布3.2.3浓度对数图3.3酸碱溶液的H+浓度计算3.3.1水溶液中酸碱平衡处理的方法3.3.2一元弱酸(碱)溶液pH的计算3.3.3两性物质溶液pH的计算3.3.4多元弱酸溶液pH的计算3.3.5一元弱酸及其共轭碱(HA+A)混合溶液pH的计算3.3.6强酸(碱)溶液pH的计算3.3.7混合酸和混合碱溶液pH的计算3.4酸碱缓冲溶液3.4.1缓冲容量和缓冲范围3.4.2缓冲溶液的选择3.4.3标准缓冲溶液3.5酸碱指示剂3.5.1酸碱指示剂的作用原理3.5.2影响指示剂变色间隔的因素3.5.3混合指示剂3.6酸碱滴定曲线和指示剂的选择3.6.1强碱滴定强酸或强酸滴定强碱3.6.2一元弱酸(碱)的滴定3.6.3滴定一元弱(弱碱)及其与强酸(强碱)混合物的总结3.6.4多元酸和多元碱的滴定3.7终点误差3.7.1代数法计算终点误差图及其应用3.7.2终点误差公式和终点误差图及其应用3.8酸碱滴定法的应用3.8.1酸碱标准溶液的配制与标定……第4章络合滴定法第5章氧化还原滴定法第6章沉淀重量与沉淀滴定法第7章分光光度法第8章分析化学中常用的分离方法第9章其他常用仪器分析方法附录目录编写说明第1章绪论第1节分析化学的任务与作用第2节分析化学方法的分类第3节试样分析的基本程序第4节分析化学的发展与趋势第2章误差和分析数据的处理第1节误差第2节测量值的准确度和精密度第3节有效数字及其运算法则第4节分析数据的统计处理与分析结果的表示方法第5节相关与回归思考与练习第3章重量分析法第1节挥发法第2节萃取法第3节沉淀法思考与练习第4章滴定分析法概论第1节滴定反应类型与滴定方式第2节基准物质与标准溶液第3节滴定分析的计算思考与练习第5章酸碱滴定法第1节水溶液中的酸碱平衡第2节基本原理第3节滴定终点误差第4节应用与示例第5节非水滴定法思考与练习第6章沉淀滴定法第1节基本原理第2节应用与示例思考与练习第7章配位滴定法第1节配位平衡第2节基本原理第3节滴定条件的选择第4节应用与示例思考与练习第8章氧化还原滴定法第9章电位法和永停滴定法参考资料附录目录符号缩写或简称第一篇概述第1章分析化学的目的及其对社会的重要性1.1 分析化学的目的:对社会的基本重要性1.2 分析化学的目的:作为问题解决者的分析化学家1.3 非常规实验实应用分析化学的目的参考文献第2章分析过程2.1 概述2.2 全分析过程2.3 工作特性2.4 分析化学中的误差参考文献第3章质量保证和质量控制3.1 分析化学的质量和目标3.2 分析方法3.3 如何保证准确度3.4 质是保证和质是控制受规章限制的方面3.5 结论参考文献第二篇化学分析第4章化学分析的基本原理第5章色谱法第6章动力学与催化第7章化学分析的方法及其应用第三篇物理分析第8章元素分析第9章化合物和分子特效分析第10章微束流和表面分析第11章结构分析第四篇基于计算机的分析化学(COBAC)第12章化学计理学第13章计算机软硬件及分析仪器接口第五篇全分析系统第14章联用技术第15章微分析系统第16章过程分析化学VI. 附录汉英索引英汉索引目录总序出版说明第二版前言第一版前言符号表绪论0.1 分析化学的任务与作用0.2 分析方法的分类0.3 发展中的分析化学1 分析质量保证1.1 分析化学中关于误差的一些基本概念1.2 有效数字及其运算规则1.3 分析数据的统计处理1.4 提高分析结果准确度的方法小结习题分析化学前沿领域简介——化学计量学2 化学分析法2.1 滴定分析概述2.2 滴定分析的基本理论2.3 确定滴定终点的方法2.4 滴定条件选择2.5 滴定分析的应用2.6 重理分析法小结习题化学大师Liebig3 分离分析方法3.1 分析试样的制备和分解3.2 沉淀分离法3.3 溶齐萃取分离法3.4 离子交换分离法3.5 挥发和蒸馏分离法3.6 气相色谱法3.7 高效液相色谱法3.8 色谱分离技术发展简介3.9 膜分离法3.10 激光分离法3.11 复杂试样分析实例3.12 分离技术的发展趋势小结习题科学家及其思维方法简介——色谱学家马丁4 原子光谱分析法4.1 原子吸收分光光度法4.2 原子发射光谱分析法小结习题著名化学家本生对分析化学的贡献5 分子光谱分析法5.1 紫外-可见分光光度法5.2 红外光谱法5.3 分子发光分析法小结习题光分析化学前沿简介——光化学传感器6 核磁共振谱法6.1 基本原理6.2 核磁共振谱仪6.3 化学位移6.4 自旋偶合与自旋裂分6.5 核磁共振谱图解析6.6 13C核磁共振谱小结习题生物分子的革命性分析方法7 质谱法7.1 基本原理7.2 质谱仪7.3 离子的主要类型7.4 有机化合物质谱7.5 质谱图解析7.6 飞行时间质谱简介7.7 UV、IR、NMR和MS四谱综合解析小结习题科学展望——2000年诺贝尔化学奖简介8 电化学分析法8.1 电位分析法8.2 极谱法和伏安法8.3 库仑分析法8.4 电分析化学新进展小结习题2003年诺贝尔化学奖得主阿格雷和麦金农参考文献附录后记目录第1篇分析化学基础第1章分析化学导言1.1分析化学的定义、任务和作用1.2分析化学的特点和分类1.3分析化学的发展趋势1.4学习分析化学课程的方法思考题第2章试样的采集、制备与分解2.1试样的采集2.2固体物料试样的制备2.3试样的分解思考题第3章定量分析中的误差及数据处理3.1误差的基本概念3.2误差的传递3.3有效数字的表示与运算规则3.4随机误差的正态分布3.5少量数据的统计处理3.6数据的评价——显著性检验、异常值的取舍3.7回归分析3.8提高分析结果准确度的方法思考题习题第2篇化学分析法第4章化学分析法概述4.1化学分析法概述4.2滴定分析法概述4.3标准溶液与基准物4.4化学分析法的计算思考题习题第5章酸碱滴定法第6章配位滴定法第7章氧化还原滴定法第8章沉淀滴定法第9章重量分析法第3篇仪器分析法第10章仪器分析法概述第11章紫外可见吸收光谱法第12章原子吸收光谱法第13章电位分析法第14章气相色谱法第4篇复杂物质分析第15章定量分析中的分离及富集方法第16章复杂物质分析示例附录参考文献目录第1章绪论第1节分析化学的任务和作用第2节分析化学的分类一、化学分析与仪器分析二、定性分析、定量分析和结构分析三、无机分析和有机分析四、常量分析、半微量分析和微量分析五、例行分析和仲裁分析第3节试样分析的基本程序一、取样二、分析试液的制备三、分析测定四、分析结果的计算与评价第4节分析化学的发展与趋势第2章误差和分析数据的处理第1节概述第2节定量分析误差一、系统误差和偶然误差二、绝对误差和相对误差三、准确度与精密度四、提高分析准确度的方法第3节有效数字及其运算法则一、有效数字二、有效数字的运算法则三、有效数字的运算法则在分析化学中的应用第4节分析数据的统计处理与分析结果的表示方法一、偶然误差的正态分布二、实验数据的统计处理三、可疑值的取舍四、分析数据处理与报告第3章重量分析法第1节概述第2节挥发法一、定义二、操作过程三、应用第3节萃取法一、定义及分类二、操作过程三、应用第4节沉淀法一、沉淀重量法二、沉淀的溶解度及影响因素三、沉淀的纯度及其影响因素四、沉淀的类型与沉淀条件五、沉淀法中的计算第5节应用一、药物含量测定二、药物纯度检查第4章滴定分析法概论第1节概述第2节滴定方式一、直接滴定法二、反滴定法三、置换滴定法四、间接滴定法第3节基准物质和标准溶液一、基准物质二、标准溶液三、标准溶液浓度的表示第4节滴定分析中的计算一、计算依据二、计算示例第5章酸碱滴定法第1节概述第2节水溶液中的酸碱平衡一、酸碱质子理论二、溶液中酸碱组分的分布三、酸碱溶液中H+浓度的计算第3节酸碱指示剂一、酸碱指示剂的变色原理二、酸碱指示剂的理论变色点和变色范围三、影响指示剂变色范围的因素四、混合指示剂第4节酸碱滴定法的基本原理……第6章沉淀滴定法第7章配位滴定法第8章氧化还原滴定法第9章电位分析法第10章紫外-可见分光光度法第11章荧光分析法第12章红外分光光度法第13章原子吸收分光光度法第14章经典液相色谱法第15章气相色谱法第16章高效液相色谱法第17章其他分析方法实验部分参考文献附录《分析化学》教学基本要求目录第一章绪论第一节分析化学的任务和作用第二节分析方法的分类一、定性分析、定量分析和结构分析二、无机分析和有机分析三、常量、半微量、微量、超微量分析四、化学分析和仪器分析五、例行分析、仲裁分析和快速分析第三节分析化学的发展趋势一、分析理论与其他学科相互渗透二、分析技术的发展趋势本章小结思考题与习题第二章定量分析误差和分析数据的处理第一节定量分析误差的种类和来源一、系统误差二、随机误差第二节准确度与精密度一、准确度与误差二、精密度与偏差三、准确度与精密度的关系第三节随机误差的正态分布一、频率分布二、正态分布三、随机误差的区间概率第四节有限测定数据的统计处理一、置信度与μ的置信区间二、可疑测定值的取舍三、显著性检验第五节提高分析结果准确度的方法一、选择适当的分析方法二、减小测量的相对误差三、检验和消除系统误差四、减小随机误差第六节有效数字及其运算规则一、有效数字的意义和位数二、数字修约规则三、有效数字的运算规则本章小结思考题与习题第三章滴定分析法概论第一节滴定分析法的分类及滴定方式一、滴定分析法的分类二、滴定分析法对化学反应的要求三、滴定方式第二节滴定分析的标准溶液一、标准溶液浓度的表示方法二、化学试剂的规格与基准物质三、标准溶液的配制第三节滴定分析的有关计算一、滴定分析计算的理论依据二、滴定分析计算示例本章小结思考题与习题第四章酸碱滴定法第一节酸碱反应及其平衡常数一、酸碱反应及其实质二、酸碱反应的平衡常数以及共轭酸碱对Ka与Kb的关系第二节酸碱溶液中各型体的分布系数与分布曲线一、一元弱酸(碱)溶液中各型体的分布系数与分布曲线二、多元酸(碱)溶液中各型体的分布系数与分布曲线第三节酸碱溶液pH的计算一、质子等衡式(质子条件式)二、酸碱溶液pH的计算第四节酸碱指示剂一、酸碱指示剂的作用原理二、影响酸碱指示剂变色范围的因素三、混合酸碱指示剂第五节酸碱滴定原理及指示剂选择一、强碱与强酸的滴定二、强碱(酸)滴定一元弱酸(碱)三、多元酸(碱)的滴定四、酸碱滴定中CO2的影响第六节酸碱滴定法的应用一、酸(碱)标准溶液的配制及标定二、酸碱滴定法应用实例本章小结思考题与习题第五章配位滴定法第一节概述第二节 EDTA及其配合物一、乙二胺四乙酸(EDTA)的结构与性质二、EDTA在水溶液中各存在型体的分布系数三、EDTA与金属离子形成螯合物的特点第三节 EDTA与金属离子的配位平衡一、配合物的稳定常数二、溶液中各级配合物浓度的计算第四节影响配位平衡的主要因素一、酸效应及酸效应系数二、配位效应及配位效应系数三、配合物的条件稳定常数第五节配位滴定原理一、配位滴定曲线二、影响配位滴定突跃范围的主要因素三、准确滴定金属离子的判据四、配位滴定中适宜pH范围第六节金属指示剂一、金属指示剂的作用原理二、金属指示剂应具备的条件三、金属指示剂的选择四、金属指示剂的封闭、僵化和氧化变质现象五、常用的金属指示剂第七节提高配位滴定选择性的方法一、控制溶液酸度二、利用掩蔽和解蔽作用三、采用其他配位剂四、分离干扰离子第八节配位滴定法的应用一、EDTA标准溶液的配制、标定二、各种配位滴定方式三、配位滴定法应用实例本章小结思考题与习题第六章氧化还原滴定法第一节氧化还原反应的特点一、标准电极电势和条件电极电势二、氧化还原反应进行的方向三、氧化还原反应进行的程度四、氧化还原反应速率第二节氧化还原滴定原理一、氧化还原滴定曲线二、化学计量点时溶液电势的计算三、影响氧化还原滴定突跃范围的因素第三节氧化还原滴定的指示剂一、自身指示剂二、特殊指示剂三、氧化还原指示剂第四节常见氧化还原滴定法及其应用一、高锰酸钾法二、重铬酸钾法三、碘量法本章小结思考题与习题第七章沉淀滴定法第一节沉淀滴定法基本原理第二节银量法一、莫尔法二、佛尔哈德法三、法扬司法第三节沉淀滴定法的应用一、标准溶液的配制与标定二、应用示例本章小结思考题与习题第八章分析化学中的常用分离方法第一节沉淀分离法一、无机沉淀剂分离二、有机沉淀剂分离三、共沉淀分离第二节液?液萃取分离法一、萃取分离法的基本原理二、萃取体系的分类和萃取条件的选择三、萃取分离技术四、溶剂萃取在分析化学中的应用第三节离子交换分离法一、离子交换剂的种类和性质二、离子交换树脂的亲和力三、离子交换分离操作技术四、离子交换分离法的应用第四节常规色谱法一、柱色谱法二、纸色谱法三、薄层色谱法本章小结思考题与习题第九章电势分析法第一节电势分析法基本原理一、直接电势法二、电势滴定法三、电池电动势的测量第二节参比电极和指示电极一、参比电极二、指示电极第三节直接电势法及应用一、溶液pH值的测定二、离子活度(浓度)的测定三、直接电势法的应用第四节电势滴定法一、电势滴定法的原理二、电势滴定终点的确定三、电势滴定法的应用本章小结思考题与习题第十章吸光光度分析法第一节吸光光度法的基础知识一、光的基本性质二、光的互补作用与溶液的颜色三、光的吸收曲线第二节光的吸收定律一、朗伯?比耳定律二、朗伯?比耳定律的推导三、吸光度与透光度四、吸光系数、摩尔吸光系数及桑德尔灵敏度第三节显色反应及影响因素一、吸光光度法对显色反应的要求二、影响显色反应的主要因素三、显色剂第四节吸光光度分析法及仪器一、吸光光度分析的类型二、吸光光度分析的定量分析方法三、分光光度计的构造四、分光光度计的类型第五节吸光光度法测量误差及测量条件的选择一、吸光光度法的测量误差二、测量条件的选择第六节吸光光度法的应用一、示差吸光光度法二、多组分的分析三、配合物组成的测定本章小结思考题与习题第十一章原子吸收分光光度法第一节基本原理一、共振发射线与吸收线二、基态原子与激发态原子的关系三、原子吸收线的宽度四、原子吸收的测量五、灵敏度和检出限第二节原子吸收分光光度计一、光源二、原子化器三、分光系统四、检测系统五、读数装置六、原子吸收分光光度计的类型第三节仪器测量条件的选择一、分析线的选择二、灯电流的选择三、原子化条件的选择四、燃烧器高度的选择五、进样量六、单色器狭缝宽度与光谱通带的选择第四节定量分析方法一、标准工作曲线法二、标准加入法第五节干扰及消除方法一、光谱干扰二、化学干扰、物理干扰及电离干扰第六节原子吸收分光光度法的应用一、测定生物样品中的化学元素二、有机物分析本章小结思考题与习题第十二章气相色谱分析法第一节色谱法概述一、色谱法原理介绍二、色谱法的分类第二节气相色谱法的特点及基本原理一、气相色谱法的特点二、气相色谱法的基本原理第三节气相色谱的实验技术一、色谱系统二、实验技术要点三、程序升温和衍生物制备第四节气相色谱法的应用一、定性分析二、定量分析三、气相色谱分析误差产生的原因第五节气相色谱法的新进展一、顶空气相色谱二、气相色谱?质谱联用技术三、气相色谱?红外光谱联用技术本章小结思考题与习题第十三章高效液相色谱法第一节高效液相色谱法的技术参数一、速率理论二、柱外效应三、分离度四、系统适应性实验第二节高效液相色谱法的色谱系统一、高压泵二、梯度洗脱装置三、进样器四、色谱柱五、检测器六、数据处理系统和结果处理第三节高效液相色谱法的分离方式一、吸附色谱法二、分配色谱法三、离子色谱法四、尺寸排阻色谱法五、亲和色谱法第四节样品预处理与色谱柱的保护一、样品预处理二、色谱柱的保护第五节液相色谱分析技术的新进展一、液相色谱?质谱联用技术概述二、超临界流体色谱法概述三、高效毛细管液相色谱法概述本章小结思考题与习题第十四章现代仪器分析简介第一节光分析法导论一、电磁波的辐射能特性二、光分析法的分类第二节原子发射光谱法一、基本原理二、原子发射光谱仪三、应用第三节原子荧光光谱法一、基本原理二、原子荧光光谱仪三、应用第四节分子荧光和磷光分析法一、荧光和磷光的产生二、荧光和磷光强度的影响因素三、荧光/磷光分析仪器四、荧光/磷光分析法应用第五节红外分光光度法一、分子的红外吸收二、红外光谱解析程序第六节核磁共振波谱法一、基本原理二、1HNMR谱的解析三、13CNMR谱的特点与解析第七节流动注射分析本章小结思考题与习题第十五章样品分析的一般过程第一节试样采集和制备一、试样的采集二、试样的制备第二节试样的分解与处理一、无机试样的分解处理二、有机试样的分解处理三、试样分解处理方法的选择四、干扰组分的处理第三节测定方法的选择一、测定的具体要求二、被测组分的性质三、被测组分的含量四、共存组分的影响五、实验室条件第四节分析结果的计算和数据评价一、分析结果的计算及表示方法二、分析结果的报告与评价本章小结思考题与习题附录附录一相对原子质量表(2001年国际原子量)附录二化合物的相对分子质量表附录三弱酸在水中的离解常数(25℃)附录四弱碱在水中的离解常数(25℃)附录五常用浓酸浓碱的密度和浓度附录六几种常用缓冲溶液的配制附录七常用标准缓冲溶液不同温度下的pH值附录八金属离子与EDTA配合物的lgKf(25℃)附录九标准电极电势表(25℃)附录十部分氧化还原电对的条件电极电势(25℃)附录十一难溶化合物的溶度积常数(25℃)参考文献目录绪论0.1分析化学的任务和作用0.2分析方法的分类0.2.1无机分析和有机分析0.2.2化学分析和仪器分析0.2.3常量分析、半微量分析和微量分析。
初中生物理实验操作视频解读第一章:基础物理仪器介绍 (3)1.1 物理实验常用仪器 (3)1.1.1 测量仪器 (3)1.1.2 实验装置 (3)1.1.3 光学仪器 (3)1.2 仪器的使用与维护 (3)1.2.1 使用方法 (3)1.2.2 维护方法 (4)第二章:力学实验操作 (4)2.1 重力与摩擦力的测量 (4)2.1.1 重力的测量 (4)2.1.2 摩擦力的测量 (4)2.2 简单机械的原理与应用 (4)2.2.1 杠杆原理与应用 (4)2.2.2 滑轮原理与应用 (5)2.2.3 斜面原理与应用 (5)2.3 动能和势能的转换 (5)2.3.1 动能转化为势能 (5)2.3.2 势能转化为动能 (5)第三章:热学实验操作 (5)3.1 热传导的演示 (5)3.1.1 实验目的 (5)3.1.2 实验器材 (5)3.1.3 实验步骤 (5)3.1.4 实验现象 (6)3.1.5 实验结论 (6)3.2 热容量的测量 (6)3.2.1 实验目的 (6)3.2.2 实验器材 (6)3.2.3 实验步骤 (6)3.2.4 实验现象 (6)3.2.5 实验结论 (6)3.3 热力学第一定律的实验验证 (6)3.3.1 实验目的 (6)3.3.2 实验器材 (6)3.3.3 实验步骤 (6)3.3.4 实验现象 (7)3.3.5 实验结论 (7)第四章:光学实验操作 (7)4.1 凸透镜和凹透镜成像 (7)4.1.1 实验目的 (7)4.1.2 实验原理 (7)4.1.3 实验步骤 (7)4.1.4 实验注意事项 (7)4.2 光的折射和反射现象 (7)4.2.1 实验目的 (7)4.2.2 实验原理 (8)4.2.3 实验步骤 (8)4.2.4 实验注意事项 (8)4.3 光的色散与光谱分析 (8)4.3.1 实验目的 (8)4.3.2 实验原理 (8)4.3.3 实验步骤 (8)4.3.4 实验注意事项 (8)第五章:电磁学实验操作 (8)5.1 电磁感应现象 (8)5.2 电磁铁的制作与测试 (9)5.3 电路的连接与电流、电压的测量 (9)第六章:声学实验操作 (9)6.1 声波的产生与传播 (9)6.1.1 实验目的 (9)6.1.2 实验原理 (9)6.1.3 实验步骤 (10)6.2 声音的共鸣现象 (10)6.2.1 实验目的 (10)6.2.2 实验原理 (10)6.2.3 实验步骤 (10)6.3 声音的测量与分析 (10)6.3.1 实验目的 (10)6.3.2 实验原理 (10)6.3.3 实验步骤 (10)第七章:现代物理实验技术 (11)7.1 光电效应的实验探究 (11)7.2 核物理实验简介 (11)7.3 量子物理实验入门 (11)第七章:现代物理实验技术 (11)7.1 光电效应的实验探究 (11)7.2 核物理实验简介 (11)7.3 量子物理实验入门 (11)第八章:物理实验安全与规范 (12)8.1 实验室安全常识 (12)8.2 实验操作规范 (12)8.3 实验数据的处理与分析 (13)第一章:基础物理仪器介绍1.1 物理实验常用仪器物理实验是初中生学习物理知识的重要途径,而物理实验的成功与否很大程度上取决于对实验仪器的正确认识和使用。