工程流体力学答案(陈卓如)第二章
- 格式:docx
- 大小:191.04 KB
- 文档页数:6
第一章 流体及其物理性质1-1 已知油的重度为7800N/m 3,求它的密度和比重。
又,0.2m 3此种油的质量和重量各为多少?已已知知::γ=7800N/m 3;V =0.2m 3。
解解析析::(1) 油的密度为 3kg/m 79581.97800===gγρ; 油的比重为 795.01000795OH 2===ρρS (2) 0.2m 3的油的质量和重量分别为 kg 1592.0795=⨯==V M ρ N 15602.07800=⨯==V G γ1-2 已知300L(升)水银的质量为4080kg ,求其密度、重度和比容。
已已知知::V =300L ,m =4080kg 。
解解析析::水银的密度为 33kg/m 13600103004080=⨯==-V m ρ 水银的重度为 3N/m 13341681.913600=⨯==g ργ 水银的比容为 kg /m 10353.7136001135-⨯===ρv1-3 某封闭容器内空气的压力从101325Pa 提高到607950Pa ,温度由20℃升高到78℃,空气的气体常数为287.06J/k g ·K 。
问每kg 空气的体积将比原有体积减少多少?减少的百分比又为多少?已已知知::p 1=101325Pa ,p 2=607950Pa ,t 1=20℃,t 2=78℃,R =287.06J/k g ·K 。
解解析析::由理想气体状态方程(1-12)式,得 kg /m 83.0101325)27320(06.2873111=+⨯==p RT v kg /m 166.0607950)27378(06.2873222=+⨯==p RT v kg /m 664.0166.083.0321=-=-v v%80%10083.0166.083.0%100121=⨯-=⨯-v v v每kg 空气的体积比原有体积减少了0.664m 3;减少的百分比为80%。
第一章 绪论1-1.20℃的水2.5m 3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμ此时动力粘度μ增加了3.5%1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。
试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dydu-=)(002.0y h g dydu-==∴ρμτ 当h =0.5m ,y =0时)05.0(807.91000002.0-⨯⨯=τPa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角22.620 (见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yu AT mg d d sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y 方向的分布图。
[解]1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。
工程流体力学 第二章 流体静力学2-1.一密闭盛水容器如图所示,U 形测压计液面高于容器内液面h=1.5m ,求容器液面的相对压强。
[解] gh p p a ρ+=0kPa gh p p p a e 7.145.1807.910000=⨯⨯==-=∴ρ2-2.密闭水箱,压力表测得压强为4900Pa 。
压力表中心比A 点高0.5m ,A 点在液面下1.5m 。
求液面的绝对压强和相对压强。
[解]g p p A ρ5.0+=表Pa g p g p p A 49008.9100049005.10-=⨯-=-=-=ρρ表 Pa p p p a 9310098000490000=+-=+=' 2-3.多管水银测压计用来测水箱中的表面压强。
图中高程的单位为m 。
试求水面的绝对压强p abs 。
[解])2.13.2()2.15.2()4.15.2()4.10.3(0-+=-+---+g p g g g p a 汞水汞水ρρρρ g p g g g p a 汞水汞水ρρρρ1.13.11.16.10+=+-+kPa g g p p a 8.3628.9109.28.9106.132.2980009.22.2330=⨯⨯-⨯⨯⨯+=-+=水汞ρρ2-4. 水管A 、B 两点高差h 1=0.2m ,U 形压差计中水银液面高差h 2=0.2m 。
试求A 、B 两点的压强差。
(22.736N /m 2)[解] 221)(gh p h h g p B A 水银水ρρ+=++Pa h h g gh p p B A 22736)2.02.0(8.9102.08.9106.13)(33212=+⨯⨯-⨯⨯⨯=+-=-∴水水银ρρ2-5.水车的水箱长3m,高1.8m ,盛水深1.2m ,以等加速度向前平驶,为使水不溢出,加速度a 的允许值是多少?[解] 坐标原点取在液面中心,则自由液面方程为:x gaz -=0 当m lx5.12-=-=时,m z 6.02.18.10=-=,此时水不溢出 20/92.35.16.08.9s m x gz a =-⨯-=-=∴2-6.矩形平板闸门AB 一侧挡水。
第一章 流体及其物理性质1-1 已知油的重度为7800N/m 3,求它的密度和比重。
又,0.2m 3此种油的质量和重量各为多少?已已知知::γ=7800N/m 3;V =0.2m 3。
解解析析::(1) 油的密度为 3kg/m 79581.97800===gγρ; 油的比重为 795.01000795OH 2===ρρS (2) 0.2m 3的油的质量和重量分别为 kg 1592.0795=⨯==V M ρ N 15602.07800=⨯==V G γ1-2 已知300L(升)水银的质量为4080kg ,求其密度、重度和比容。
已已知知::V =300L ,m =4080kg 。
解解析析::水银的密度为 33kg/m 13600103004080=⨯==-V m ρ 水银的重度为3N/m 13341681.913600=⨯==g ργ水银的比容为 kg /m 10353.7136001135-⨯===ρv1-3 某封闭容器内空气的压力从101325Pa 提高到607950Pa ,温度由20℃升高到78℃,空气的气体常数为287.06J/k g ·K 。
问每kg 空气的体积将比原有体积减少多少?减少的百分比又为多少?已已知知::p 1=101325Pa ,p 2=607950Pa ,t 1=20℃,t 2=78℃,R =287.06J/k g ·K 。
解解析析::由理想气体状态方程(1-12)式,得 kg /m 83.0101325)27320(06.2873111=+⨯==p RT v kg /m 166.0607950)27378(06.2873222=+⨯==p RT v kg /m 664.0166.083.0321=-=-v v%80%10083.0166.083.0%100121=⨯-=⨯-v v v每kg 空气的体积比原有体积减少了0.664m 3;减少的百分比为80%。
工程流体力学第二版答案工程流体力学 第二章 流体静力学2-1.一密闭盛水容器如图所示,U 形测压计液面高于容器内液面h=1.5m ,求容器液面的相对压强。
[解] gh p p a ρ+=0kPa gh p p p a e 7.145.1807.910000=⨯⨯==-=∴ρ2-2.密闭水箱,压力表测得压强为4900Pa 。
压力表中心比A 点高0.5m ,A 点在液面下1.5m 。
求液面的绝对压强和相对压强。
[解]g p p A ρ5.0+=表Pa g p g p p A 49008.9100049005.10-=⨯-=-=-=ρρ表 Pa p p p a 9310098000490000=+-=+=' 2-3.多管水银测压计用来测水箱中的表面压强。
图中高程的单位为m 。
试求水面的绝对压强p abs 。
[解])2.13.2()2.15.2()4.15.2()4.10.3(0-+=-+---+g p g g g p a 汞水汞水ρρρρg p g g g p a 汞水汞水ρρρρ1.13.11.16.10+=+-+kPa g g p p a 8.3628.9109.28.9106.132.2980009.22.2330=⨯⨯-⨯⨯⨯+=-+=水汞ρρ2-4. 水管A 、B 两点高差h 1=0.2m ,U 形压差计中水银液面高差h 2=0.2m 。
试求A 、B 两点的压强差。
(22.736N /m 2)[解] 221)(gh p h h g p B A 水银水ρρ+=++Pah h g gh p p B A 22736)2.02.0(8.9102.08.9106.13)(33212=+⨯⨯-⨯⨯⨯=+-=-∴水水银ρρ2-5.水车的水箱长3m,高1.8m ,盛水深1.2m ,以等加速度向前平驶,为使水不溢出,加速度a 的允许值是多少?[解] 坐标原点取在液面中心,则自由液面方程为:x gaz -=0 当m lx5.12-=-=时,m z 6.02.18.10=-=,此时水不溢出 20/92.35.16.08.9s m x gz a =-⨯-=-=∴2-6.矩形平板闸门AB 一侧挡水。
第二章 流体静力学2-1 将盛有液体的U 形小玻璃管装在作水平加速运动的汽车上(如图示),已知L =30 cm ,h =5cm ,试求汽车的加速度a 。
解:将坐标原点放在U 形玻璃管底部的中心。
Z 轴垂直向上,x 轴与加速度的方向一致,则玻璃管装在作水平运动的汽车上时,单位质量液体的质量力和液体的加速度分量分别为0,0,,0,0x y z x y z g g g ga a a a ===-===代入压力全微分公式得d (d d )p a x g z ρ=-+因为自由液面是等压面,即d 0p =,所以自由液面的微分式为d d a x g z =- 积分的:a z x c g=-+,斜率为a g -,即a g h L = 解得21.63m/s 6g a g h L ===2-2 一封闭水箱如图示,金属测压计测得的压强值为p =4.9kPa(相对压强),测压计中心比A 点高z =0.5m ,而A 点在液面以下h =1.5m 。
求液面的绝对压强和相对压强。
解:由0p gh p gz ρρ+=+得相对压强为30() 4.91010009.81 4.9kPa p p g z h ρ=+-=⨯-⨯⨯=-绝对压强0( 4.998)kPa=93.1kPa abs a p p p =+=-+2-3 在装满水的锥台形容器盖上,加一力F =4kN 。
容器的尺寸如图示,D =2m ,d =l m ,h =2m 。
试求(1)A 、B 、A ’、B ’各点的相对压强;(2)容器底面上的总压力。
解:(1)02 5.06kPa 4F F p D A π===,由0p p gh ρ=+得:0 5.06kPa A B p p p ===''0 5.06kPa+10009.82Pa 24.7kPa A B p p p gh ρ==+=⨯⨯=(2) 容器底面上的总压力为2'24.7kPa 77.6kN 4A D P p A π==⨯= 2-4 一封闭容器水面的绝对压强p 0=85kPa ,中间玻璃管两端开口,当既无空气通过玻璃管进入容器、又无水进人玻璃管时,试求玻璃管应该伸入水面下的深度h 。
第一章 绪论1-1.20℃的水2.5m 3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμ此时动力粘度μ增加了3.5%1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。
试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dydu-=)(002.0y h g dydu-==∴ρμτ 当h =0.5m ,y =0时)05.0(807.91000002.0-⨯⨯=τPa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角22.620 (见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yu AT mg d d sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y 方向的分布图。
[解]1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。
工程流体力学课后习题答案(第二版)(总22页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章 绪论1-1.20℃的水,当温度升至80℃时,其体积增加多少 [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)[解] 原原ρννρμ)1.01()15.01(-+==原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμ此时动力粘度μ增加了%1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。
试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dydu-=)(002.0y h g dydu-==∴ρμτ 当h =,y =0时)05.0(807.91000002.0-⨯⨯=τPa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角 (见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yu AT mg d d sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y 方向的分布图。
第2章 流体静力学2.1 解:相对压强:gh p ρ=333/0204.1051/100510.13008.93090m kg m kg gh p =⨯=⨯==ρ 2.2 解:设小活塞顶部所受的来自杠杆的压力为F ,则小活塞给杠杆的反力亦为F ,对杠杆列力矩平衡方程:Fa b a T =+)(a b a T F )(+=小活塞底部的压强为:22)(44ad b a T d F p ππ+==根据帕斯卡原理,p 将等值的传递到液体当中各点,大活塞底部亦如此。
222)(4ad D b a T D p G +==∴π cm cm b a T Gad D 28.28)7525(201000825)(22=+⨯⨯⨯=+=2.3 解:(1)at at kPa p p p a 3469.19813213295227'===-=-= (2)kPa p p p a v 257095'=-=-=m g p h v v 55.28.925===ρ水柱高 2.4 解:ρgh 2 ρgh 1ρgh 3ρgh 2ρgh 1h 2h 1 h 1 h 2h 3 (b)(a)BAA Bρg(h-h 2)ρg(h+R)ρghρg(h-h 2) ρgh 1Rhh 2h 1h(d)(c)B AAB2.5 解:1-1为等压面:gh p gH p a ρρ+=+0kPa m N m N m N H h g p p a 94.100/100940/)2.15.1(8.91000/108.9)('22240==-⨯⨯+⨯=-+=ρ kPa p 94.20=2.6 解: kPa gL p c 45.230sin 5.08.9sin =⨯⨯==αρ 2.7 解:如图所示,过1、2、3点的水平面是等压面。
)()()(322341121z z g z z g gh p z z g gh p B B A A ---++=--+ρρρρρ[])()()()(32212341z z g z z z z g h h g p p A B B A ---+-+-=-ρρρ[])()()()(3221234141z z g z z z z g z z g ---+-+-=ρρρ[]{}310)3262(8.0)1862()3253(6.13)5318(8.9-⨯---+-+-⨯=Pa 8085=2.8 解:gh gh p gh p p B B A A ρρρ+-=- ()gh h h g p p p B A B A ρρ+-=-=()[]gh h g p ρρ++-1=()[]31036.08.96.13136.08.9-⨯⨯⨯++-=34.6528kPa2.9 解:如图所示,A 、B 、C 点水平面是等压面。
第一章 绪论1-1.20℃的水2.5m 3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==Θ原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμΘ此时动力粘度μ增加了3.5%1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。
试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dydu-=Θ)(002.0y h g dydu-==∴ρμτ 当h =0.5m ,y =0时)05.0(807.91000002.0-⨯⨯=τPa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角22.620 (见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yuATmgddsinμθ==001.0145.04.062.22sin8.95sin⨯⨯⨯⨯==δθμuAmgsPa1047.0⋅=μ1-5.已知液体中流速沿y方向分布如图示三种情况,试根据牛顿内摩擦定律yuddμτ=,定性绘出切应力沿y方向的分布图。
[解]1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。
已知导线直径0.9mm,长度20mm,涂料的粘度μ=0.02Pa.s。
第一章 绪论1-1.20℃的水2.5m 3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμ此时动力粘度μ增加了3.5%1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。
试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dydu-=)(002.0y h g dydu-==∴ρμτ 当h =0.5m ,y =0时)05.0(807.91000002.0-⨯⨯=τPa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角22.620 (见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yu AT mg d d sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y 方向的分布图。
[解]1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。
第一章 绪论1-1.20℃的水2.5m 3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμ此时动力粘度μ增加了3.5%1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。
试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dydu-=)(002.0y h g dydu-==∴ρμτ 当h =0.5m ,y =0时)05.0(807.91000002.0-⨯⨯=τPa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角22.620 (见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yu AT mg d d sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y 方向的分布图。
[解]1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。
工程流体力学练习题第一章1-1解:设:柴油的密度为ρ,重度为γ;40C 水的密度为ρ0,重度为γ0。
则在同一地点的相对密度和比重为:ρρ=d ,0γγ=c ;30/830100083.0m kg d =⨯=⨯=ρρ30/81348.9100083.0m N c =⨯⨯=⨯=γγ1-2解:336/1260101026.1m kg =⨯⨯=-ρ;3/123488.91260m N g =⨯==ργ1-3解:269/106.191096.101.0m N E V V VVp p V Vp p p⨯=⨯⨯=∆-=∆-=∆⇒∆∆-=ββ1-4解:N m pVVp/105.21041010002956--⨯=⨯=∆∆-=β299/104.0105.211m N E pp ⨯=⨯==-β1-5解:1)求体积膨涨量和桶内压强受温度增加的影响,200升汽油的体积膨涨量为:()l T V V T T 4.2202000006.00=⨯⨯=∆=∆β由于容器封闭,体积不变,从而因体积膨涨量使容器内压强升高,体积压缩量等于体积膨涨量。
故:26400/1027.16108.9140004.22004.2mN E V V V V V V p p TT pTT⨯=⨯⨯⨯+=∆+∆-=∆+∆-=∆β2)在保证液面压强增量0.18个大气压下,求桶内最大能装的汽油质量。
设装的汽油体积为V ,那么:体积膨涨量为:T V V T T ∆=∆β;体积压缩量为:()()T V E p V VE p V T pT pp ∆+∆=∆+∆=∆β1因此,温度升高和压强升高联合作用的结果,应满足:()()⎪⎪⎭⎫ ⎝⎛∆-∆+=∆-∆+=p T pT E p T V V T V V 1110ββ()())(63.197108.9140001018.01200006.012001145l E p T V V p T =⎪⎪⎭⎫⎝⎛⨯⨯⨯-⨯⨯+=⎪⎪⎭⎫ ⎝⎛∆-∆+=β()kg V m 34.1381063.19710007.03=⨯⨯⨯==-ρ1-6解:石油的动力粘度:s pa .028.01.010028=⨯=μ石油的运动粘度:s m /1011.39.01000028.025-⨯=⨯==ρμν1-7解:石油的运动粘度:s m St /1044.01004025-⨯===ν石油的动力粘度:s pa .0356.0104100089.05=⨯⨯⨯==-ρνμ1-8解:2/1147001.01147.1m N u=⨯==δμτ1-9解:()()2/5.1621196.012.0215.0065.021m N d D u u=-⨯=-==μδμτN L d F 54.85.16214.01196.014.3=⨯⨯⨯=⨯⨯⨯=τπ第二章2-4解:设:测压管中空气的压强为p 2,水银的密度为1ρ,水的密度为2ρ。
第2章 流体静力学2.1 大气压计的读数为100。
66kPa (755mmHg),水面以下7.6m 深处的绝对压力为多少?知:a a KP P 66.100= 3/1000m kg =水ρ m h 6.7= 求:水下h 处绝对压力 P解:aa KP ghP P 1756.71000807.96.100=⨯⨯+=+=ρ 2.2 烟囱高H=20m ,烟气温度t s =300℃,压力为p s ,确定引起火炉中烟气自动流通的压力差。
烟气的密度可按下式计算:p=(1。
25-0.0027t s )kg/m 3,空气ρ=1。
29kg/m 3。
解:把t 300s C =︒代入3s (1.250.0027)/s t kg m ρ=-得3s (1.250.0027)/s t kg m ρ=-33(1.250.0027300)/0.44/kg m kg m=-⨯=压力差s =-p ρρ∆a ()gH ,把31.29/a kg m ρ=,30.44/s kg m ρ=,9.8/g N kg =,20H m =分别代入上式可得s =-20p Pa ρρ∆⨯⨯a ()gH=(1.29-0.44)9.8166.6Pa =2.3 已知大气压力为98.1kN/m 2。
求以水柱高度表示时:(1)绝对压力为117.2kN/m2时的相对压力;(2)绝对压力为68。
5kN/m 2时的真空值各为多少? 解:(1)相对压力:p a =p-p 大气=117.72-98.1=19.62KN/2m以水柱高度来表示:h= p a/ g ρ=19。
62* 310 /(9.807* 310)=2.0m (2)真空值:2v a p =p p=98.168.5=29.6/m KN --以水柱高度来表示:h= p a/ g ρ=29。
6* 310 /(9.807* 310)=3。
0m2。
4 如图所示的密封容器中盛有水和水银,若A 点的绝对压力为300kPa ,表面的空气压力为180kPa,则水高度为多少?压力表B 的读数是多少?解:水的密度1000 kg/m 3,水银密度13600 kg/m 3A 点的绝对压力为:)8.0(20g gh p p H g o h A ρρ++=300⨯310=180⨯310+1000⨯9。
[陈书2-8]容器中盛有密度不同的两种液体,问测压管A 及测压管B 的液面是否和容器中的液面O-O 齐平?为什么?若不齐平,则A 、B 测压管液面哪个高?
[解]依题意,容器内液体静止。
测压管A 与上层流体连通,且上层流体和测压管A 均与大气连通,故A 测压管的液面与液面O-O 齐平。
测压管B 与上下层流体连通,其根部的压强为:
a p gh gh p ++=2211ρρ
其中1h 为上层液体的厚度,2h 为液体分界面到B 管根部的垂向距离,a p 为大气压 因测压管B 与大气连通,其根部的压强又可表示为:
a p gh p +=2ρ
其中h 为B 管内气液界面到B 管根部的垂向距离 所以:gh gh gh 22211ρρρ=+
212
1
22211h h h h h +=+=
ρρρρρ
由此可知:若21ρρ<,B 测压管的液面低于A 测压管的液面和O-O 面;若21ρρ>,B 测压管的液面高A 测压管的液面和O-O 面;若21ρρ=,A 、B 测压管的液面和O-O 面三者平齐。
又因为密度为1ρ的液体稳定在上层,故21ρρ<。
[陈书2-12]容器中有密度为1ρ和2ρ的两种液体,试绘出AB 面上的压强分布图。
[解]令上、下层液体的厚度分别为1h 和2h ,取垂直向下的方向为z 轴的正方向,并将原点设在自由表面上,可写出AB 表面上压强的表达式:
()⎩⎨
⎧+≤<-++≤≤+=21121111 0
h h z h h z g gh p h z gz p p a
a ρρρ 整理得:
()⎩⎨
⎧+≤<+-+≤≤+=2
11212111 0
h h z h gz gh p h z gz p p a a ρρρρ
A
C
B
P 012P g AC g BC
ρρ++01P g AC
ρ+/h m
/P Pa
[陈书2-24]直径D=1.2m ,L=2.5的油罐车,内装密度3
900m kg =ρ的石油,油面高度为h=1m ,以2
2s m a =的加速度水平运动。
试确定油罐车侧盖 A 和B 上所受到的油液的作用
力。
[解]取x 坐标水平向右,y 坐标垂直纸面向内,z 坐标垂直向上,原点定在油罐的中轴线上。
油液受到的体积力为:
a f x -= 0=y f g f z -=
由欧拉方程积分可得:gz ax p p C ρρ--=
根据题意及所选的坐标系,当h z x ==,0时,a p p = 故:gh p p C a ρ-=
gh p p a C ρ+=
所以:()ax z h g p p a ρρ--+=
因大气压的总体作用为零,故上式中可令0=a p 于是:()ax z h g p ρρ--=
左侧盖形心的坐标:0,2
=-
=z L
x 故该处的压强:2
L
a gh p L ρρ+=
左侧盖所受油液的作用力:N D p F L L 7.1252342
==π(取2s m 81.9=g ) 右侧盖形心的坐标:0,2
==
z L
x 故该处的压强:2
L
a gh p R ρρ-=
左侧盖所受油液的作用力:N D p F R R 1.74394
2
==π(取2s m 81.9=g )
[陈书2-26]盛有水的圆筒形容器以角速度ω绕垂直轴作等速旋转,设原静水深为h ,容器半径为R ,试求当ω超过多少时可露出筒底?
解:非惯性坐标系中相对静止流体满足欧拉方程:()Zdz Ydy Xdx dp ++=ρ 等速旋转时液体所受的质量力为:
θωcos 2r X =,θωsin 2r Y =,g Z -=
将其代入欧拉方程,积分得:
C gz r p +⎪⎭
⎫ ⎝⎛-=2221ωρ
自由表面中心处r=0,a p p =(大气压),再令此处的z 坐标为:C z (令筒底处z=0),代入上式,得:
C gz p C a +-=ρ
所以:C a gz p C ρ+= 所以:C a gz p gz r p ρωρ++⎪⎭
⎫ ⎝⎛-=
2221
等压面的方程:
gz r gz p p C
a -=--222
1
ωρ
ρ 对于自由表面:a p p =,故自由表面的方程为:
gz r gz C
-=-222
1
ωρ
ρ 当筒底刚好露出时,0=C z ,所以自由面方程为:
2
221r g
z ω=
自由面与筒壁相交处的垂向坐标:2
221R g
H ω= 旋转后的水体体积:
4
2424222222
422
2222
2
20
2244221212212R g
R g R g R g R g g R g
H g R g R dz gz
h R dz r H R V H
H ωπωπωπωωωπωπ
ω
πωπωπ
πππ=-=-
=
-=-=-=⎰⎰
将水视为不可压缩流体,根据质量守恒,旋转前后的水体体积应相等,所以:
h R R g
V 2424πωπ
==
所以:gh R
2
=
ω
[陈书2-39]在由贮水池引出的直径D=0.5m 的圆管中安装一蝶阀,h=10m ,蝶阀是一个与管道直径相同的圆板,它能绕通过中心的水平轴回转。
为不使该阀自行转动,问所需施加的力矩应为多大?
[解]将阀门的圆心定为坐标原点,z 轴垂直向上,则压强分布为:
()z h g p -=ρ
由于静水压导致阀门所受的总力矩为:
()⎰⎰⎰⎰
⎰
⎰
⎰
-
---
-----=-⎪⎪⎭⎫ ⎝⎛-=-=-=-==2
224
2
2
242
2
3
32
2
224
2
2
2
3
2
232
222
2cos sin 2cos sin 23cos 2cos sin 2cos sin 2cos sin sin 22ππ
ππππππ
ππππθ
θθρθθθρθρθ
θθρθθθρθθθθρd gR
d gR h gR d gR
d h gR d R h gR dz z R pz pzdA M R R R R
()14cos 8
1
162422cos sin 442
222
2
2
2-=+-=⎪⎪⎭⎫ ⎝
⎛-=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭
⎫ ⎝⎛-=----θθθσ
θσ
θσθσθi i i i i i i i e e e e e e e e
所以:()()m
N gR gR d gR d gR M .08.304
4sin 414114cos 4
1
14cos 81242
242242
24==⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫
⎝⎛--=--=--=---⎰⎰
ρππθρθθρθθρππππππ
[陈书2-43]图示一储水设备,在C 点测得绝对压强为Pa 29430
=p ,h=2m ,R=1m 。
求半球曲面AB 所受到液体的作用力。
[解]建立如图所示的坐标系,其中坐标原点取在球心,z 轴垂直向上。
以C 为参考点,容器内任意点的压强可表达为:
⎪⎭⎫ ⎝
⎛
+-=2h z g p p C ρ
作用在曲面AB 上任意点处的压强均与表面垂直,即压力的作用线通过球心。
简单分析可知,曲面上水平方向的液体合压力为零,液体的曲面的总作用力仅体现在垂直方向,且合力方向向上,且合力作用线通过球心。
球面的外法线方向:
()
k j i n
θϕθϕθsin ,sin cos ,cos cos =
其中θ为纬度角,ϕ为经度角。
曲面AB 上的垂向总液体压力:
⎰
=2
2πθπrRd pn F z z
其中:θsin =z n ,θcos R r = 所以:⎰
=2
2
cos sin 2πθθθπd p R F z
⎪⎭
⎫ ⎝⎛--=⎥⎦⎤⎢⎣⎡⎪⎭⎫
⎝⎛+-=⎥⎦⎤⎢⎣
⎡⎪⎭⎫ ⎝⎛+-=⎰⎰⎰⎰⎰⎰
2020202202022
2cos sin 2cos sin cos sin 2cos sin 2cos sin 2cos sin 22ππππππθθθρθθθρθθθπθθθρθθθπθθθρπd h g d z g d p R d h z g d p R d h z g p R F C C C
z
将θsin R z =和2
1
cos sin 20=⎰πθθθd 代入上式,得:
⎪
⎭
⎫
⎝⎛--=⎪⎭⎫ ⎝⎛--=⎪⎭
⎫ ⎝⎛--=⎪
⎭⎫
⎝⎛--=⎰⎰gh gR p R gh gR p R gh d gR p R gh d gR p R F C C C C z ρρπρρπρθθθρπρθθθρπππ2132413121241cos sin 21241cos sin 212220222022
将Pa 29430=C p ,h=2m ,R=1m ,3m kg 1000=ρ和2
s m 81.9=g 代入,得: N 6.41102=z F。