材料的凝固理论
- 格式:ppt
- 大小:3.01 MB
- 文档页数:156
金属凝固理论原理及应用金属凝固理论是指研究金属在固态凝固过程中的组织形态和相变行为的科学原理。
金属凝固理论的研究可以帮助我们了解金属的凝固机理以及改变金属的性质和应用。
以下将从原理和应用两个方面进行详细阐述。
一、金属凝固理论的原理:1. 凝固过程中的相变行为:在金属凝固过程中,会发生相变行为,从液相变为固相。
主要包括凝固核形成、晶体长大及晶粒形核和生长等过程。
凝固核形成是指凝固过程中由于界面能降低而导致固相形成的过程。
晶体长大是指固相晶体的体积逐渐增大。
晶粒形核和生长是指液相金属晶粒在凝固过程中通过固相组织的转变形成新的晶粒。
2. 凝固速率的影响因素:凝固速率是凝固过程中晶体生长速度的量度。
影响凝固速率的因素包括金属的熔点、凝固液体的过冷度、核活化能、晶体生长速度以及固相晶粒形核密度等。
通过调节这些因素,可以改变金属凝固的速率和组织形态,从而影响金属的性质和应用。
3. 相图和凝固曲线的研究:金属凝固过程中,可以通过相图和凝固曲线来了解金属凝固过程中的相变行为和组织形态演化。
相图可以显示凝固温度、成分和组织形态之间的关系,而凝固曲线可以用来研究凝固速率和金属的晶体生长速度。
二、金属凝固理论的应用:1. 金属材料制备:金属凝固理论可以帮助我们了解金属材料制备过程中的相变行为和组织演化规律。
在铸造和凝固过程中,通过调节凝固速率和组织形态,可以获得不同性能和应用要求的金属材料。
例如,通过改变凝固速率可以获得细晶粒或均匀晶粒分布的材料,从而提高材料的强度和韧性。
2. 改善金属材料性能:金属凝固理论的研究可以帮助我们改善金属材料的性能。
例如,通过合适的添加剂和凝固工艺,可以改善金属材料的耐磨性、耐腐蚀性、高温稳定性等性能。
同时,金属凝固理论也可以指导材料加工过程中的热处理和冷处理,从而进一步提高金属材料的性能。
3. 金属合金设计:金属凝固理论是金属合金设计的重要基础。
通过研究金属合金的凝固机制和相图,可以合理地选择合金元素和调整合金成分,以达到特定的性能和应用要求。
第十一章凝固理论基础11.1 引言凝固是液态金属转变为固态金属的过程,凝固产品可以是铸件、铸锭。
从微观上看,凝固是金属原子由无序到有序的转变,从宏观上看,它是把液态金属中贮藏的显热和凝固潜热传输到外界,使液态金属转变为有固定形状的固态。
理论和实践均表明,金属材料的性能一方面取决于金属的化学成份及纯净度,另一方面取决于其组织结构。
其中化学成份及纯净度,由冶炼过程控制,组织结构则取决于凝固过程的控制,凝固所发过程所发生的物理化学变化将直接关系到金属铸件或锭、坯的质量,并进一步影响到最终产品的质量和生产成本。
由于凝固控制的独特地位,所以一直受到冶金工作者的高度重视,加强凝固过程的控制已成为金属材料制备的一个重要方面。
11.2 纯金属的凝固纯金属是我们所研究的凝固过程最简单的情况。
由于纯金属具有单一成份,因而不论在秤和非平衡情况下都不会出现溶质的偏析。
一、 纯金属凝固过程的温度变化图11-1纯金属凝固过程的温度变化如图11-1所示。
可以看出,凝固过程将由四个阶段组成:(1) 金属液体的冷却降温阶段。
在这个阶段,过热的液态合金释放出液态的显热,温度逐渐降低。
181(2) 形核阶段。
根据物理化学理论,凝固的形核过程要求有一定的过冷度。
特别是对均质形核,要求有较大的过冷度,因而温度将会降低到凝固温度以下;(3) 晶核的长大。
稳定的晶核形成以后,将会持续长大,不断释放出凝固潜热,这时温度将会回复到凝固温度;(4) 完全凝固后金属降温。
高温固态金属逐步释放显热,向常温过渡。
二、 温度梯度的影响相图表示的凝固过程在是一个理想的平衡凝固过程,在凝固温度时,温度将保持不变直到金属完全凝固。
实际凝固过程是非平衡过程,在金属内部的热量要求向外传输的过程中,要求有一定的温度梯度。
晶体要长大,则界面温度必须低于凝固温度。
界面上的过冷度提供了使界面向液相方向推移的驱动力,使凝固得以持续进行。
在界面的过冷度越大,则晶体长大的驱动力越大。
0 绪 论很多材料都是多元合金,其性能有凝固和随后处理阶段发展的组织所决定。
所以,对凝固过程的研究与控制是获得材料良好性能的基础。
凝固又称一次结晶,是金属和合金从液态到固态的相变过程。
这个过程包含了晶体的形核与长大两个过程,涉及到热力学和动力学,所以金属凝固的研究通常包括括两大方面,一是借助冶金物化、数学等方法,从传热、溶质传输、固液界面的动力学等方面进行探索和研究的凝固理论,一是利用凝固理论,从合金熔炼、铸件形成、合金化、孕育处理及消除缺陷等方面开展研究的凝固技术。
由于凝固理论和凝固技术的发展,出现了一些对材料和机械工程有深刻影响的新方法和新技术,从而带来了技术革命。
如悬浮铸造,精密铸造,定向凝固,快速凝固,电磁搅拌凝固,压力凝固等。
1 凝固基本理论1.1 凝固热力学1.1.1 相变驱动力从热力学得知,系统的自由焓(G )可表示为G =H -TS其中,H 为系统的焓,又称热函;S 为熵;T 为绝对温度。
自由焓又称等压位,与之对应的为自由能F ,又称等容位,F=U -TS ,由于G=H -TS =U+PV -TS ,当PV 很小时,G=U -TS=F 。
所以有时也粗略地将自由焓成为自由能。
由G=U -TS+PVd G=d U -T d S -S d T+P d V+V d T而d U =δQ -δW其中,Q 为系统从外界吸收的热量;W 为系统对外界所作的功。
在恒温下δQ =T d S ,在只有膨胀功时,δW =P d V ,所以d U =T d S -P d V代入前式得:在恒压条件下d P =0,故 d G = -S d T , 即 S TG -=d d这就是说,在通常压力一定的条件下,温度升高时,自由能降低。
纯金属固相和液相自由能随温度的变化不同。
在熔化温度T m 时,液相的自由能G L 等于固相的自由能G S ,即∆G =G L -G S =0,此时两相处于平衡状态。
当温度低于T m 时,G S <G L ,固相稳定;当温度高于T m 时,G S >G L ,液相稳定。