常用天线、无源器件介绍
- 格式:ppt
- 大小:10.35 MB
- 文档页数:52
WLAN天线各种天线介绍1 什么是天线WLAN作为一项无线技术,其信号以电磁波形式在空气中传播。
而能够有效的向空间中某个方向辐射电磁波,或者能从空间某特定方向接收电磁波的器件,我们称之为天线。
天线是发射和接收电磁波的设备,是WLAN的基础。
2 天线相关技术点2.1 振子当导线上有交变电流流动时,就可以形成电磁波的辐射。
辐射的能力与导线的长短和形状有关。
如图1 所示,若两导线的距离很近,电场被束缚在两导线之间,因而辐射很微弱;将两导线张开,电场就散播在周围空间,因而辐射增强。
通常将此装置称为振子。
两臂长度相等的振子叫做对称振子,对称振子是一种经典的、迄今为止使用最广泛的天线。
每臂长度为四分之一波长、的振子,称半波对称振子,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。
图2:半波对称振子组成的经典天线2.2 方向性发射天线的基本功能之一是把从馈线取得的能量向周围空间辐射出去,基本功能之二是把大部分能量朝所需的方向辐射。
垂直放置的半波对称振子具有平放的“面包圈” 形的立体方向图。
在振子的轴线方向上辐射为零,最大辐射方向在水平面上;在水平面上各个方向上的辐射一样大。
若干个对称振子组阵,能够控制辐射,产生“扁平的面包圈” ,把信号进一步集中到在水平面方向上。
也可以利用反射板可把辐射能控制到单侧方向平面反射板放在阵列的一边构成扇形区覆盖天线。
下面的水平面方向图说明了反射面的作用------反射面把功率反射到单侧方向,提高了增益。
2.3 增益天线通常是无源器件,它并不放大电磁信号。
天线的增益是指:将天线辐射的电磁波进行聚束以后,比起理想的参考天线,在输入功率相同的条件下,在空间同一点上接收功率的比值。
增益定量地描述了一个天线把输入功率集中辐射的程度。
一般,增益的定义是:增益=输出功率(W)/输入功率(W),是一个无量纲参数。
dB是增益取对数底再乘以10的结果:增益(dB)=10×log(增益)。
工程师必须要掌握的常用天线无源器件原理及功能工程师在无线通信系统的设计和维护中,需要了解天线和无源器件的原理和功能。
天线是将电磁能量从导线传输到自由空间的装置,而无源器件是在电路中不需要供电的元器件。
下面是工程师必须要掌握的常用天线和无源器件的原理和功能的介绍。
一、常用天线的原理和功能:1.简单天线:如半波长偶极子天线和单极天线。
原理是电流通过导线会在空间产生辐射,仿佛天线是一个辐射源。
常见于Wi-Fi路由器和收音机。
2. 方向性天线:如小型喇叭天线和Yagi天线。
原理是通过设计天线的形状和构造来实现特定的辐射方向性。
常见于通信基站和无线电测量设备。
3. 宽频带天线:如Vivaldi天线和螺旋天线。
原理是通过特殊的天线结构和构造实现宽频带的传输和接收功能。
常见于雷达和宽带通信系统。
4.衍射天线:如带状天线和光纤天线。
原理是利用天线和介质的交互作用,实现辐射和接收无线信号。
常见于射频传输和微波通信系统。
5.平面天线:如微带天线和贴片天线。
原理是将导体片固定在平面表面上,实现辐射和接收电磁波的功能。
常见于移动通信设备和卫星通信终端。
6.捕捉天线:如磁环天线和弹性天线。
原理是通过改变天线的物理位置或形状,实现对特定频段的信号捕捉和过滤。
常见于无线电接收器和RFID读写器。
二、常用无源器件的原理和功能:1.电阻器:原理是通过电阻材料的电阻值限制电流的流动,用于电路的调节和阻抗匹配。
2.电容器:原理是利用电场作用储存电荷,用于能量存储和电路的频率响应调节。
3.电感器:原理是利用电磁感应作用储存磁能,用于滤波和电路的频率响应调节。
4.变压器:原理是通过线圈的磁场耦合实现输入和输出电压的变化,用于电压转换和隔离。
5.二极管:原理是利用半导体的PN结实现单向电流导通,用于电流控制和电路开关。
6.晶体管:原理是利用半导体材料的输运特性实现电流放大,用于信号放大和电路控制。
7.三极管:原理是在晶体管的基础上添加了一个控制接口,实现电流的放大和控制功能。
微波无源器件的研究与应用微波无源器件是目前电子通信领域中应用广泛的一种器件,在天线设计、射频信号放大、高频测量等领域都有着重要的应用。
本文将对微波无源器件的研究与应用进行探讨。
一、微波无源器件的基本原理微波无源器件是指不需要电源驱动和功率放大的微波器件,主要用于信号分配和频率选择。
它采用无源元件的特性,如反射、耦合和分配等,实现微波信号的处理和控制。
这种器件主要有以下几种类型:1. 方向耦合器方向耦合器是一种被广泛应用的无源器件,主要用于频率分配和功率分配。
它的工作原理是将输入信号分为两个输出端,其中一个输出端用于采样,另一个输出端则输出信号的一部分。
2. 功率分配器功率分配器是一种被广泛应用的无源器件,主要用于接收和分配微波信号。
它的工作原理是将一个输入端的信号分为多个输出端,每个输出端的功率相等。
3. 线性耦合器线性耦合器是一种无源器件,主要用于将微波信号在两个传输线之间进行转移,同时可以实现向不同方向的耦合和不同大小的功率分配。
以上三种器件是常用的无源器件,它们共同的特点是不需要电源驱动和功率放大,且具有高度的可靠性和长寿命。
这些特性使得微波无源器件在各种应用场合中具备重要的地位。
二、微波无源器件的应用领域微波无源器件广泛用于天线设计、射频信号放大、高频测量、信号分配和频率选择等领域。
下面分别介绍一下这些应用场景。
1. 天线设计在天线设计中,微波无源器件被广泛应用于辐射模式的测量和角度测量。
人造卫星和通信地面站的收发天线中,均采用方向耦合器、功率分配器和线性耦合器等无源器件,用于实现辐射模式的测量和天线角度的控制。
2. 射频信号放大在射频信号放大中,微波无源器件被广泛应用于射频功率的分配和控制。
由于微波无源器件具有高度的可靠性和长寿命,可以减少系统故障率和维修成本。
3. 高频测量在高频测量领域中,微波无源器件可以用于信号分配和频率选择。
例如,在频率分析和谐波振荡器测量中,需要使用功率分配器将信号分配到多个检测器上进行分析。
常用天线、无源器件汇总!
一、天线原理
1.1天线的定义:
O能够有效地向空间某特定方向辐射电磁波或能够有效的接收空间某特定方向来的电磁波的装置。
1.2天线的功能:
O能量转换-导行波和自由空间波的转换;
O定向辐射(接收)-具有一定的方向性。
1.3天线辐射原理
�i i i i l i) Array
电场
一一一令1/2波长
---------I-----------
1.4天线参数
u辐射参数
O半功率波束宽度、前后比;
O极化方式交叉极化鉴别率;
O方向性系数、天线增益
O主瓣副瓣旁瓣抑制、零点填充、波束下倾…
u电路参数
O电压驻波比VSW R、反射系数仁回波损耗RL;
7.1衰减器
•0衰减器是二端口互易元件
•0衰减器最常用的是吸收式衰减器.
•0工程中通常使用的是同轴型衰减器,由'1t"型或'T"型衰减网络组成。
•0同轴衰减器通常有固定及可变衰减两种。
•0衰减器主要用千检测系统中控制微波信号传输能量、消耗超额能量,因而扩展信号测量的动态范围,诸如功率计,频谱分析仪,放大器,接收器等。
常用天线和无源器件技术参数天线是将电磁能转换为电信号或将电信号转换为电磁能的一种设备。
无源器件是指不含有源(电源)的电子元件,如电阻、电容、电感等。
在通信领域中,常用的天线和无源器件具有一系列的技术参数,下面将对其进行详细介绍。
1.天线技术参数(1) 增益(Gain):天线的增益是指天线辐射功率与理想点源辐射功率之比,单位为dBi。
增益越大,天线辐射的信号强度越大,接收到的信号质量也越好。
(2) 频率范围(Frequency Range):天线的频率范围是指天线能够工作的频带范围。
通常以最小和最大工作频率来表示。
(3)驻波比(VSWR):驻波比是指由于天线阻抗与信号源或负载阻抗不匹配而产生的反射信号的大小。
驻波比越小,表示天线与信号源或负载的匹配度越好,信号损耗越小。
(4) 角度范围(Vertical and Horizontal Beamwidth):天线的角度范围是指天线在水平和垂直方向上能够辐射或接收信号的范围。
角度范围越大,表示天线的辐射范围越广。
(5) 前后比(Front-to-Back Ratio):前后比是指天线在主导方向上的辐射功率与在反向方向上的辐射功率之比。
前后比越大,表示天线在主导方向上的信号强度越大,抗干扰能力越强。
(1) 电阻值(Resistance):电阻值是指无源器件电阻的数值。
通常用欧姆(Ω)来表示。
(2) 电容值(Capacitance):电容值是指无源器件电容的数值。
通常用法拉德(F)来表示。
(3) 电感值(Inductance):电感值是指无源器件电感的数值。
通常用亨利(H)来表示。
(4) 响应频率范围(Frequency Response):响应频率范围是指无源器件在频率范围内的响应情况。
通常以最小和最大工作频率来表示。
(5) 损耗(Loss):无源器件的损耗是指无源器件在信号传输过程中产生的能量损失。
损耗越小,信号传输效率越高。
以上是常用天线和无源器件的一些常见技术参数。
常用卫星通信天线介绍天线是卫星通信系统的重要组成部分,是地球站射频信号的输入和输出通道,天线系统性能的优劣影响整个通信系统的性能。
地球站与卫星之间的距离遥远,为保证信号的有效传输,大多数地球站采用反射面型天线。
反射面型天线的特点是方向性好,增益高,便于电波的远距离传输。
反射面的分类方法很多,按反射面的数量可分为双反射面天线和单反射面天线;按馈电方式分为正馈天线和偏馈天线;按频段可分为单频段天线和多频段天线;按反射面的形状分为平板天线和抛物面天线等。
下文对一些常用的天线作简单介绍。
1.抛物面天线抛物面天线是一种单反射面型天线,利用轴对称的旋转抛物面作为主反射面,将馈源置于抛物面的焦点F上,馈源通常采用喇叭天线或喇叭天线阵列,如图1所示。
发射时信号从馈源向抛物面辐射,经抛物面反射后向空中辐射。
由于馈源位于抛物面的焦点上,电波经抛物面反射后,沿抛物面法向平行辐射。
接收时,经反射面反射后,电波汇聚到馈源,馈源可接收到最大信号能量。
图1 抛物面天线抛物面天线的优点是结构简单,较双反射面天线便于装配。
缺点是天线噪声温度较高;由于采用前馈,会对信号造成一定的遮挡;使用大功率功放时,功放重量带来的结构不稳定性必须被考虑。
2.卡塞格伦天线卡塞格伦天线是一种双反射面天线,它由两个发射面和一个馈源组成,如图2所示。
主反射面是一个旋转抛物面,副反射面为旋转双曲面,馈源置于旋转双曲面的实焦点F1上,抛物面的焦点与旋转双曲面的焦点重合,即都位于F2点。
从从馈源辐射出来的电磁波被副反射面反射向主反射面,在主反射面上再次被反射。
由于主反射面的焦点与副反射面的焦点重合,经主副反射面的两次反射后,电波平行于抛物面法向方向定向辐射。
对经典的卡塞格伦天线来说,副反射面的存在遮挡了一部分能量,使得天线的效率降低,能量分布不均匀,必须进行修正。
修正型卡塞格伦天线通过天线面修正后,天线效率可提高到0.7—0.75,而且能量分布均匀。
目前,大多数地球站采用的都是修正型卡塞格伦天线。
几种新型微波无源器件及准八木天线阵列研究几种新型微波无源器件及准八木天线阵列研究引言:随着微波技术的发展,无源器件和天线阵列作为微波领域中的重要组成部分,展现出了广阔的应用前景。
本文将针对几种新型微波无源器件和准八木天线阵列进行研究,旨在探索其原理、特点和实际应用。
一、微波无源器件研究1. 关注点扫描天线关注点扫描天线是一种能够实现电子发射信号的动态调整的无源器件。
其原理是通过改变天线辐射处的电流分布来实现对天线电场方向的控制。
关注点扫描天线具有高方向性、波束调整范围宽、扫描稳定性高等优点,在远程通信、天基雷达等领域具有广泛的应用前景。
2. 纳米技术在微波无源元素中的应用纳米技术是一种能够在纳米级别上进行微小结构设计和制造的前沿技术。
在微波领域,纳米技术被广泛应用于微波无源元素的研究中,如纳米贴片天线、纳米滤波器、纳米模拟电路等。
纳米技术的应用可以有效提高微波无源元件的性能,扩大其应用范围,带来了突破性的进展和创新。
二、准八木天线阵列研究1. 准八木天线基本原理准八木天线阵列是一种利用元素间互作用来实现波束形成和方向调整的阵列。
其原理是通过调节天线元素之间的相位关系和振幅分布来改变阵列的辐射特性。
准八木天线阵列具有高方向性、辐射效率高等特点,在通信、雷达等领域具有重要的应用价值。
2. 准八木天线阵列的设计和优化准八木天线阵列的设计和优化是一个复杂的过程,需要考虑天线元素的布局、阵列尺寸、天线阵列的输入端和输出端的匹配等因素。
同时,通过优化阵列元素的相位和振幅分布,可以获得理想的辐射特性。
针对准八木天线阵列的设计和优化,目前已经提出了多种有效的方法和算法。
结论:几种新型微波无源器件和准八木天线阵列的研究为微波通信和雷达等领域带来了重要的发展机遇。
关注点扫描天线的广泛应用和纳米技术在微波无源元素中的革新,使得微波无源器件的性能和应用范围得到了极大的提升。
准八木天线阵列的设计和优化则为实现高效波束形成和方向调整提供了重要的技术支持。