氦氖激光器实验数据处理(近代物理)
- 格式:docx
- 大小:123.17 KB
- 文档页数:4
氦氖激光器实验报告《氦氖激光器实验报告1》哎呀,老师说要做氦氖激光器实验的时候,我心里就像揣了只小兔子,既兴奋又紧张。
“这可是个超级酷的实验呢!”我对同桌说。
同桌眼睛放光,回应道:“是啊,感觉就像要去探索神秘宝藏一样。
”就像每次生日拆礼物的时候,那种期待感满满当当的。
那天走进实验室,各种仪器摆在那里,灯光有点暗黄,像是在暗示着这里即将发生神秘的事情。
我和同桌小心翼翼地走向放置氦氖激光器的地方,那感觉就像两个小探险家靠近神秘的魔法盒。
实验开始了,我们按照步骤连接线路。
“这根线插这儿对吗?”我有点不确定地问旁边的小组同学。
“我觉得是这样的。
”他挠挠头说。
这就像我们在玩拼图,每一块都得小心翼翼地放对位置。
当我们接通电源的那一刻,激光器发出了微弱的光,那光线就像黑暗中好不容易钻出来的小豆芽,那么微弱却又充满希望。
我忍不住欢呼起来:“哇,成功了一小步呢!”大家都笑了起来,那种喜悦就像在炎热的夏天吃到了最爱的冰淇淋。
这个小小的成功让我明白,哪怕是再复杂的事情,只要一步一步来,总会有收获。
《氦氖激光器实验报告2》“氦氖激光器?这名字听起来就很高级!”我刚听到这个实验项目就对朋友大喊。
朋友说:“那肯定超级有趣,就像科幻电影里的东西。
”就像我们看《星球大战》时对那些炫酷的激光武器充满向往一样。
来到实验室,那股淡淡的化学药品味道弥漫在空气中,有点刺鼻却又很熟悉,像是在提醒我这是个充满挑战的地方。
我看着那复杂的仪器设备,有点犯愁。
“这么多东西,从哪儿开始呢?”我嘟囔着。
这时老师走过来,拍拍我的肩膀说:“别慌,就像搭积木,一块一块来。
”我深吸一口气,开始摆弄那些仪器。
在调节镜片的时候,我和小组成员产生了分歧。
“我觉得应该往这边转一点。
”我坚持说。
“不,我觉得那边才对。
”他反驳道。
这就像拔河比赛,双方都不肯让步。
最后我们决定试一下我的方法,结果发现光的准直度更好了。
那一刻我特别开心,就像赢得了一场重要的比赛。
我懂得了在团队里,有时候要勇敢地坚持自己的想法。
实验一 氦氖激光系列实验一、实验内容:1、氦氖激光器的调节 2、氦氖激光器的输出功率 3、氦氖激光器发散角测量4、用共焦球面扫描干涉仪观察、分析、判断激光器的模式组成 二、实验仪器:氦氖激光器、调节板、谐振腔反射镜、半内腔氦氖激光器、激光功率指示仪、共焦扫描仪、示波器 三、实验原理及方法次为例)10/1010∑==i i P P其中:0P 为十次测量的平均值。
激光器功率漂移=η%100/0⨯∆P P 其中2/)(min max P P P -=∆固定输出镜,调至出光,旋转输出镜俯仰倾斜旋钮,结合功率计,将其输出调至最大。
打开激光器电源并预热20~30分钟,将激光器光束对准激光功率指示仪探头中心位置,每隔10分钟记录一次,测量氦氖激光器的输出功率随时间变化曲线。
3. 用刀口法可以测定光斑的大小和验证光斑的光强分布是高斯分布。
实验中使刀口平行于y 轴,沿垂直于x 轴方向移动当刀口缓慢推入光束时,设刀口挡住了a x ≤的所有点。
未被刀口挡住而通过的光功率P 用余误差函数表示为:)2(2),(0a Werfc P dxdy y x I P a==⎰⎰ 如果先用刀口把光束全部挡住,然后把刀口缓慢拉出时,未被刀口挡住而通过的光功率可用相应的误差函数表示。
)exp(),(2220σy x p y x I +-=)2(210σaerfc p p = 其中2/W =σ是数理统计中的标准偏差。
根据上式作出的归一化高斯分布和相对功率与刀口位置关系曲线如下图所示可以证明,相对功率为0.25和0.75的点分别位于高斯分布曲线极大值两侧,其距离σ6745.0=p e 。
所以从由实验得到的相对功率与刀口位置的关系曲线就可确定p e 的值。
算出σ值后就可计算P/0P 的理论值,进行曲线拟合。
如果拟合的好,就证明基横模光强是高斯分布。
用p e 的值可以计算光斑大小:)2(4826.1p e W = )2(7456.12/1p e D =如图所示,将刀口位于激光光斑边缘位置,并将功率计置于刀口后面来测量未被刀口挡住的激光光功率。
光信息专业实验报告:氦氖激光模式实验氦氖激光器在实际应用,尤其是基础实验教育中应用非常广泛。
本实验对氦氖激光器的性质进行了测量,主要分为两个部分。
一是氦氖激光器光斑大小和发散角的测量,二是利用共焦球面扫描干涉仪与示波器对氦氖激光器的模式进行分析。
实验仪器及技术参数:1、氦氖激光器:中心波长632.8nm、谐振腔腔长246mm、谐振腔曲率半径为1m2、共焦球面扫描干涉仪:腔长20mm、凹面反射镜曲率半径20mm、凹面反射镜反射率99%、精细常数>100、自由光谱范围4GHz3、示波器、光学镜若干实验一氦氖激光器光斑大小和发散角的测量氦氖激光器发出的光束为高斯光束,高斯光束是我们非常熟悉的一种光束。
我们可以从横向和纵向两个角度来理解高斯光束。
1、横向方向高斯光束之所以称为高斯光束,正是因为其基模在横向上光强的分而呈高斯分布型。
即⁄](1)是I oo(r,z)=I oo(z)exp[−2r2w2(z)其中,下标00表示基横模,I oo(z)表示中心处的光强,r表示横截面离中心的距离,z 表示所研究的光斑所处的纵向上的位置,w(z)表示z处的光束半径。
光束半径w(z)定义为振幅下降到中心振幅1/e的点离中心的距离,或者说光强下降到中心光强1/e2的点离中心的距离。
从(1)式可以看出,高斯光束横向上光强随着离中心位置越远,光强越小,至w(z)处已基本下降为0,集中了86.5%的功率。
以上的说明可以用图1表示。
图1 高斯光束横向上振幅分布和光强分布2、纵向方向由横向方向上高斯光束的说明可以看出,整个高斯光束可以看成是横向上高斯光斑沿纵向z 轴传播形成的。
那么,纵向上光斑是如何传播的呢?理想的高斯光事假设传播过程中光的总能量不变,传播的过程只是光斑大小发生了变化。
激光器发出的激光束在空间的传播如图2所示。
光束截面最细处成为束腰。
我们将柱坐标(z, r, φ)的原点选在束腰截面的中点,z是光束传播方向。
束腰截面半径为w0,距束腰为z处的光斑半径为w(z),则w(z)=w o[1+(λzπw o)2]12⁄(2)其中是λ激光波长。
He-Ne激光器偏振光数据处理与分析1、He-Ne激光器偏振光测量表1 He-Ne激光器偏振光测量数据表偏振角度(°)输出功率(mW)偏振角度(°)输出功率(mW)偏振角度(°)输出功率(mW)0 1.1361250.8032500.0905 1.0731300.8592550.096100.9951350.9342600.119150.835140 1.0022650.169200.743145 1.0662700.204250.665150 1.1172750.252300.556155 1.1452800.315350.464160 1.1872850.412400.378165 1.2012900.495450.291170 1.1722950.618500.225175 1.1473000.710550.170180 1.1043050.801600.130185 1.0343100.867650.0981900.9483150.966700.0881950.841320 1.027750.0922000.755325 1.102800.1132050.659330 1.145850.1532100.574335 1.174900.1982150.473340 1.192950.2812200.386345 1.1831000.3622250.285350 1.1681050.4592300.223355 1.1471100.5252350.172360 1.0981150.6082400.1271200.6992450.099图1 He-Ne激光器偏振特性曲线图分析:由图1 He-Ne 激光器偏振特性曲线图可知,He-Ne 激光器输出的光为线偏振光;而且从图中曲线可知,曲线并非完全的平滑,有一定的凹凸瑕疵,这说明实验存在误差,这主要是受实验环境光变化的影响所致。
近代物理实验报告指导教师:得分:实验时间: 2009 年 03 月 17 日, 第 三 周, 周 三 , 第 5-8 节实验者: 班级 材料0705 学号 200767025 姓名 童凌炜同组者: 班级 材料0705 学号 200767007 姓名 车宏龙实验地点: 综合楼 501实验条件: 室内温度 ℃, 相对湿度 %, 室内气压实验题目: 氦氖激光器的模式分析实验仪器:(注明规格和型号)扫描干涉仪;高速光电接收器;锯齿波发生器;示波器;半外腔氦氖激光器及电源;准直用氦氖激光器及电源;准直小孔。
实验目的:(1) 了解扫描干涉仪原理,掌握其使用方法; (2) 学习观测激光束横模、纵模的实验方法。
实验原理简述:1. 激光器模式的形成激光器由增益介质、谐振腔、激励能源三个基本部分组成。
如果用某种激励的方式,使介质的某一对能级间形成的粒子数反转分布,由于自发辐射的作用,将有一定频率的光波产生,并在谐振腔内传播,被增益介质增强、放大。
形成持续振荡的条件是:光在谐振腔内往返一周的光程差为波长的整数倍,即q q uL λ=2满足此条件的光将获得极大的增强。
每一个q 对应纵向一种稳定的电磁场分布λq ,叫一个纵模,q 称为纵模序数。
纵模的频率为uL c qq 2=ν 相邻两个纵模的频率间隔为uLc q 21=∆=∆ν 因此可以得知, 缩短腔长的方法是获得单纵模运行激光器的办法之一。
当光经过放电毛细管时,每反馈一次就相当于一次衍射,多次反复衍射,就在横向的同一波腹处形成一个或多个稳定的衍射光斑。
每一个衍射光斑对应一种稳定的横向电磁场分布,称为一个横模。
模式指激光器内能够发生稳定光振荡的形式,每一个膜,既是纵模,又是横模,纵模描述了激光器输出分立频率的个数,横模描述了垂直于激光传播方向的平面内光场的分布情况。
激光的线宽和相干长度由纵模决定,光束的发散角、光斑的直径和能量的横向分布由横模决定。
,一个膜由三个量子数表示,通常记作TEM mnq 。
氦氖激光器实验袁庆勇 081273018 信息工程一、实验仪器氦氖激光器、光功率指示仪、硅光电池接收器、狭缝、微动位移台、扫描干涉仪、高速光电接收器及其电源、锯齿波发生器、示波器、氦氖激光器及其电源。
氦氖激光器技术参数:谐振腔曲率半径 1m ∞中心波长 632.8nm共焦球面扫描干涉仪技术参数:腔长20mm凹面反射镜曲率半径20mm凹面反射镜反射率99%精细常数>100自由光谱范围4GHz二、实验目的Ⅰ、氦氖激光束光斑大小和发散角1、掌握测量激光束光斑大小和发散角的方法。
2、深入理解基模激光束横向光场高斯分布的特性及激光束发散角的意义。
Ⅱ、共焦球面扫描干涉仪与氦氖激光束的模式分析1、了解扫描干涉仪原理,掌握其使用方法。
2、学习观测激光束横模、纵模的实验方法。
三、实验原理激光束的发散角和横向光斑大小是激光应用中的两个重要参数,激光束虽有方向性好的特点,但它不是理想的平行光,而具有一定大小的发散角。
在激光准直和激光干涉测长仪中都需要设置扩束望远镜来减小激光束的发散度。
1、激光束的发散角θθ为激光束的发散角,()()0=2/2/z z θλπωω=,z 很大只要我们测得离束腰很远的z 处的光斑大小2 w(z),便可算出激光束发散角。
2、激光束横向光场分布将光束半径w(z)定义为振幅下降到中心振幅1/e 的点离中心的距离,光束半径w(z)也可定义为光强下将为中心光强e -2倍的点离中心点的距离。
3、光束半径和发散角的测量束腰处的光斑半径为由这个值,也可从算出激光束的发散角θ4、纵模频率差△ν=c/2n 2L ,L 为激光器腔长5、不同横模之间的频率差6、自由光谱范围△λ:7、精细常数F:()F=1-R 四、实验内容1、光强横向分布的测量移动微动平台,使狭缝和硅光电池接收器同时扫过光束,移动的方向应与光传播方向垂直。
每隔0.1~0.2mm ,记录光功率指示仪的读值,重复测量三次,进行激光束的光强横向分布测量,测量Z 值。
实验名称:He-Ne激光器放电条件的研究实验学时:16学时(分两次作)实验目的:1、给He-Ne激光器配气;2、观测放电条件对激光输出功率的影响。
通过对He-Ne激光器的配气和输出功率的测量过程,进一步了解He-Ne激光器的工作原理和放电条件对激光输出功率的影响;3、进一步熟悉真空的获得、测量和充气技术。
实验仪器:内腔式He-Ne激光器、配气装置、U型管压力计、真空系统(机械泵、扩散泵、电离规等)、功率计。
由机械泵、扩散泵、工作物质气体储气瓶、真空管路、以及U型液体压强计等构成的真空系统,复合真空计,光电检流计和实验待测250mmHe-Ne激光管。
实验原理:激光器的基本结构包括三部分:工作物质、光学谐振腔和激励能源。
要形成激光,第一,必须利用激励能源使工作物质激活,即使工作物质内部的电子在某些能级之间实现粒子数的反转分布。
在He-Ne激光器中,粒子数反转是通过气体放电来实现的。
第二,必须满足产生激光的阈值条件,即要使光在谐振腔中来回一次在激活介质中获得的增益,足以补偿由各种因素所导致的光的损耗。
引言气体激光器的种类很多,He-Ne气体激光器是目前应用最广泛的气体激光器。
由于它的发散角小、单色性和方向性极好、稳定性高,故在准直、计量、全息、检测、导向、信息处理、医疗等技术中得到了广泛的应用。
但He-Ne气体激光器的输出功率较小,He-Ne气体激光器的输出功率只有1 100mW,最常用的25cm的激光管,放电电流为5mA,高压为1500V,输出功率为1.5mW,效率仅为0.02%。
制作He-Ne气体激光器时,为了在有限的腔长内,尽可能获得较大的功率输出,要选择最佳的放电条件。
所谓最佳放电条件是指一定管径和管长的He-Ne气体激光器在适当的总气压、气体配比和放电电流下运转,以获得最大功率的激光输出。
1 He-Ne气体激光器工作原理1.1 He-Ne气体激光器工作物质能级的特点He-Ne气体激光器是充有He和Ne混合气体的器件,其中产生激光跃迁的是Ne气,He是辅助气体,其作用是提高Ne原子的泵浦速率。
氮氛激光模式实月摘要:简述了激光束光斑大小、发散角、激光器模式等的意义。
通过对基模光束横向光场的 分布特性测最,得出所用氨氛激光器发散角的人小,并利用共焦球面打描仪对实验激光器模 式数目进行测定。
一、实验原理1.激光束发散角与横向光场分布激光器的基模比束为高斯光束,即光束截而上光强满足沿径向的高斯分布。
光束边界定 义为振幅是中心的1/e 的等幅线,也就是光强为中心的1/J 的曲线。
光束半径即为振幅下降 到中心的1/e,或光强下降到中心的l/e?的点到中心的距离。
激光器发出的光束如卜图2(光轴轴截面):光束截面最细处为束腰,将柱坐标原 点选在束腰中心,Z 是光束传播方向,束腰 半径为w o > z 处半径为W (z )则:其中九为光波长.上式町写成双曲方程:定义双曲线渐近线夹角e 为激光发散角:叫很人)2.光束半径打发散角的测量a )理论上.根据激光器输出波长与谐振腔参数町以得出束腰半径大小:可以得出发散角。
b )实验上,可以通过对z 较大时的光束半径进行测最,再利用卜式得出发散角: Z3・激光器的振荡模式激光器内能产生稳定光振荡的形式成为模式,分纵模和横模。
纵模描述了激光器输 出分立频率的个数;横模描述了在垂直于激光传播方向平面内光场的分布情况。
激光器 的线宽和相干长度由纵模决定,而光束发散角,光斑直径和能量的横向分布由横模决定。
a )纵模当腔长L 是波长的半幣数倍时,形成驻波,稳定振荡,q 是纵模阶数,九是光波在 激活物质中的波长,故有:w ⑵叫+ (紛丫再由:图1激光束示意图Uq = qc/2n 2L上式表示形成稳定振荡的频率,不同的整数q 值对应着不同的输出频率,相邻两纵 模的频率差为:Av = c/2n 2L再者.激光器对不同频率有不同的增益,只有人于阈值才能形成振荡产生激光。
b )横模对于满足形成驻波共振条件的齐个纵模来说,还存在不同的横模。
同意纵模不同横 模频率有差异,某一个任意TEM mnq 模的Vmnq 为g =佥佃+紳+ " + »心皿[(1-扒1-;|)] } 其中r ■订2分别为谐振腔两反射镜曲率半径。
氦氖激光器系列实验第一章 简 介氦氖激光器系列实验,主要用于氦氖激光器相关的参数测量。
通过有关实验,可以掌握氦氖激光器的调整方法,了解激光器的基本原理、基本结构以及输出激光的特性等。
主要用于高校物理教学演示。
1.1实验项目1、氦氖激光器半内腔谐振腔调节实验。
2、氦氖激光器功率稳定性的测量实验。
3、氦氖激光器光斑发散角的测量实验。
4、用共焦球面扫描干涉仪观察、分析、判断激光器的模式组成。
1.2 技术参数半内腔氦氖激光器谐振腔曲率半径 1m ∞中心波长 632.8nm全内腔氦氖激光器腔长 250mm功率 ≥1.5mW中心波长 632.8nm共焦球面扫描干涉仪反射中心波长 632.8nm自由光谱范围 2.5GHz精细常数 >100第二章 激光原理2.1普通光源的发光—受激吸收和自发辐射普通常见光源的发光(如电灯、火焰、太阳等地发光)是由于物质在受到外来能量(如光能、电能、热能等)作用时,原子中的电子就会吸收外来能量而从低能级跃迁到高能级,即原子被激发。
激发的过程是一个“受激吸收”过程。
处在高能级(E 2)的电子寿命很短(一般为10-8~10-9秒),在没有外界作用下会自发地向低能级(E 1)跃迁,跃迁时将产生光(电磁波)辐射。
辐射光子能量为12E E h −=ν这种辐射称为自发辐射。
原子的自发辐射过程完全是一种随机过程,各发光原子的发光过程各自独立,互不关联,即所辐射的光在发射方向上是无规则的射向四面八方,另外其位相、偏振状态也各不相同。
由于激发能级有一个宽度,所以发射光的频率也不是单一的,而有一个范围。
在通常热平衡条件下,处于高能级E 2上的原子数密度N 2,远比处于低能级的原子数密度低,这是因为处于能级E 的原子数密度N 的大小随能级E 的增加而指数减小,即N ∝exp(-E /kT ),这是著名的波耳兹曼分布规律。
于是在上、下两个能级上的原子数密度比为]/)(exp[/1212kT E E N N −−∝式中k 为波耳兹曼常量,T 为绝对温度。
氦氖激光参数测量实验人:余崇亮,合作者:余琪晖. 组号:A20理工学院光信息科学与技术专业2011级,学号113430921.1 普通光源的发光普通光源发出的光是由于物质受到外来能量的作用,原子中的电子吸收能量从低能级跃迁到高能级,即原子被激发,激发是一个受激吸收过程。
处于高能级的电子很不稳定,又自发跃迁回低能级,同时辐射光子。
这种辐射称为自发辐射。
原子的自发辐射是随机过程。
不同原子辐射的光具有不同的方向、位相和偏振状态,频率也不单一。
在通常热平衡条件下,处于高能级的原子数密度远小于处于低能级的原子数密度。
这是因为根据玻尔兹曼分布规律,处于某一能级的原子数密度随能级的升高成指数衰减。
1.2受激辐射和光的放大的两个状态之间。
由量子理论可知,电子从高能级向低能级跃迁只能发生在角量子数相差1也就是说,在原子中可能存在这样一些能级,一旦电子被激发到这些能级上,由于不满足上述跃迁条件,可以使电子在这种能级上有较长的寿命,这些能级称为亚稳态能级。
但在外加光的刺激下,电子可以迅速跃迁到低能级,并释放光子,这个过程称为受激辐射。
受激辐射的光子与入射的诱发光子具有相同的频率、方向、偏振状态和位相,于是入射一个光子,可以得到两个相同的光子,即原来的光信号被放大,这种在受激过程中产生并被放大的光就是激光。
1.3 粒子数反转一个诱发光子不仅能引起受激辐射,也能引起受激吸收。
只有当处在高能级的粒子数比低能级的粒子数多时,受激辐射才能超过受激吸收。
由此可见,使光源发射激光的关键是发光原子处在高能级的数目比处在低能级上的多。
这种情况称为粒子数反转。
2. 激光器的结构激光器一般包括三个部分,工作物质、激励源和谐振腔。
2.1 激光工作物质激光的产生须选择合适的工作物质,可以是气体、液体、固体或半导体,在这种物质中可以实现粒子数反转,以制造获得激光的必要条件。
2.2 激励源为了使工作介质中出现粒子数反转,必须用一定的方法去激励原子体系,使处于上能级的粒子数增加。