大学物理实验数据处理
- 格式:ppt
- 大小:910.50 KB
- 文档页数:49
实验数据处理基本方法实验必须采集大量数据,数据处理是指从获得数据开始到得出最后结论的整个加工过程,它包括数据记录、整理、计算与分析等,从而寻找出测量对象的内在规律,正确地给出实验结果。
因此,数据处理是实验工作不可缺少的一部分。
数据处理涉及的内容很多,这里只介绍常用的四种方法。
1列表法对一个物理量进行多次测量,或者测量几个量之间的函数关系,往往借助于列表法把实验数据列成表格。
其优点是,使大量数据表达清晰醒目,条理化,易于检查数据和发现问题,避免差错,同时有助于反映出物理量之间的对应关系。
所以,设计一个简明醒目、合理美观的数据表格,是每一个同学都要掌握的基本技能。
列表没有统一的格式,但所设计的表格要能充分反映上述优点,应注意以下几点:1.各栏目均应注明所记录的物理量的名称(符号 )和单位;2.栏目的顺序应充分注意数据间的联系和计算顺序,力求简明、齐全、有条理;3.表中的原始测量数据应正确反映有效数字,数据不应随便涂改,确实要修改数据时,应将原来数据画条杠以备随时查验;4.对于函数关系的数据表格,应按自变量由小到大或由大到小的顺序排列,以便于判断和处理。
2图解法图线能够明显地表示出实验数据间的关系,并且通过它可以找出两个量之间的数学关系,因此图解法是实验数据处理的重要方法之一。
图解法处理数据,首先要画出合乎规范的图线,其要点如下:1.选择图纸作图纸有直角坐标纸 ( 即毫米方格纸 ) 、对数坐标纸和极坐标纸等,根据作图需要选择。
在物理实验中比较常用的是毫米方格纸,其规格多为17 25 cm 。
2.曲线改直由于直线最易描绘 , 且直线方程的两个参数 ( 斜率和截距 ) 也较易算得。
所以对于两个变量之间的函数关系是非线性的情形,在用图解法时应尽可能通过变量代换将非线性的函数曲线转变为线性函数的直线。
下面为几种常用的变换方法。
( 1) xy c ( c 为常数 ) 。
令 z1,则y cz,即 y 与 z 为线性关系。
有效数字1、有效数字不同的数相加减时,以参加运算各量中有效数字最末一位位数最高的为准,最后结果与它对其,余下的尾数按舍入规则处理。
2、乘除法以参与运算的数值中有效位数最少的那个数为准,但当结果的第1位数较小,比如1、2、3时可以多保留一位(较小:结果的第一位数小于 有效数字最少的结果第一位数)! 例如:n=tg56° θ=56° d θ=1° θθθθθ2cos d d d dtg dn == 为保留)(,带入848.156n 15605.018056cos 1cos 22=︒=∴︒=∆︒=≈︒=∆=∆tg n θθπθθ3、可以数字只出现在最末一位:对函数运算以不损失有效数字为准。
例如:20*lg63.4 可疑最小位变化0.1 Y=20lgx01.04.631.010ln 2010ln 20ln 10ln 20≈===x dx dx dx x d dy 04.364.63lg 20=∴4、原始数据记录、测量结果最后表示,严格按有效数字规定处理。
(中间过程、结果多算几次)5、4舍5入6凑偶6、不估计不确定度时,有效数字按相应运算法则取位;计算不确定度时以不确定度的处理结果为准。
真值和误差1、 误差=测量值-真值 ΔN=N-A2、 误差既有大小、方向与政府。
3、 通常真值和误差都是未知的。
4、 相对约定真值,误差可以求出。
5、 用相对误差比较测量结果的准确度。
6、 ΔN/A ≈ΔN/N7、 系统误差、随机误差、粗大误差8、 随机误差:统计意义下的分布规律。
粗大误差:测量错误9、 系统误差和随机误差在一定条件下相互转化。
不确定度1、P (x )是概率密度函数dx P dx x x P p )x (之间的概率是测量结果落在+当x 取遍所有可能的概率值为1.2、正态分布且消除了系统误差,概率最大的位置是真值A3、曲线“胖”精密度低“瘦”精密度高。
4、标准误差:无限次测量⎰∞∞-=-2)()(dx X P A X x )(σ 有限次测量且真值不知道标准偏差近似给出1)(2)(--=∑K X X S i X5、正态分布的测量结果落入X 左右σ范围内的概率是0.6836、真值落入测定值X i 左右σ区间内的概率为0.6837、不确定度是测量结果带有的一个参数,用以表征合理赋予被测量值的分散性。
大学物理实验报告数据处理及误差分析部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑力学习题误差及数据处理一、指出下列原因引起的误差属于哪种类型的误差?1.M尺的刻度有误差。
2.利用螺旋测微计测量时,未做初读数校正。
3.两个实验者对同一安培计所指示的值读数不同。
4.天平测量质量时,多次测量结果略有不同。
5.天平的两臂不完全相等。
6.用伏特表多次测量某一稳定电压时,各次读数略有不同。
7.在单摆法测量重力加速度实验中,摆角过大。
二、区分下列概念1.直接测量与间接测量。
2.系统误差与偶然误差。
3.绝对误差与相对误差。
4.真值与算术平均值。
5.测量列的标准误差与算术平均值的标准误差。
三、理解精密度、准确度和精确度这三个不同的概念;说明它们与系统误差和偶然误差的关系。
四、试说明在多次等精度测量中,把结果表示为 <单位)的物理意义。
五、推导下列函数表达式的误差传递公式和标准误差传递公式。
1.2.3.六、按有效数字要求,指出下列数据中,哪些有错误。
1.用M尺<最小分度为1mm)测量物体长度。
3.2cm50cm78.86cm6.00cm16.175cm2.用温度计<最小分度为0.5℃)测温度。
68.50℃31.4℃100℃14.73℃七、按有效数字运算规则计算下列各式的值。
1.99.3÷2.0003=?2.=?3.4.八、用最小分度为毫M的M尺测得某物体的长度为=12.10cm<单次测量),若估计M尺的极限误差为1mm,试把结果表示成的形式。
b5E2RGbCAP九、有n组测量值,的变化范围为2.13 ~ 3.25,的变化范围为0.1325 ~0.2105,采用毫M方格纸绘图,试问采用多大面积的方格纸合适;原点取在何处,比例取多少?p1EanqFDPw十、并排挂起一弹簧和M尺,测出弹簧下的负载和弹簧下端在M尺上的读数如下表:据处理。
长度测量1、游标卡尺测量长度是如何读数?游标本身有没有估读数?2、千分尺以毫M为单位可估读到哪一位?初读数的正、负如何判断?待测长度如何确定?3、被测量分别为1mm,10mm,10cm时,欲使单次测量的百分误差小于0.5%,各应选取什么长度测量仪器最恰当?为什么?DXDiTa9E3d物理天平侧质量与密度1、在使用天平测量前应进行哪些调节?如何消除天平的不等臂误差?2、测定不规则固体的密度时,若被测物体进入水中时表面吸有气泡,则实验所得的密度是偏大还是偏小?为什么?RTCrpUDGiT用拉伸法测量金属丝的杨氏模量1、本实验的各个长度量为什么要用不同的测量仪器测量 ?2、料相同,但粗细、长度不同的两根金属丝,它们的杨氏模量是否相同?3、本实验为什么要求格外小心、防止有任何碰动现象?5PCzVD7HxA精密称衡—分析天平的使用1、如果被测物体的密度与砝码的密度不同,即使它们的质量相等,但体积不同,因而受到空气浮力也不同,便产生浮力误差。
误差及数据处理物理实验离不开测量,数据测完后不进行处理,就难以判断实验效果,所以实验数据处理是物理实验非常重要的环节。
这节课我们学习误差及数据处理的知识。
数据处理及误差分析的内容很多,不可能在一两次学习中就完全掌握,因此希望大家首先对其基本内容做初步了解,然后在具体实验中通过实际运用加以掌握。
一、测量与误差1. 测量概念:将待测量与被选作为标准单位的物理量进行比较,其倍数即为物理量的测量值。
测量值:数值+单位。
分类:按方法可分为直接测量和间接测量;按条件可分为等精度测量和非等精度测量。
直接测量:可以用量具或仪表直接读出测量值的测量,如测量长度、时间等。
间接测量:利用直接测量的物理量与待测量之间的已知函数关系,通过计算而得到待测量的结果。
例如,要测量长方体的体积,可先直接测出长方体的长、宽和高的值,然后通过计算得出长方体的体积。
等精度测量:是指在测量条件完全相同(即同一观察者、同一仪器、同一方法和同一环境)情况下的重复测量。
非等精度测量:在测量条件不同(如观察者不同、或仪器改变、或方法改变,或环境变化)的情况下对同一物理量的重复测量。
2.误差真值A:我们把待测物理量的客观真实数值称为真值。
一般来说,真值仅是一个理想的概念。
实际测量中,一般只能根据测量值确定测量的最佳值,通常取多次重复测量的平均值作为最佳值。
误差ε:测量值与真值之间的差异。
误差可用绝对误差表示,也可用相对误差表示。
绝对误差=测量值-真值,反应了测量值偏离真值的大小和方向。
为了全面评价测量的优劣, 还需考虑被测量本身的大小。
绝对误差有时不能完全体现测量的优劣, 常用“相对误差”来表征测量优劣。
相对误差=绝对误差/测量的最佳值×100%分类:误差产生的原因是多方面的,根据误差的来源和性质的不同,可将其分为系统误差和随机误差两类。
(1)系统误差在相同条件下,多次测量同一物理量时,误差的大小和符号保持恒定,或按规律变化,这类误差称为系统误差。
实验数据处理基本方法实验必须采集大量数据,数据处理是指从获得数据开始到得出最后结论的整个加工过程,它包括数据记录、整理、计算与分析等,从而寻找出测量对象的内在规律,正确地给出实验结果。
因此,数据处理是实验工作不可缺少的一部分。
数据处理涉及的内容很多,这里只介绍常用的四种方法。
1 列表法对一个物理量进行多次测量,或者测量几个量之间的函数关系,往往借助于列表法把实验数据列成表格。
其优点是,使大量数据表达清晰醒目,条理化,易于检查数据和发现问题,避免差错,同时有助于反映出物理量之间的对应关系。
所以,设计一个简明醒目、合理美观的数据表格,是每一个同学都要掌握的基本技能。
列表没有统一的格式,但所设计的表格要能充分反映上述优点,应注意以下几点: 1.各栏目均应注明所记录的物理量的名称(符号)和单位;2.栏目的顺序应充分注意数据间的联系和计算顺序,力求简明、齐全、有条理; 3.表中的原始测量数据应正确反映有效数字,数据不应随便涂改,确实要修改数据时,应将原来数据画条杠以备随时查验;4.对于函数关系的数据表格,应按自变量由小到大或由大到小的顺序排列,以便于判断和处理。
2 图解法图线能够明显地表示出实验数据间的关系,并且通过它可以找出两个量之间的数学关系,因此图解法是实验数据处理的重要方法之一。
图解法处理数据,首先要画出合乎规范的图线,其要点如下:1.选择图纸 作图纸有直角坐标纸(即毫米方格纸)、对数坐标纸和极坐标纸等,根据作图需要选择。
在物理实验中比较常用的是毫米方格纸,其规格多为cm 2517⨯。
2.曲线改直 由于直线最易描绘,且直线方程的两个参数(斜率和截距)也较易算得。
所以对于两个变量之间的函数关系是非线性的情形,在用图解法时应尽可能通过变量代换将非线性的函数曲线转变为线性函数的直线。
下面为几种常用的变换方法。
(1)c xy =(c 为常数)。
令xz 1=,则cz y =,即y 与z 为线性关系。
(2)y c x =(c 为常数)。
实验数据处理1. 计算三棱镜顶角及不确定度)(A u 顶角A 的计算公式: (1)自准法 )(211802121右右左左θθθθ-+--=A (2)反射法 )(12121右右左左θθθθ-+-=A其中须考虑实际转过的角度。
(3) 顶角A 的不确定度的计算公式 自准法: θθθ∆==⨯=)()()21(4)(22u u A u反射法:11()()22u A u θθ===∆2. 最小偏向角的计算及最小偏向角的不确定度 (1) 最小偏向角min δ的计算公式:)(12121min 右右左左θθθθδ-+-=(2)最小偏向角min δ的不确定度计算公式:θθθδ∆==⨯=21)(21)()41(4)(22min u u u3. 计算折射率n 以及折射率的不确定度)(n u由折射率的计算公式 A A n 21sin )(21sin min +=δ,对较厚三棱镜,可得: n蓝紫= n 绿 =由折射率的不确定度计算公式:)(2)(222)(min 2min222min δδδu A ctgA u A ctg A ctg n n u ++⎪⎭⎫ ⎝⎛+-=)()21sin(2)(21cos )()21(sin 2)21sin(min 22min 222min δδδu A A A u A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡= 22min 222min )21()21sin(2)(21cos )()21(sin 2)21sin(θδθδ∆⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++∆⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=A A A 仪器误差 Δθ = 2′= 5.82×10-4(rad)可得:u (n 蓝紫) = ,u (n 绿) =测得折射率n 蓝紫= ± ,n 绿 = ±数据处理注意事项与角度的不确定度有关的数值的单位应取为弧度。
⼤学物理实验常⽤的数据处理⽅法1.7 常⽤的数据处理⽅法实验数据及其处理⽅法是分析和讨论实验结果的依据。
在物理实验中常⽤的数据处理⽅法有列表法、作图法、逐差法和最⼩⼆乘法(直线拟合)等。
1.7.1 列表法在记录和处理数据时,常常将所得数据列成表。
数据列表后,可以简单明确、形式紧凑地表⽰出有关物理量之间的对应关系;便于随时检查结果是否合理,及时发现问题,减少和避免错误;有助于找出有关物理量之间规律性的联系,进⽽求出经验公式等。
列表的要求是:(1)要写出所列表的名称,列表要简单明了,便于看出有关量之间的关系,便于处理数据。
(2)列表要标明符号所代表物理量的意义(特别是⾃定的符号),并写明单位。
单位及量值的数量级写在该符号的标题栏中,不要重复记在各个数值上。
(3)列表的形式不限,根据具体情况,决定列出哪些项⽬。
有些个别的或与其他项⽬联系不⼤的数据可以不列⼊表内。
列⼊表中的除原始数据外,计算过程中的⼀些中间结果和最后结果也可以列⼊表中。
(4)表中所列数据要正确反映测量结果的有效数字。
列表举例如表1-2所⽰。
表1-2铜丝电阻与温度关系1.7.2 作图法作图法是将两列数据之间的关系⽤图线表⽰出来。
⽤作图法处理实验数据是数据处理的常⽤⽅法之⼀,它能直观地显⽰物理量之间的对应关系,揭⽰物理量之间的联系。
1.作图规则为了使图线能够清楚地反映出物理现象的变化规律,并能⽐较准确地确定有关物理量的量值或求出有关常数,在作图时必须遵守以下规则。
(1)作图必须⽤坐标纸。
当决定了作图的参量以后,根据情况选⽤直⾓坐标纸、极坐标纸或其他坐标纸。
(2)坐标纸的⼤⼩及坐标轴的⽐例,要根据测得值的有效数字和结果的需要来定。
原则上讲,数据中的可靠数字在图中应为可靠的。
我们常以坐标纸中⼩格对应可靠数字最后⼀位的⼀个单位,有时对应⽐例也适当放⼤些,但对应⽐例的选择要有利于标实验点和读数。
最⼩坐标值不必都从零开始,以便做出的图线⼤体上能充满全图,使布局美观、合理。
用excel处理大学物理实验数据:大学物理试验特点:好做,数据难处理,尤其是不确定度以及方差之类的东西。
用计算器算太困难。
下面本人介绍一种简单实际的计算机处理方法。
(excel高手就不必看了)1、新建excel表格,根据自己的表格建立excel表格,此处不详细介绍了,不会可以上网找,或者去借本书自己看。
2、将原始数据填入表格。
3、用公式和函数处理数据。
公式部分:根据你的原始数据输入公式求出要求的值,如下图:图中“=B1*9.8”即为公式,B1是数字2的坐标,然后回车就OK了,接下来就到了excel 的独特魅力的地方了,批量处理数据当结果出来以后,把鼠标放在19.6那一格的右下角处,当出现“+”符号时,点住鼠标左键向右拖,拖到第五个格时所有的数据都有了。
OK,会了吗?介绍一下符号乘:“*”除:“/ ”平方:“^2”即“5^2”就是求5的平方,同样3次方就把“^”后面的2改成3,开平方就改成0.5,顺序先后就加括号就行了,比如:处理复杂的批量运算很爽的!!函数功能,更能体现excel的优势了,这里介绍几个常用的函数把,sum函数:求和,可以求一列的和或一行的和average函数:求平均值。
stdev函数:求一列或一行的标准差。
(最有优势的地方,那计算器没有十分钟求不出一组,而excel 30秒可以求无限组)sin函数:求正弦asin函数:反正弦exp:e的幂其余三角函数模式都一样,不一一列举,还有ln,lg之类,都有,需要什么就直接用用法如下:如求第一列质量的和,在某个空白处输入“=sum(B1:F1)”然后回车就ok了,同样不鼠标放在右下角点住拖动就可以求出第二行和第三行的和了,其余函数方法相同,ok,可以处理数据了。
画图:如果你爱用坐标纸的话就不用看了。
1、选中要做图的数据。
2、点击“插入——图表”,然后选“散点图”,然后“下一步”“下一步”出现下图,可以输入你的x,y轴分别代表什么了,然后最上面那五个量分别设置,要想线密一些就点网格线,将主次网格线都选中就行了,然后“下一步”“完成”,图的描点就完成了。
物理实验数据处理的基本方法1.数据收集:在物理实验中,首先需要收集实验数据。
可以使用各种仪器和设备进行测量、记录和采集实验数据。
确保数据的准确性和可靠性。
2.数据整理:在数据收集后,需要对数据进行整理和整合。
这可以包括删除无效数据、排除异常值、对数据进行分类等。
确保数据的整洁和一致性。
3.数据可视化:将数据可视化是一个有力的方法,可以帮助研究人员更好地理解数据和发现隐藏在数据中的模式和趋势。
常用的数据可视化方法包括绘制直方图、散点图、线图等。
4.数据分析:对数据进行分析是了解数据背后规律的重要手段。
常用的数据分析方法包括统计分析、查找关联性、回归分析、频谱分析等。
这些方法可以帮助确定数据之间的相互关系,提取重要的特征和信息。
5.误差分析:误差是物理实验中不可避免的部分,对实验数据的误差进行分析是确保实验结果可靠性的重要环节。
常用的误差分析方法包括确定绝对误差、相对误差、平均误差、标准差等。
通过误差分析,可以评估实验的准确性和精确性。
6.结果解释:在完成数据处理和分析后,需要对结果进行解释和讨论。
这包括总结数据的主要趋势和规律,解释与已有理论和模型的一致性,讨论实验结果的物理意义等。
7.结论和讨论:在数据分析和结果解释的基础上,得出结论和讨论物理实验的目标和研究问题。
这可以包括总结实验结果的重要发现和贡献,提出对未来研究的建议和思考。
总之,物理实验数据处理是一个复杂的过程,需要科学的方法和技巧。
通过合理地应用数据收集、整理、可视化、分析和解释的方法,可以更好地理解实验数据和揭示实验中的物理规律。
孝感学院《大学物理实验》实验数据记录和处理报告日期:2011 年月日天气:__________ 实验室:___________姓名:__________________ 学号:__________ 院系专业:___________ 指导教师:________【实验题目】实验1 用米尺、游标尺、螺旋测径器、读数显微镜测量长度【实验内容和实验数据记录】1.用米尺测量AB间的距离。
2.用游标尺测量铁杯的含铁体积。
表1 用米尺测A、B两点间距离表2 用游标尺测量铁杯的含铁体积3.用螺旋测径器测小钢球的体积。
4.用读数显微器测量挡光片AC、BD 两条边之间的距离。
D ______ mm表3 用螺旋测径器测小钢球的体积表4 用读数显微器测量挡光片AC、BD 两条边之间的距离(单位:mm)实验数据教师核查签字(未签字数据无效):______________【实验数据处理】1.用米尺测量AB 间的距离测量值 __________iX X n==∑A 类不确定度__________A X u S === B 类不确定度_________B u ∆==用方和根求总不确定度__________X u == 测量结果X X =±___________________X u = 2.用游标尺测量铁杯的含铁体积①外圆柱体积_______________D =,_______________H =2____________________________4V D H π==不确定度___________________________V u V ==____________________VV u u V V=⋅= ②内圆柱体积_______________h =,_______________h =,_____________________v =③杯子含铜体积 ______________________________V V v =-=杯______________________________u ==杯测量结果V V =±_______________V u =3.用螺旋测径器测小钢球的体积(不确定度公式的推导及个计算要求实验者自己完成)4.用读数显微器测量挡光片AC 、 BD 两条边之间的距离测量结果AC AC X X =±____________________AC u =BD BD X X =±____________________BD u =孝感学院《大学物理实验》实验数据记录和处理报告日期: 2011 年 月 日 天气:__________ 实 验 室:___________姓名:__________________ 学号:__________ 院系专业:___________ 指导教师:________【实验题目】实验2 随机(偶然)误差的统计分布【实验内容和实验数据记录】测量单摆周期,重复测量120~200次。
大学物理中的实验数据处理与分析方法在大学物理课程中,实验数据处理与分析是非常关键的部分,能帮助学生深入理解物理原理和提高实验操作和数据分析能力。
本文将介绍一些常见的实验数据处理与分析方法,以帮助大家更好地应对物理实验。
一、误差分析与处理在物理实验中,由于种种因素的干扰,我们得到的实验数据往往会存在误差。
为了准确地反映实验现象,我们需要对这些误差进行分析和处理。
1. 系统误差:系统误差是由于实验仪器或装置的固有缺陷导致的误差,它存在于所有实验数据中,并且通常是固定的。
我们可以通过对仪器进行校准或者进行适当的修正来减小系统误差。
2. 随机误差:随机误差是由于实验条件的不确定性或人为操作的随机性导致的误差,它在重复实验中会发生变化。
为了减小随机误差,我们可以多次重复实验并取平均值,以提高数据的可靠性。
3. 最小可区分误差:最小可区分误差是指实验数据中能够明显区分的最小单位误差。
在数据处理过程中,我们需要注意到最小可区分误差,以避免在数据分析过程中忽略这些细微的差别。
二、数据处理方法在获得实验数据后,我们需要对其进行处理,以得到更有意义和可靠的结果。
1. 平均值:将多次实验获得的数据进行求和,并除以实验次数,即可得到平均值。
通过求平均值,可以减小随机误差对结果的影响。
2. 不确定度:不确定度是用于表示测量结果的范围。
通常,我们可以通过标准差、相对误差等方式来计算不确定度。
3. 误差传递:在进行多个量的计算时,不同量之间的误差会相互影响。
我们可以利用误差传递法则来计算复合量的误差。
该法则包括加减法、乘除法和函数的误差传递规则。
三、数据分析方法在获得实验数据后,我们还需要对其进行分析,以得到对实验现象的深入理解。
1. 图表分析:将实验数据绘制成图表,可以直观地展示数据规律和趋势。
在进行图表分析时,需要注意选择适当的坐标轴、标记数据点和合理选择曲线拟合等。
2. 直线拟合:对于线性关系的实验数据,我们可以利用最小二乘法进行直线拟合,以获得直线的斜率和截距。