磁敏感加权成像(SWI)的临床应用
- 格式:ppt
- 大小:11.21 MB
- 文档页数:54
磁敏感加权成像对中枢神经系统病变的应用及其进展磁敏感加权成像(susceptibilityweighted imaging,简称SWI),本身是在T2*WI上改进完善形成的一种全新技术,磁敏感加权成像(SWI)技术的应用,可实现对脑微出血灶(Cerebral microbleeds,简称CMBS)疾病的高敏感诊断[1-2]。
磁敏感加权成像(SWI)技术设计特点本身在脑组织疾病诊断中具备较好的应用优势,就各类脑部中枢神经系统病变具备较好高的临床诊断价值[3-4]。
本文以综述的形式,阐述磁敏感加权成像(SWI)技术对中枢神经系统病变的诊断应用进展,叙述如下。
1 磁敏感加权成像原理及概念磁敏感加权成像(susceptibilityweighted imaging,简称SWI)技术本身是由美国人最先应用,相关学者借助血氧水平依赖效应(Blood oxygen level dependent effect),简称BOLD,与不同组织之间的磁敏感差异,获得相应的图像[5]。
磁敏感加权成像应用的是强度图与相位图,其滤波可实现对原始数据的处理,磁敏感加权效应可改变相位,并校正图像,借助后处理技术,能够促使校正相位与强度图实现高度吻合,在最小密度投影下,得到SWI图像[6-7]。
2 磁敏感加权成像在脑部神经系统病变内的应用及其进展2.1 脑血管疾病(Cerebrovascular disease)龚静波,韩福刚[8]等学者研究表明,磁敏感加权成像计数对局部磁场改变、局部磁场出血的敏感性较高,可明确病灶,为诊断提供依据。
张跃海,孔令伟[9]等研究表明,磁敏感加权成像就血栓导致的梗死诊断,可清楚显示血管内的血栓情况,在各类检测方式中,SWI的诊断精准率与诊出率相对较高。
2.2 脑血管畸形(Cerebrovascular malformation)脑血管畸形主要包括:AVM、VA、CM、毛细血管扩张等,考虑病症主要是血管畸形或含铁血黄素沉积导致。
磁共振磁敏感加权成像技术的临床价值探讨摘要:swi作为一种新型无创的对磁化率因素极为敏感的mri检查技术,在许多疾病的诊断中发挥着重要作用。
对缺氧血、铁和钙等顺磁性物质具有极高敏感性的磁共振检查方法,在神经障碍性疾病领域得到了广泛使用。
关键词:磁共振成像临床价值一、磁敏感加权成像技术磁敏感加权成像(swi)技术作为一种新型的成像方法,更新了人们对某些血管性疾病检查手段的选择理念。
swi是一种以t2*加权梯度回波序列为序列基础,根据不同组织间的磁敏感性差异提供对比增强机制的新技术。
它采用3d梯度回波扫描、完全速度补偿、射频脉冲扰相等技术,与传统的t2加权像相比具有三维、高分辨率、高信噪比等特点。
同时,swi是对磁化率因素最为敏感的磁共振技术,是一种对缺氧血、血液制品、铁和钙等顺磁性物质具有极高敏感性的磁共振扫描方法。
swi着重强调的是不同组织和物质的磁敏感性差异,对静脉血管内的脱氧血和血管外的血液成分极其敏感,最初被称为高分辨率的血氧水平依赖的静脉造影术,在神经障碍性疾病领域得到了广泛使用。
swi是近年来发展起来的全新磁共振成像方法,与以往的t1或t2加权、质子密度成像方法不同,swi序列是利用不同组织间磁敏感性的差异产生图像对比的技术。
从技术角度来讲,其基础是t2*加权梯度回波序列。
不同于普通的磁共振成像技术,现有的磁共振扫描机尚不能直接得到swi图像,需要对使用t2*加权梯度回波序列扫描获得的幅值图像和相位图像,即swi原始图像进行在复数域中的幅值和相位图像重组;在k空间中,低通滤波消除相位图像中的磁场不均匀性伪影;制作相位蒙片并与幅值图像加权获得磁敏感加权图像,并通过最小密度投影显示连续血管层面的静脉血管结构。
因此,swi独特的数据采集和图像处理最终产生对比强烈的幅度图像,对静脉血液、出血和铁质沉积相当敏感。
二、磁敏感加权成像技术的临床应用2.1急性脑梗塞急性脑梗塞是一种极其凶险的疾病,起病急、致死致残率高,对于急性脑中风患者显示并定位动脉栓塞具有判断预后及指导治疗的重要意义。
磁敏感加权成像SWI序列原理及应⽤(⼀)磁敏感加权成像SWI(Susceptibility-Weighted Imaging)是⼀种不同于常规的T1W,T2W,PDW等成像,⽽是利⽤组织间固有的磁敏感差异来获得图像对⽐的成像⽅式。
磁敏感加权成像利⽤磁共振相位图像作为Mask来增强组织间对⽐,经过20多年的临床使⽤,发现磁敏感加权成像在发现颅脑静脉畸形,脑微⼩出⾎,钙化等都具有⾮常重要的应⽤。
那么磁敏感加权成像是如何从常规的GRE序列演变发展成为能够识别组织间不同磁化率信息的SWI序列的呢?在进⾏磁敏感序列参数设定时需要注意什么?如何在磁敏感加权成像中鉴别出⾎和钙化?以及磁敏感加权成像图像的伪影及处理⽅案有什么?本⽂将逐⼀进⾏介绍。
⼀、磁敏感成像基本原理磁化率是组织的固有属性,通常我们使⽤Xm进⾏表⽰,不同组织与材料的磁化率差别⾮常⼤,为了描述⽅便,可以将组织或材料划分为逆磁性、顺磁性以及铁磁性三种不同的类型,其中逆磁性的组织或材料的磁化率Xm<0,常见的有铜、银、⽔以及304不锈钢等等,⽽铁、钴、镍等⾦属则为铁磁性材料,磁化率⾮常⾼。
当把具有⼀定磁化率的组织或材料放置于均匀的磁化环境中时,组织被均匀磁化形成磁偶极⼦,产⽣感应磁场,这种感应磁场不仅影响组织的内部,同时也影响着组织周边的外加磁化的均匀性。
对外加磁场的扰动的程度取决于组织的磁化率,形状和体积。
就扰相GRE序列来说,假如认定磁场均匀性以及梯度线性⾮常好时,使⽤⼀定的翻转⾓在TE 时刻采集获得的信号为:但是如果存在导致局部磁场不均匀的影响因素时,在TE时刻由于磁场不均匀导致横向磁矩的相位并没有聚相,⽽是存在⼀定的相位差,导致接收信号的降低。
这种信号的降低主要由两个参数决定,ΔB为磁场不均匀的参数,TE则为回波时间,磁场不均匀越厉害,相位差越明显,回波时间TE越长,相位差越明显,导致的信号降低越明显。
这两个参数都在磁敏感成像参数设定中有⾮常重要的意义。
磁共振磁敏感加权像(SWI)对脑梗死伴出血的临床应用价值作者:董立英来源:《中国实用医药》2013年第16期【摘要】目的探讨磁共振磁敏感加权成像(SWI)对出血性脑梗死的诊断和鉴别诊断价值。
方法对2009年10月至2012年10月215例脑梗死患者行MR的T1WI、T2WI、DWI与SWI扫描,分析T1WI、T2WI、DWI和SWI对出血性脑梗死检出率的差异和SWI对于出血性脑梗死的鉴别诊断价值。
结果 SWI检出出血性脑梗死45例,T1WI检出20例,T2WI检出28例,DWI检出31例。
SWI检出率显著优于其他方法(χ2=31.21,P【关键词】磁共振成像;磁敏感加权像;脑梗死;脑出血作者单位:050700 河北省新乐市医院CT室磁敏感度是指置于磁场中的物质发生磁化的程度。
当局部磁场由于某些物质(如血液或铁)的存在而不均匀时,就会引起磁敏感度的差异[1]。
随着磁场强度的提高,磁敏感效应也成倍增强。
这种效应对于磁共振成像既可以是有害的,也可以是有益的。
一方面,如果磁敏感效应未得到有效的处理,会对图像质量产生负面影响。
比如,磁敏感伪影可以导致组织结构变形。
当前,通过并行采集技术,可将磁敏感伪影对图像质量的影响降到最低。
SWI(磁敏感加权像)是一种新的三维采集成像序列,利用组织磁敏感性不同,为一全新的长回波时间,三个方向均有流动补偿的梯度回波序列(GRE),与T2WI序列比较具有三维、高分辨、高信噪比的特点[2]。
为了研究SWI在脑梗死伴出血的临床应用价值,我院收集了近3年的影像学资料,取得了满意的结果,现报告如下。
1 资料与方法1.1 一般资料收集2009年10月至2012年10月,行常规MRI序列,T2WI、SWI检查的215例脑梗死患者的临床和影像资料。
男114例,女101例,年龄52~91岁,平均年龄(72.48±4.62)岁。
由两名诊断医师分析,分析出血患者各个序列表现,记录出血的信号特点、数目、形态、大小、分布等,观察SWI序列梗死灶以外区域有无出血,能显示的梗死灶内静脉血管的数目。