2020届高考数学一轮复习单元质检8解析几何(含解析)新人教A版
- 格式:docx
- 大小:176.21 KB
- 文档页数:11
单元检测八立体几何(提升卷)考生注意:.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共页..答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上..本次考试时间分钟,满分分..请在密封线内作答,保持试卷清洁完整.第Ⅰ卷(选择题共分)一、选择题(本题共小题,每小题分,共分.在每小题给出的四个选项中,只有一项是符合题目要求的).长方体的一个顶点上三条棱长分别是,且它的个顶点都在同一球面上,则这个球的表面积是( ).π.π.π.都不对答案解析长方体的个顶点都在同一球面上,则这个球是长方体的外接球,所以球直径等于长方体的体对角线长,即==,所以球的表面积为π=π·=π,故选..如图所示的正方形′′′′的边长为,它是水平放置的一个平面图形的直观图,则原图形的周长是( )...(+) .(+)答案解析由斜二测画法知,原图四边形为平行四边形,⊥,=,=,所以=,因此其周长为(+)×=..(·广东省广州市培正中学模拟)下列命题中,错误的是( ).平行于同一平面的两个平面平行.平行于同一直线的两个平面平行.一条直线与两个平行平面中的一个相交,那么这条直线必和另一个平面相交.一条直线与两个平行平面所成的角相等答案解析选项正确,是面面平行的传递性.选项错误,比如正方体的两相邻侧面与一侧棱都平行,但两侧面所在平面相交.选项正确,由反证法,若直线与另一平面不相交,则直线在平面内或直线与平面平行,与直线与第一个平面相交矛盾.选项正确,由线面角定义可知正确..如图,在多面体中,已知面是边长为的正方形,∥,=,且与面的距离为,则该多面体的体积为( )..答案解析分别取,的中点,,连接,,,把该多面体分割成一个四棱锥与一个三棱柱,可求得四棱锥的体积为,三棱柱的体积为,所以整个多面体的体积为..如图,一个空间几何体的正视图,侧视图,俯视图为全等的等腰直角三角形,如果直角三角形的直角边的长为,那么这个几何体的体积为( ).答案解析由三视图还原可知,原图形是底面是直角边为的等腰直角三角形,两侧面也是直角边为的等腰直角三角形,另一侧面是边长为的等边三角形的三棱锥.所以体积为=××=,选..设,是异面直线,则以下四个命题:①存在分别经过直线和的两个互相垂直的平面;②存在分别经过直线和的两个平行平面;③经过直线有且只有一个平面垂直于直线;④经过直线有且只有一个平面平行于直线,其中正确的个数为( )....答案解析对于①,可以在两个互相垂直的平面中,分别画一条直线,当这两条直线异面时,可判断①正确;对于②,可在两个平行平面中,分别画一条直线,当这两条直线异面时,可判断②正确;对于③,当这两条直线不垂直时,不存在这样的平面满足题意,可判断③错误;对于④,假设过直线有两个平面α,β与直线平行,则平面α,β相交于直线,过直线作一平面γ与平面α,β相交于两条直线,都与直线平行,可得与平行,所以假设不成立,所以④正确,故选..(·广东省广州市培正中学模拟)如图,长方体—中,∠=°,∠=°,那么异面直线与所成角的余弦值是( )答案解析由∠=°,∠=°,可设==,=.连接,.由∥,所以异面直线与所成的角,即∠.在△中,=,=,=,由余弦定理可得∠===,所以异面直线与所成角的余弦值是,选..△所在的平面为α,直线⊥,⊥,直线⊥,⊥,则直线,的位置关系是( ).相交.平行.异面.不确定答案解析∵⊥,⊥,∩=,,⊂平面,∴⊥平面.∵⊥,⊥,∩=,,⊂平面,∴⊥平面,∴∥,故选..已知α,β是两个平面,直线⊄α,⊄β,若以①⊥α;②∥β;③α⊥β中两个为条件,另一个为结论构成三个命题,则其中正确的命题有( ).①③⇒②;①②⇒③.①③⇒②;②③⇒①.①②⇒③;②③⇒①.①③⇒②;①②⇒③;②③⇒①答案解析因为α⊥β,所以在β内找到一条直线,使⊥α,又因为⊥α,所以∥.又因为⊄β,所以∥β,即①③⇒②;因为∥β,所以过可作一平面γ∩β=,所以∥,又因为⊥α,所以⊥α,又因为⊂β,所以α⊥β,即①②⇒③.故选..已知互相垂直的平面α,β交于直线.若直线,满足∥α,⊥β,则( ).∥.∥.⊥.⊥答案解析∵互相垂直的平面α,β交于直线,直线, 满足∥α,∴∥β或⊂β或与β相交,∵⊥β,⊂β,∴⊥.故选..如图,在正方体-中,,分别为棱和棱的中点,则异面直线与所成的角为( ).°.°.°.°答案解析连接,,.∵,分别为,的中点,∴∥.又易证得∥,∴∥.∴∠即为异面直线和所成的角.∵-为正方体,∴==.即△为正三角形,∴∠=°.故正确..点在正方体侧面及其边界上运动,并且保持⊥,则点的轨迹为( ).线段.的中点与的中点连成的线段.线段.的中点与的中点连成的线段答案解析∵⊥恒成立,∴要保证所在的平面始终垂直于.∵⊥,⊥,∩=,,⊂平面,∴⊥平面,∴点在线段上运动.故选.第Ⅱ卷(非选择题共分)二、填空题(本题共小题,每小题分,共分.把答案填在题中横线上).往一个直径为厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高厘米,则此球的半径为厘米.答案解析==π=π,===..如图,,分别为正方体的平面、平面的中心,则四边形在该正方体的面上的射影可能是.(填序号)答案②③解析因为正方体是对称的几何体,所以四边形在该正方体的面上的射影可分为:自上而下、自左至右、由前及后三个方向的射影,也就是在平面、平面、平面上的射影.四边形在平面和平面上的射影相同,如图②所示;四边形在该正方体对角面的内,它在平面上的射影显然是一条线段,如图③所示.故②③正确..如图所示,在正方体-中,,分别是棱和上的点,若∠是直角,则∠=.答案°解析因为⊥平面,⊂平面,所以⊥.又因为⊥,,⊂平面,∩=,所以⊥平面,所以⊥,所以∠=°..如图,∠=°,⊥平面,则在△和△的边所在的直线中,与垂直的直线有;与垂直的直线有.答案,,解析∵⊥平面,∴垂直于直线,,;∵⊥,⊥,∩=,∴⊥平面,∴与垂直的直线是.三、解答题(本题共小题,共分.解答应写出文字说明、证明过程或演算步骤).(分)如图,在直三棱柱(侧棱垂直于底面)-中,=,=,=,=,点是的中点.()求证:⊥;()求证:∥平面.证明()∵三棱柱-为直三棱柱,∴⊥平面,又⊂平面,∴⊥.又∵=,=,=,∴+=,∴⊥.∵,⊂平面,∩=,∴⊥平面,又⊂平面,∴⊥.()取的中点,连接,和,∵∥,且=,∴四边形为平行四边形,∴∥,又∵⊄平面,⊂平面,∴∥平面.∵∥,且=,∴四边形为平行四边形,∴∥,又∵⊂平面,⊄平面,∴∥平面,∵∩=,,⊂平面,∴平面∥平面,又⊂平面,∴∥平面..(分)如图,四棱锥-的底面是矩形,侧面是正三角形,且侧面⊥底面,为侧棱的中点.()求证:∥平面;()求证:⊥平面;()当为何值时,⊥?()证明连接交于,连接,因为,分别为,的中点,所以∥,因为⊂平面,⊄平面,所以∥平面.()证明⇒⇒平面⊥平面,正三角形中,为的中点,所以⊥,又平面∩平面=,所以⊥平面.()解设为中点,连接,则⊥.又平面⊥底面,所以⊥底面.所以,为在平面上的射影.要使⊥,只需⊥,在矩形中,设==,=,=,由∠=∠,得△∽△,=⇒=·⇒=,解得=,所以,当=时,⊥..(分)如图,已知四棱锥-,底面四边形为菱形,=,=,,分别是线段,的中点.()求证:∥平面;()求异面直线与所成角的大小.()证明连接交于点,∵,分别是线段,的中点,∴∥,∵⊄平面,⊂平面,∴∥平面.()解由()知,∠就是异面直线与所成的角或其补角.∵四边形为菱形,=,=,∴在△中,=,=,∴∠=°,∴异面直线与所成的角为°..(分)(·北京)如图,在三棱锥-中,⊥,⊥,⊥,===,为线段的中点,为线段上一点.()求证:⊥;()求证:平面⊥平面;()当∥平面时,求三棱锥-的体积.()证明因为⊥,⊥,,⊂平面,∩=,所以⊥平面,又因为⊂平面,所以⊥.()证明因为=,为中点,所以⊥,由()知,⊥,∩=,,⊂平面,所以⊥平面.又因为⊂平面,所以平面⊥平面.()解因为∥平面,⊂平面,平面∩平面=,所以∥.因为为的中点,所以==,==.由()知,⊥平面,所以⊥平面.所以三棱锥-的体积=··=.。
第46讲 直线的倾斜角与斜率、直线的方程课时达标一、选择题1.直线l 的方程为3x +3y -1=0,则直线l 的倾斜角为( ) A .150° B .120° C .60°D .30°A 解析 由直线l 的方程为3x +3y -1=0可得直线l 的斜率为k =-33,设直线l 的倾斜角为α(0°≤α<180°),则tan α=-33,所以α=150°.故选A. 2.若函数y 1=sin 2x 1-32⎝ ⎛⎭⎪⎫x 1∈⎣⎢⎡⎦⎥⎤0,π2,函数y 2=x 2+3,则(x 1-x 2)2+(y 1-y 2)2的最小值为( )A.2π12B.π+272C.π+212D.π-33+272B 解析 设z =(x 1-x 2)2+(y 1-y 2)2,则z 的几何意义是两条曲线上动点之间的距离的平方.因为y 1=sin 2x 1-32⎝ ⎛⎭⎪⎫x 1∈⎣⎢⎡⎦⎥⎤0,π2,所以y 1′=2cos 2x 1.因为函数y 2=x 2+3的斜率为1,所以令y 1′=2cos 2x 1=1,解得x 1=π6,则y 1=0,即函数在⎝ ⎛⎭⎪⎫π6,0处的切线和直线y 2=x 2+3平行,则最短距离为d =⎪⎪⎪⎪⎪⎪π6+32.所以(x 1-x 2)2+(y 1-y 2)2的最小值为d 2=⎝⎛⎭⎪⎪⎫⎪⎪⎪⎪⎪⎪π6+322=π+272.故选B.3.如图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( ) A .k 1<k 2<k 3 B .k 3<k 1<k 2 C .k 3<k 2<k 1 D .k 1<k 3<k 2D 解析 直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角,且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2.故选D.4.若k ,-1,b 三个数成等差数列,则直线y =kx +b 必经过定点( ) A .(1,-2) B .(1,2) C .(-1,2)D .(-1,-2)A 解析 因为k ,-1,b 三个数成等差数列,所以k +b =-2,即b =-2-k ,于是直线方程化为y =kx -k -2,即y +2=k (x -1),故直线必过定点(1,-2).5.(2019·陕西师大附中月考)如果AB >0,且BC <0,则直线Ax +By +C =0不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限C 解析 直线Ax +By +C =0的斜率k =-AB <0,在y 轴上的截距为-C B>0,所以直线不经过第三象限.6.设点 A (-2,3),B (3,2),若直线ax +y +2=0与线段 AB 没有交点,则a 的取值范围是( )A.⎝ ⎛⎦⎥⎤-∞,-52∪⎣⎢⎡⎭⎪⎫43,+∞ B.⎝ ⎛⎭⎪⎫-43,52 C.⎣⎢⎡⎦⎥⎤-52,43 D.⎝ ⎛⎦⎥⎤-∞,-43∪⎣⎢⎡⎭⎪⎫52,+∞ B 解析 易知直线ax +y +2=0恒过点M (0,-2),且斜率为-a .因为k MA =3---2-0=-52,k MB =2--3-0=43, 由图可知-a >-52且-a <43,所以a ∈⎝ ⎛⎭⎪⎫-43,52. 二、填空题7.直线l 过原点且平分▱ABCD 的面积,若平行四边形的两个顶点为B (1,4),D (5,0),则直线l 的方程为________.解析 直线l 平分平行四边形ABCD 的面积,则直线l 过BD 的中点(3,2),则直线l :y =23x . 答案 y =23x8.过点M (-3,5)且在两坐标轴上的截距互为相反数的直线方程为________. 解析 当直线过原点时,直线方程为y =-53x ;当直线不过原点时,设直线方程为x a +y-a =1,即x -y =a .代入点(-3,5),得a =-8.即直线方程为x -y +8=0.答案 y =-53x 或x -y +8=09.若 ab >0,且 A (a,0),B (0,b ),C (-2,-2)三点共线,则ab 的最小值为________. 解析 根据A (a,0),B (0,b )确定直线的方程为x a +y b=1,又C (-2,-2)在该直线上,故-2a +-2b=1,所以-2(a +b )=ab .又ab >0,故a <0,b <0.根据基本不等式ab =-2(a+b )≥4ab ,可得ab ≤0(舍去)或ab ≥4,故ab ≥16,当且仅当a =b =-4时,等号成立.故ab 的最小值为16.答案 16 三、解答题10.已知点A (3,4),分别求出满足下列条件的直线方程. (1)经过点A 且在两坐标轴上的截距相等;(2)经过点A 且与两坐标轴围成一个等腰直角三角形. 解析 (1)设直线在x ,y 轴上的截距均为a .①若a =0, 即直线过点(0,0)及(3,4),所以直线的方程为y =43x ,即4x -3y =0.②若a ≠0,设所求直线的方程为x a +y a=1.又点(3,4)在直线上,所以3a +4a=1,所以a=7.所以直线的方程为x +y -7=0.综合①②可知所求直线的方程为4x -3y =0或x +y -7=0.(2)由题意可知所求直线的斜率为±1.又过点(3,4),由点斜式得y -4=±(x -3).故所求直线的方程为x -y +1=0或x +y -7=0.11.(2019·临川一中月考)已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围.解析 (1)证明:直线l 的方程可化为y =k (x +2)+1,故无论k 取何值,直线l 总过定点(-2,1).(2)直线l 的方程为y =kx +2k +1,则直线l 在y 轴上的截距为2k +1,要使直线l 不经过第四象限,则⎩⎪⎨⎪⎧k ≥0,1+2k ≥0,解得k ≥0,故k 的取值范围是[0,+∞).12.(2019·长治二中月考)已知方程(m 2-2m -3)x +(2m 2+m -1)y +5-2m =0(m ∈R ). (1)求方程表示一条直线的条件;(2)当m 为何值时,方程表示的直线与x 轴垂直;(3)若方程表示的直线在两坐标轴上的截距相等,求实数m 的值.解析 (1)由⎩⎪⎨⎪⎧m 2-2m -3=0,2m 2+m -1=0,解得m =-1,因为方程(m 2-2m -3)x +(2m 2+m -1)y +5-2m =0(m ∈R )表示直线,所以m 2-2m -3,2m 2+m -1不同时为0,所以m ≠-1.故方程表示一条直线的条件为m ≠-1.(2)因为方程表示的直线与x 轴垂直,所以⎩⎪⎨⎪⎧m 2-2m -3≠0,2m 2+m -1=0,解得m =12.(3)当5-2m =0,即m =52时,直线过原点,在两坐标轴上的截距均为0;当m ≠52时,由(1)的结论和2m -5m 2-2m -3=2m -52m 2+m -1,解得m =-2.故实数m 的值为52或-2.13.[选做题](2019·西安交大附中期中)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y )(点P 与点A ,B 不重合),则△PAB 的面积最大值是( )A .2 5B .5 C.52D. 5C 解析 由题意可知动直线x +my =0过定点A (0,0).动直线mx -y -m +3=0⇒m (x -1)+3-y =0,因此直线过定点B (1,3).当m =0时,两条直线分别为x =0,y =3,交点P (0,3),S △PAB =12×1×3=32.当m ≠0时,两条直线的斜率分别为-1m ,m ,则-1m·m =-1,因此两条直线相互垂直.当|PA |=|PB |时,△PAB 的面积取得最大值.由2|PA |=|AB |=12+32=10,解得|PA |= 5.所以S △PAB =12|PA |2=52.综上可得,△PAB 的面积最大值是52.第47讲 两条直线的位置关系课时达标一、选择题1.若直线ax +2y +1=0与直线x +y -2=0互相垂直,那么a 的值等于( ) A .1 B .-13C .-23D .-2D 解析 由a ×1+2×1=0得a =-2.故选D.2.过点(1,0)且与直线x -2y -2=0垂直的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0D .x +2y -1=0C 解析 设直线方程为2x +y +c =0,将(1,0)代入, 求得c =-2,所以所求方程为2x +y -2=0.故选C.3.(2019·平顶山统考)已知点A (1,-2),B (m,2),若线段AB 的垂直平分线的方程是x +2y -2=0,则实数m 的值为( )A .-2B .-7C .3D .1C 解析 因为A (1,-2)和B (m,2)的中点⎝ ⎛⎭⎪⎫1+m 2,0在直线x +2y -2=0上,所以1+m 2+2×0-2=0,所以m =3.4.“m =1”是“直线x -y =0和直线x +my =0互相垂直” 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件C 解析 因为m =1时,两直线方程分别是x -y =0和x +y =0,两直线的斜率分别是1和-1,所以两直线垂直,所以充分性成立;当直线x -y =0和直线x +my =0互相垂直时,有1×1+(-1)·m =0,所以m =1,所以必要性成立.故选C.5.(2019·常德一中月考)已知点M 是直线x +3y =2上的一个动点,且点P (3,-1),则点|PM |的最小值为( )A.12 B .1 C .2D .3B 解析 |PM |的最小值即为点P (3,-1)到直线x +3y =2的距离,又|3-3-2|1+3=1,故|PM |的最小值为1.6.(2019·襄阳四中月考)已知直线y =2x 是△ABC 中∠C 的平分线所在的直线,若点A ,B 的坐标分别是(-4,2),(3,1),则点C 的坐标为( )A .(-2,4)B .(-2,-4)C .(2,4)D .(2,-4)C 解析 设A (-4,2)关于直线y =2x 的对称点为(x ,y ),则⎩⎪⎨⎪⎧y -2x +4×2=-1,y +22=2×-4+x2,解得⎩⎪⎨⎪⎧x =4,y =-2,即(4,-2).所以直线BC 所在的方程为y -1=-2-14-3(x -3),即3x +y-10=0.联立⎩⎪⎨⎪⎧3x +y -10=0,y =2x 解得⎩⎪⎨⎪⎧x =2,y =4,可得C (2,4).二、填空题7.经过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线的方程是________.解析 因为y ′=6x -4,所以y ′|x =1=2,所以所求直线方程为y -2=2(x +1),即2x -y +4=0.答案 2x -y +4=08.与直线l 1:3x +2y -6=0和直线l 2:6x +4y -3=0等距离的直线方程是________. 解析 l 2:6x +4y -3=0化为3x +2y -32=0,所以l 1与l 2平行,设与l 1,l 2等距离的直线l 的方程为3x +2y +c =0,则|c +6|=⎪⎪⎪⎪⎪⎪c +32,解得c =-154,所以l 的方程为12x +8y -15=0.答案 12x +8y -15=09.已知定点A (1,1),B (3,3),动点P 在x 轴上,则|PA |+|PB |的最小值是________.解析 点A (1,1)关于x 轴的对称点为C (1,-1),则|PA |=|PC |,设BC 与x 轴的交点为M ,则|MA |+|MB |=|MC |+|MB |=|BC |=2 5.由三角形两边之和大于第三边知当P 不与M 重合时,|PA |+|PB |=|PC |+|PB |>|BC |,故当P 与M 重合时,|PA |+|PB |取得最小值.答案 2 5 三、解答题10.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线的方程为2x -y -5=0,AC 边上的高BH 所在直线的方程为x -2y -5=0,求直线BC 的方程.解析 依题意知k AC =-2,A (5,1),所以直线AC 的方程为2x +y -11=0,联立直线AC 和直线CM的方程,得⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,所以C (4,3).设B (x 0,y 0),AB 的中点M 为⎝ ⎛⎭⎪⎫x 0+52,y 0+12,代入2x -y -5=0,得2x 0-y 0-1=0,所以⎩⎪⎨⎪⎧2x 0-y 0-1=0,x 0-2y 0-5=0,所以B (-1,-3),所以k BC =65,所以直线BC 的方程为y -3=65(x -4),即6x -5y -9=0.11.已知直线l 1:x +a 2y +1=0和直线l 2:(a 2+1)x -by +3=0(a ,b ∈R ). (1)若l 1∥l 2,求b 的取值范围; (2)若l 1⊥l 2,求|ab |的最小值.解析 (1)因为l 1∥l 2,所以-b -(a 2+1)a 2=0,即b =-a 2(a 2+1)=-a 4-a 2=-⎝⎛⎭⎪⎫a 2+122+14.因为a 2≥0,所以b ≤0.又因为l 1与l 2不重合,所以a 2+1≠3,所以b ≠-6.故b 的取值范围是(-∞,-6)∪(-6,0].(2)因为l 1⊥l 2,所以(a 2+1)-a 2b =0,显然a ≠0,所以ab =a +1a,|ab |=⎪⎪⎪⎪⎪⎪a +1a ≥2,当且仅当a =±1时,等号成立,因此|ab |的最小值为2.12.(2019·信阳调考)已知直线m :2x -y -3=0与直线n :x +y -3=0的交点为P . (1)若直线l 过点P ,且点A (1,3)和点B (3,2)到直线l 的距离相等,求直线l 的方程; (2)若直线l 1过点P 且与x 轴和y 轴的正半轴分别交于A ,B 两点,△ABO 的面积为4,求直线l 1的方程.解析 (1)由⎩⎪⎨⎪⎧2x -y -3=0,x +y -3=0得⎩⎪⎨⎪⎧x =2,y =1,即交点P (2,1).由直线l 与A ,B 的距离相等可知,l ∥AB 或l 过AB 的中点.①由l ∥AB 得k l =k AB =2-33-1=-12,所以直线l 的方程为y -1=-12(x -2),即x +2y-4=0.②由l 过AB 的中点得l 的方程为x =2. 综上得x +2y -4=0或x =2为所求.(2)由题可知直线l 1的横、纵截距a ,b 存在,且a >0,b >0,则l 1:x a +yb=1.又直线l 1过点(2,1),△ABO 的面积为4,所以⎩⎪⎨⎪⎧2a +1b =1,12ab =4,解得⎩⎪⎨⎪⎧a =4,b =2,故直线l 1的方程为x 4+y2=1,即x +2y -4=0.13.[选做题](2019·华大新高考联盟联考)已知m ,n ,a ,b ∈R ,且满足3m +4n =6,3a +4b =1,则m -a2+n -b2的最小值为( )A. 3B. 2 C .1D.12C 解析 (m ,n )为直线3x +4y =6上的动点,(a ,b )为直线3x +4y =1上的动点,m -a2+n -b2的最小值可理解为两动点间距离的最小值,显然最小值是两平行线间的距离,所以d =|6-1|9+16=1.故选C.第48讲 圆的方程课时达标一、选择题1.(2019·宁波中学月考)在平面直角坐标系内,若曲线C :x 2+y 2+2ax -4ay +5a 2-4=0上所有的点均在第四象限内,则实数a 的取值范围为( )A .(-∞,-2)B .(-∞,-1)C .(1,+∞)D .(2,+∞)A 解析 圆C 的标准方程为(x +a )2+(y -2a )2=4,所以圆心为(-a,2a ),半径r =2,故由题意知⎩⎪⎨⎪⎧a <0,|-a |>2,|2a |>2⇒a <-2,故选A.2.圆(x -1)2+(y -2)2=1关于直线y =x 对称的圆的方程为( )A .(x -2)2+(y -1)2=1 B .(x +1)2+(y -2)2=1 C .(x +2)2+(y -1)2=1 D .(x -1)2+(y +2)2=1A 解析 设对称圆的方程为(x -a )2+(y -b )2=1,圆心(1,2)关于直线y =x 的对称点为(2,1),故对称圆的方程为(x -2)2+(y -1)2=1.故选A.3.圆心在y 轴上,半径长为1,且过点(1,2)的圆的方程是( ) A .x 2+(y -2)2=1 B .x 2+(y +2)2=1 C .(x -1)2+(y -3)2=1 D .x 2+(y -3)2=1A 解析 依题意,设圆心坐标为(0,a ),则-2+-a2=1,所以a =2,故圆的方程为x 2+(y -2)2=1.4.已知圆O :x 2+y 2=1,若A ,B 是圆O 上的不同两点,以AB 为边作等边△ABC ,则|OC |的最大值是( )A.2+62B. 3 C .2D.3+1C 解析 如图所示,连OA ,OB 和OC .因为OA =OB ,AC =BC ,OC =OC ,所以△OAC ≌△OBC ,所以∠ACO =∠BCO =30°,在△OAC 中,由正弦定理得OA sin 30°=OCsin ∠OAC ,所以OC =2sin∠OAC ≤2,故|OC |的最大值为2.故选C.5.若实数x ,y 满足x 2+y 2-2x +4y =0,则x -2y 的最大值为( ) A. 5 B .10 C .9D .5+2 5B 解析 原方程可化为(x -1)2+(y +2)2=5,表示以(1,-2)为圆心,5为半径的圆.设x -2y =b ,则x -2y 可看作直线x -2y =b 在x 轴上的截距,当直线与圆相切时,b 取得最大值或最小值,此时|1+4-b |5=5,所以b =10或b =0,所以x -2y 的最大值是10.6.设双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率e =2,右焦点F (c,0),方程ax 2-bx -c=0的两个实数根分别为x 1,x 2,则点P (x 1,x 2)与圆x 2+y 2=8的位置关系为( )A .点P 在圆外B .点P 在圆上C .点P 在圆内D .不确定C 解析 因为e 2=1+⎝ ⎛⎭⎪⎫b a 2=2,所以⎝ ⎛⎭⎪⎫b a 2=1,所以b a=1,所以a =b ,c =2a ,所以方程ax 2-bx -c =0 可化为x 2-x -2=0.所以x 1+x 2=1,x 1·x 2=- 2.所以x 21+x 22=(x 1+x 2)2-2x 1x 2=1+22<8,所以点P 在圆内.故选C.二、填空题7.(2018·天津卷)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为________.解析 设圆的方程为x 2+y 2+Dx +Ey +F =0.将已知三点的坐标代入方程可得⎩⎪⎨⎪⎧F =0,D +E +F +2=0,4+2D +F =0,解得⎩⎪⎨⎪⎧D =-2,E =0,F =0,所以圆的方程为x 2+y 2-2x =0.答案 x 2+y 2-2x =08.若圆C 与圆x 2+y 2+2x =0关于直线x +y -1=0对称,则圆C 的方程是________. 解析 设C (a ,b ),因为已知圆的圆心为A (-1,0),由点A ,C 关于x +y -1=0对称得⎩⎪⎨⎪⎧ba +1-=-1,a -12+b 2-1=0,解得⎩⎪⎨⎪⎧a =1,b =2.又圆的半径是1,所以圆C :(x -1)2+(y -2)2=1,即x 2+y 2-2x -4y +4=0.答案 x 2+y 2-2x -4y +4=09.若过点P (a ,a )可作圆x 2+y 2-2ax +a 2+2a -3=0的两条切线,则实数a 的取值范围是________.解析 圆的方程可化为(x -a )2+y 2=3-2a .因为过点P (a ,a )能作圆的两条切线,所以点P在圆的外部,即⎩⎪⎨⎪⎧a 2+a 2-2a 2+a 2+2a -3>0,3-2a >0,解得a <-3或1<a <32.故a 的取值范围为(-∞,-3)∪⎝ ⎛⎭⎪⎫1,32.答案 (-∞,-3)∪⎝ ⎛⎭⎪⎫1,32 三、解答题10.已知△ABC 的顶点坐标分别为A (-1,5),B (-2,-1),C (4,3),M 是BC 的中点. (1)求AB 边所在直线的方程; (2)求以线段AM 为直径的圆的方程.解析 (1)因为A (-1,5),B (-2,-1),所以由两点式得AB 的方程为y -5-1-5=x ---2--,整理得6x -y +11=0.(2)因为M 是BC 的中点,所以M ⎝ ⎛⎭⎪⎫-2+42,-1+32,即M (1,1),所以|AM |=-1-2+-2=25,所以圆的半径为 5.所以AM 的中点为⎝⎛⎭⎪⎫-1+12,5+12,即中点为(0,3),所以以线段AM 为直径的圆的方程为x 2+(y -3)2=5.11.已知直角三角形ABC 的斜边为AB ,且A (-1,0),B (3,0).求: (1)直角顶点C 的轨迹方程; (2)直角边BC 的中点M 的轨迹方程.解析 (1)设C (x ,y ),因为A ,B ,C 三点不共线,所以y ≠0.因为AC ⊥BC ,所以k AC ·k BC=-1,又k AC =y x +1,k BC =y x -3,所以y x +1·yx -3=-1,化简得x 2+y 2-2x -3=0.因此直角顶点C 的轨迹方程为x 2+y 2-2x -3=0(y ≠0).(2)设M (x ,y ),C (x 0,y 0),因为B (3,0),M 是线段BC 的中点,由中点坐标公式得x =x 0+32,y =y 0+02,所以x 0=2x -3,y 0=2y .由(1)知点C 的轨迹方程为(x -1)2+y 2=4(y ≠0),将x 0=2x -3,y 0=2y 代入得(2x -4)2+(2y )2=4,即(x -2)2+y 2=1.因此动点M 的轨迹方程为(x -2)2+y 2=1(y ≠0).12.已知M (m ,n )为圆C :x 2+y 2-4x -14y +45=0上任意一点. (1)求m +2n 的最大值; (2)求n -3m +2的最大值和最小值. 解析 将圆C 化为标准方程可得(x -2)2+(y -7)2=8,所以圆心C (2,7),半径r =2 2. (1)设m +2n =b ,则b 可看作是直线n =-12m +b2在y 轴上截距的2倍,故当直线m +2n=b 与圆C 相切时,b 有最大或最小值.所以|2+2×7-b |12+22=22,所以b =16+210(b =16-210舍去),所以m +2n 的最大值为16+210.(2)设n -3m +2=k ,则k 可看作点(m ,n )与点(-2,3)所在直线的斜率,所以当直线n -3=k (m +2)与圆C 相切时,k 有最大或最小值,所以|2k -7+2k +3|1+k2=22,解得k =2+3或k =2- 3.所以n -3m +2的最大值为2+3,最小值为2- 3.13.[选做题](2019·郴州二中质检)已知圆C 关于x 轴对称,经过点(0,1),且被y 轴分成两段弧,弧长之比为2∶1,则圆的方程为( )A .x 2+⎝ ⎛⎭⎪⎫y ±332=43B .x 2+⎝ ⎛⎭⎪⎫y ±332=13C.⎝ ⎛⎭⎪⎫x ±332+y 2=43 D.⎝ ⎛⎭⎪⎫x ±332+y 2=13 C 解析 设圆的方程为(x ±a )2+y 2=r 2(a >0),圆C 与y 轴交于点A (0,1),B (0,-1),由弧长之比为2∶1易知∠OCA =12∠ACB =12×120°=60°,则tan 60°=|OA ||OC |=1|OC |=3,所以a =|OC |=33,即圆心坐标为⎝ ⎛⎭⎪⎫±33,0,r 2=|AC |2=12+⎝ ⎛⎭⎪⎫±332=43.所以圆的方程为⎝⎛⎭⎪⎫x ±332+y 2=43.第49讲 直线与圆、圆与圆的位置关系课时达标一、选择题1.若圆x 2+y 2=16和圆(x -a )2+y 2=1相切,则a 的值为( ) A .±3 B .±5 C .±3或±5D .3或5C 解析 两圆圆心距d =|a |,因为两个圆相切,所以|a |=3或|a |=5,所以a =±3或±5.2.圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( ) A .内切 B .相交 C .外切D .相离B 解析 两圆的圆心分别为(-2,0),(2,1),半径分别为r =2,R =3,两圆的圆心距为-2-2+-2=17,则R -r <17<R +r ,所以两圆相交.故选B.3.已知直线l :y =kx +2(k ∈R ),圆M :(x -1)2+y 2=6,圆N :x 2+(y +1)2=9,则直线l ( )A .必与圆M 相切,不可能与圆N 相交B .必与圆M 相交,不可能与圆N 相切C .必与圆M 相切,不可能与圆N 相切D .必与圆M 相交,不可能与圆N 相离D 解析 直线l :y =kx +2(k ∈R )过定点(0,2),代入圆M :(x -1)2+y 2=6,得(0-1)2+22=5<6,即点(0,2)在圆M 的内部,故直线l 必与圆M 相交,而点(0,2)到圆N 的圆心N (0,-1)的距离等于圆N 的半径3,故点(0,2)在圆N 上,即直线l 不可能与圆N 相离.故选D.4.(2019·鄂南高中期中)已知圆C 与直线y =x 及x -y -4=0都相切,圆心在直线y =-x 上,则圆C 的方程为( )A .(x +1)2+(y -1)2=2 B .(x +1)2+(y +1)2=2 C .(x -1)2+(y -1)2=2 D .(x -1)2+(y +1)2=2D 解析 由题意知x -y =0和x -y -4=0之间的距离为|4|2=22,所以r = 2.又因为y =-x 与x -y =0,x -y -4=0均垂直,所以由y =-x 和x -y =0联立得交点坐标为(0,0),由y =-x 和x -y -4=0联立得交点坐标为(2,-2),所以圆心坐标为(1,-1),所以圆C 的标准方程为(x -1)2+(y +1)2=2.5.若直线l :y =kx +1被圆C :x 2+y 2-2x -3=0截得的弦最短,则直线l 的方程是( ) A .x =0 B .y =1 C .x +y -1=0D .x -y +1=0D 解析 依题意,直线l :y =kx +1过定点P (0,1).圆C :x 2+y 2-2x -3=0化为标准方程为(x -1)2+y 2=4,故圆心为C (1,0),半径为r =2.易知定点P (0,1)在圆内,由圆的性质可知当PC ⊥l 时,直线l :y =kx +1被圆C :x 2+y 2-2x -3=0截得的弦最短.因为k PC =1-00-1=-1,所以直线l 的斜率k =1,即直线l 的方程是x -y +1=0.6.圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为( )A .52-4 B.17-1 C .6-2 2D.17A 解析 设点P 的坐标为(x,0),圆心C 1(2,3)关于x 轴的对称点为C 1′(2,-3),则|PC 1|+|PC 2|=|PC 1′|+|PC 2|≥|C 1′C 2|=-2+-3-2=5 2.而|PM |≥|PC 1|-1,|PN |≥|PC 2|-3,所以|PM |+|PN |≥|PC 1|+|PC 2|-4≥52-4.二、填空题7.若直线y =kx 与圆x 2+y 2-4x +3=0相切,则k 的值是________.解析 因为直线y =kx 与圆x 2+y 2-4x +3=0相切,所以圆心(2,0)到直线的距离d =|2k |k 2+1=r =1,解得k =±33.答案 ±338.已知圆C 1:x 2+y 2-2mx +4y +m 2-5=0与圆C 2:x 2+y 2+2x -2my +m 2-3=0,若圆C 1与圆C 2相外切,则实数m =________.解析 圆C 1:(x -m )2+(y +2)2=9,圆C 2:(x +1)2+(y -m )2=4,则C 1(m ,-2),r 1=3,C 2(-1,m ),r 2=2.当圆C 1与圆C 2相外切时,显然有|C 1C 2|=r 1+r 2,即m +2+m +2=5,整理得m 2+3m -10=0,解得m =-5或m =2.答案 2或-59.(2018·全国卷Ⅲ改编)直线x +y +2=0分别与x 轴,y 轴交于A ,B 两点,点P 在圆(x -2)2+y 2=2上,则△ABP 面积的取值范围是________.解析 圆(x -2)2+y 2=2的圆心为C (2,0),半径为r =2,点P 到直线x +y +2=0的距离为d ,且圆心C 到直线x +y +2=0的距离为22,可得d max =22+r =32,d min =22-r = 2.由已知条件可得AB =22,所以△ABP 面积的最大值为12×AB ×d max =6,△ABP 面积的最小值为12×AB ×d min =2.综上,△ABP 面积的取值范围是[2,6].答案 [2,6] 三、解答题10.已知圆C :(x -1)2+(y +2)2=10,分别求满足下列条件的圆的切线方程. (1)与直线l 1:x +y -4=0平行; (2)与直线l 2:x -2y +4=0垂直; (3)过切点A (4,-1).解析 (1)设切线方程为x +y +b =0(b ≠-4),则|1-2+b |2=10,所以b =1±25,所以切线方程为x +y +1±25=0.(2)设切线方程为2x +y +m =0,则|2-2+m |5=10,所以m =±52,所以切线方程为2x +y ±52=0.(3)因为k AC =-2+11-4=13,所以过切点A (4,-1)的切线斜率为-3,所以过切点A (4,-1)的切线方程为y +1=-3(x -4),即3x +y -11=0.11.(2019·湖北稳派教育联考)已知圆C 的圆心在x 轴的正半轴上,且y 轴和直线x -3y +2=0均与圆C 相切. (1)求圆C 的标准方程;(2)设点P (0,1),若直线y =x +m 与圆C 相交于M ,N 两点,且∠MPN 为锐角,求实数m 的取值范围.解析 (1)设圆C 的标准方程为(x -a )2+(y -b )2=r 2(r >0),由题意得⎩⎪⎨⎪⎧a >0,b =0,|a |=r ,|a -3b +2|2=r ,解得⎩⎪⎨⎪⎧a =2,b =0,r =2,所以圆C 的标准方程为(x -2)2+y 2=4.(2)由⎩⎪⎨⎪⎧y =x +m ,x -2+y 2=4消去y 整理得2x 2+2(m -2)x +m 2=0.因为直线y =x +m 与圆C 相交于M ,N 两点,所以Δ=4(m -2)2-8m 2>0,解得-2-22<m <-2+22,设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=2-m ,x 1x 2=m22.所以P M →=(x 1,y 1-1),P N →=(x 2,y 2-1),依题意得P M →·P N →=x 1x 2+(y 1-1)(y 2-1)=x 1x 2+(x 1+m -1)(x 2+m -1)=2x 1x 2+(m -1)(x 1+x 2)+(m -1)2>0,所以m 2+(m -1)(2-m )+(m -1)2>0,整理得m 2+m -1>0,解得m <-1-52或m >-1+52.又-2-22<m <-2+22,所以-2-22<m <-1-52或-1+52<m <-2+2 2.故实数m 的取值范围是⎝ ⎛⎭⎪⎫-2-22,-1-52∪⎝ ⎛⎭⎪⎫-1+52,-2+22. 12.(2019·唐山调考)在△OAB 中,已知O (0,0),A (8,0),B (0,6),△OAB 的内切圆的方程为(x -2)2+(y -2)2=4,P 是圆上一点.(1)求点P 到直线l :4x +3y +11=0的距离的最大值和最小值; (2)若S =|PO |2+|PA |2+|PB |2,求S 的最大值和最小值.解析 (1)易得圆心(2,2)到直线l :4x +3y +11=0的距离d =|4×2+3×2+11|42+32=5>2,故点P 到直线l 的距离的最大值为5+2=7,最小值为5-2=3.(2)设点P 的坐标为(x ,y ),则S =x 2+y 2+(x -8)2+y 2+x 2+(y -6)2=3(x 2+y 2-4x -4y )-4x +100=-4x +88,而(x -2)2≤4,所以-2≤x -2≤2,即0≤x ≤4,所以-16≤-4x ≤0,所以72≤S ≤88,即当x =0时,S max =88,当x =4时,S min =72.13.[选做题](2019·南昌二中月考)已知圆C :(x -3)2+(y -4)2=1和两点A (-m,0),B (m,0)(m >0).若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为( )A .7B .6C .5D .4B 解析 根据题意,画出示意图,如图所示,则圆心C 的坐标为(3,4),半径r =1,且|AB |=2m ,因为∠APB =90°,连接OP ,易知|OP |=12|AB |=m .要求m 的最大值,即求圆C上的点P 到原点O 的最大距离.因为|OC |=32+42=5,所以|OP |max =|OC |+r =6,即m 的最大值为6.第50讲 椭圆课时达标一、选择题1.已知焦点在y 轴上的椭圆 x 210+y 2m=1的长轴长为8,则m =( )A .4B .8C .16D .18C 解析 椭圆的焦点在y 轴上,则m =a 2.由长轴长2a =8得a =4,所以m =16.故选C. 2.椭圆C 的中心在原点,焦点在x 轴上,离心率等于12,且它的一个顶点为(0,23),则椭圆C 的标准方程为( )A.x 24+y 22=1B.x 24+y 23=1C.x 212+y 29=1 D.x 216+y 212=1 D 解析 根据题意,可知b =23,结合离心率等于12,可知a 2=16,所以椭圆方程为x 216+y 212=1.故选D.3.已知△ABC 的顶点B ,C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A .2 3B .6C .4 3D .12C 解析 如图,设椭圆的另外一个焦点为F ,则△ABC 的周长为|AB |+|AC |+|BC |=(|AB |+|BF |)+(|AC |+|CF |)=4a =4 3.4.已知椭圆x 29+y 24-k =1的离心率为45,则k 的值为( )A .-21B .21C .-1925或21D.1925或-21 D 解析 当9>4-k >0,即-5<k <4时,a =3,c 2=9-(4-k )=5+k ,所以5+k 3=45,解得k =1925.当9<4-k ,即k <-5时,a =4-k ,c 2=-k -5,所以-k -54-k =45,解得k =-21.故选D.5.设椭圆x 24+y 23=1的焦点为F 1,F 2,点P 在椭圆上,若△PF 1F 2是直角三角形,则△PF 1F 2的面积为( )A .3B .3或32C.32D .6或3C 解析 由已知a =2,b =3,c =1,则点P 为短轴顶点(0,3)时,∠F 1PF 2=π3,△PF 1F 2是正三角形,若△PF 1F 2是直角三角形,则直角顶点不可能是点P ,只能是焦点F 1(或F 2)为直角顶点,此时|PF 1|=b 2a =32⎝ ⎛⎭⎪⎫或|PF 2|=b 2a ,S △PF 1F 2=12·b 2a ·2c =b 2c a =32.故选C.6.椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,若F 关于直线3x +y =0的对称点A 是椭圆C 上的点,则椭圆C 的离心率为( )A.12B.3-12C.32D.3-1D 解析 设F (-c,0)关于直线3x +y =0的对称点为A (m ,n ),则⎩⎪⎨⎪⎧nm +c -3=-1,3·m -c 2+n 2=0,解得m =c 2,n =32c ,代入椭圆方程可得c 24 a 2+34c 2b2=1化简可得e 4-8e 2+4=0,又0<e <1,解得e =3-1.故选D.二、填空题7.设椭圆x 2m 2+y 2n 2=1(m >0,n >0)的右焦点为(2,0),离心率为22,则此椭圆的方程为________.解析 椭圆的右焦点为(2,0),所以m 2-n 2=4,e =22=2m,所以m =22,代入m 2-n 2=4,得n 2=4,所以椭圆方程为x 28+y 24=1.答案 x 28+y 24=18.已知P 为椭圆x 225+y 216=1上的一点,M ,N 分别为圆(x +3)2+y 2=1和圆(x -3)2+y2=4上的点,则|PM |+|PN |的最小值为________.解析 由椭圆方程知a =5,b =4,c =3.两圆的圆心分别为椭圆的左右焦点F 1,F 2,设两圆半径分别为r 1,r 2,则r 1=1,r 2=2.所以|PM |min =|PF 1|-r 1=|PF 1|-1,|PN |min =|PF 2|-r 2=|PF 2|-2,故|PM |+|PN |的最小值为|PF 1|+|PF 2|-3=2a -3=7.答案 79.(2019·常德三中月考)已知椭圆M :x 2a 2+y 2b 2=1(a >b >0),双曲线N :x 2m 2-y 2n2=1.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为________;双曲线N 的离心率为________.解析 设椭圆的右焦点为F (c,0),双曲线N 的渐近线与椭圆M 在第一象限内的交点为A ,由题意可知A ⎝ ⎛⎭⎪⎫c 2,3c 2,由点A 在椭圆M 上得,c 24a 2+3c 24b 2=1,所以b 2c 2+3a 2c 2=4a 2b 2,因为b 2=a 2-c 2,所以(a 2-c 2)c 2+3a 2c 2=4a 2(a 2-c 2),所以4a 4-8a 2c 2+c 4=0,所以e 4椭-8e 2椭+4=0,所以e 2椭=4±23,所以e 椭=3+1(舍去)或e 椭=3-1,所以椭圆M 的离心率为3-1,因为双曲线的渐近线过点A ⎝ ⎛⎭⎪⎫c 2,3c 2,所以渐近线方程为y =3x ,所以n m =3,故双曲线的离心率e 双=m 2+n 2m 2=2.答案 3-1 2 三、解答题10.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,焦距为22,过点D (1,0)且不过点E (2,1)的直线l 与椭圆C 交于A ,B 两点,直线AE 与直线x =3交于点M .(1)求椭圆C 的方程;(2)若AB 垂直于x 轴,求直线MB 的斜率. 解析 (1)由题意可得2c =22,即c =2,又e =c a =63,解得a =3,b =a 2-c 2=1,所以椭圆的方程为x 23+y 2=1. (2)由直线l 过点D (1,0)且垂直于x 轴,设A (1,y 1),B (1,-y 1),则直线AE 的方程为y -1=(1-y 1)(x -2).令x =3,可得M (3,2-y 1),所以直线BM 的斜率k BM =2-y 1--y 13-1=1.11.如图,椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,右顶点和上顶点分别为A ,B ,且|AB |=52|BF |. (1)求椭圆C 的离心率;(2)若斜率为2的直线l 过点(0,2),且l 交椭圆C 于P ,Q 两点,OP ⊥OQ ,求直线l 的方程及椭圆C 的方程.解析 (1)因为|AB |=52|BF |,所以a 2+b 2=52a ,即4a 2+4b 2=5a 2,即4a 2+4(a 2-c 2)=5a 2,所以e =ca =32. (2)由(1)知a 2=4b 2,所以椭圆C :x 24b 2+y 2b2=1.设P (x 1,y 1),Q (x 2,y 2),直线l 的方程为y -2=2(x -0),即2x -y +2=0.由⎩⎪⎨⎪⎧2x -y +2=0,x 24b 2+y 2b2=1,消去y 得x 2+4(2x +2)2-4b2=0,即17x 2+32x +16-4b 2=0.Δ=322+16×17(b 2-4)>0,解得b >21717.x 1+x 2=-3217,x 1x 2=16-4b217.因为OP ⊥OQ ,所以OP →·OQ →=0,即x 1x 2+y 1y 2=0,x 1x 2+(2x 1+2)(2x 2+2)=0,5x 1x 2+4(x 1+x 2)+4=0.从而-4b 217-12817+4=0,解得b =1,满足b >21717.所以椭圆C 的方程为x 24+y 2=1.12.(2018·天津卷)设椭圆x 2a 2+y 2b2=1(a >b >0)的右顶点为A ,上顶点为B .已知椭圆的离心率为53,|AB |=13. (1)求椭圆的方程;(2)设直线l :y =kx (k <0)与椭圆交于P ,Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若△BPM 的面积是△BPQ 面积的2倍,求k 的值.解析 (1)设椭圆的焦距为2c ,由已知得c 2a 2=59,又由a 2=b 2+c 2可得2a =3b .由|AB |=a 2+b 2=13,从而a =3,b =2,所以椭圆方程为x 29+y 24=1.(2)设点P 的坐标为(x 1,y 1),点M 的坐标为(x 2,y 2),由题意,x 2>x 1>0,点Q 的坐标为(-x 1,-y 1).由△BPM 的面积是△BPQ 面积的2倍可得|PM |=2|PQ |,从而x 2-x 1=2[x 1-(-x 1)],即x 2=5x 1.易知直线AB的方程为2x +3y =6,由方程组⎩⎪⎨⎪⎧2x +3y =6,y =kx 消去y可得x 2=63k +2.由方程组⎩⎪⎨⎪⎧x 29+y 24=1,y =kx消去y 可得x 1=69k 2+4.由x 2=5x 1可得9k 2+4=5(3k +2),两边平方整理得18k 2+25k +8=0,解得k =-89或k =-12.当k =-89时,x 2=-9<0,不合题意,舍去;当k =-12时,x 2=12,x 1=125,符合题意,所以k 的值为-12.13.[选做题](2019·山东师大附中联考)中心为原点,一个焦点为F (0,52)的椭圆,截直线y =3x -2所得弦中点的横坐标为12,则该椭圆方程为( )A.2x 275+2y225=1 B.x 275+y 225=1 C.x 225+y 275=1 D.2x 225+2y275=1 C 解析 由已知得c =52,设椭圆的方程为x 2a 2-50+y 2a 2=1,联立得⎩⎪⎨⎪⎧x 2a 2-50+y 2a 2=1,y =3x -2,消去y 得(10a 2-450)x 2-12(a 2-50)x +4(a 2-50)-a 2(a 2-50)=0,设直线y =3x -2与椭圆的交点坐标分别为(x 1,y 1),(x 2,y 2),由根与系数关系得x 1+x 2=a 2-10a 2-450,由题意知x 1+x 2=1,即a 2-10a 2-450=1,解得a 2=75,所以该椭圆方程为y 275+x 225=1.第51讲 双曲线课时达标一、选择题 1.如果方程x 2k +1-y 22=1表示双曲线,则实数k 的取值范围是( ) A .(-∞,-1) B .(-1,+∞)C .(1,+∞)D .(-∞,-1)∪(1,+∞)B 解析 双曲线的方程是x 2a 2-y 2b 2=1.根据定义和条件知k +1>0⇒k >-1.故选B.2.已知实数1,m,9成等比数列,则圆锥曲线x 2m+y 2=1的离心率为( )A.63 B .2 C.63或2 D.22或 3 C 解析 根据条件可知m 2=9,所以m =±3.当m =3时,e =c a =63;当m =-3 时,e =2.故选C.3.(2018·全国卷Ⅱ)双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为3,则其渐近线方程为( )A .y =±2xB .y =±3xC .y =±22x D .y =±32x A 解析 因为c a =3,所以a 2+b 2a 2=3,所以ba=2,所以渐近线方程为y =±2x .故选A.4.(2018·全国卷Ⅲ)设F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点,O是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P .若|PF 1|=6|OP |,则C 的离心率为( )A. 5 B .2 C. 3D. 2C 解析 设双曲线C 的一条渐近线的方程为bx -ay =0,则直线PF 2的方程为ax +by -ac =0.由⎩⎪⎨⎪⎧ax +by -ac =0,bx -ay =0可得P ⎝ ⎛⎭⎪⎫a 2c ,ab c .由F 1(-c,0)及|PF 1|=6|OP |,得⎝ ⎛⎭⎪⎫a 2c +c 2+⎝ ⎛⎭⎪⎫ab c 2=6×⎝ ⎛⎭⎪⎫a 2c 2+⎝ ⎛⎭⎪⎫ab c 2,化简得3a 2=c 2,则e = 3.故选C.5.(2018·天津卷)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为( )A.x 23-y 29=1B.x 29-y 23=1C.x 24-y 212=1 D.x 212-y 24=1 A 解析 如图,不妨设点A 在点B 的上方,则A ⎝ ⎛⎭⎪⎫c ,b 2a ,B ⎝⎛⎭⎪⎫c ,-b 2a .其中的一条渐近线为bx -ay =0,则d 1+d 2=bc -b 2+bc +b 2a 2+b2=2bc c =2b =6,所以b =3.又由e =c a =2知a 2+b 2=4a 2,所以a= 3.所以双曲线的方程为x 23-y 29=1.故选A.6.(2019·长阳一中期中)在平面直角坐标系xOy 中,已知双曲线C 1:2x 2-y 2=1,过C 1的左顶点引C 1的一条渐近线的平行线,则该直线与另一条渐近线及x 轴围成的三角形的面积为( )A.24 B.22 C.28D.216C 解析 双曲线C 1:2x 2-y 2=1,即 x 212-y 2=1,所以左顶点A ⎝ ⎛⎭⎪⎫-22,0,渐近线方程y =±2x ,过点A 与渐近线y =2x 平行的直线方程为y =2⎝ ⎛⎭⎪⎫x +22,即y =2x +1.解方程组⎩⎨⎧y =-2x ,y =2x +1得⎩⎪⎨⎪⎧x =-24,y =12,所以该直线与另一条渐近线及x 轴围成的三角形的面积S =12|OA |·|y |=12×22×12=28.二、填空题7.(2017·北京卷)若双曲线x 2-y 2m=1的离心率为3,则实数m =________.解析 由已知可得a =1,c =1+m ,所以e =c a=1+m =3,解得m =2. 答案 28.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线与直线l :x +3y =0垂直,双曲线C 的一个焦点到直线l 的距离为1,则双曲线C 的方程为________.解析 因为双曲线的一条渐近线与直线l :x +3y =0垂直,所以双曲线的渐近线的斜率为3,即b a= 3.①由题意知双曲线的焦点在x 轴上,可设双曲线的一个焦点坐标为(c,0),根据点到直线的距离公式,得|c |2=1,所以c =2,即a 2+b 2=4.②联立①②,解得a 2=1,b 2=3 ,所以双曲线的标准方程为x 2-y 23=1.答案 x 2-y 23=19.在平面直角坐标系xOy 中,已知△ABC 的顶点A (-6,0)和C (6,0),若顶点B 在双曲线x 225-y 211=1的左支上,则sin A -sin Csin B=________. 解析 由条件知|BC |-|BA |=10,且|AC |=12.又在△ABC 中,有|BC |sin A =|AB |sin C =|AC |sin B =2R (R 为△ABC 外接圆的半径),从而sin A -sin C sin B =|BC |-|AB ||AC |=56.答案 56三、解答题10.(2019·洛阳一中期中)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为3,点(3,0)是双曲线的一个顶点.(1)求双曲线的方程;(2)经过双曲线右焦点F 2作倾斜角为30°的直线,直线与双曲线交于不同的两点A ,B ,求|AB |.解析 (1)因为双曲线C :x 2a -y 2b 2=1(a >0,b >0)的离心率为3,点(3,0)是双曲线的一个顶点,所以⎩⎪⎨⎪⎧c a =3,a =3,解得c =3,b =6,所以双曲线的方程为x 23-y 26=1.(2)双曲线x 23-y 26=1的右焦点为F 2(3,0),所以经过双曲线右焦点F 2且倾斜角为30°的直线的方程为y =33(x -3).联立⎩⎪⎨⎪⎧x 23-y 26=1,y =33x -得5x 2+6x -27=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-65,x 1x 2=-275.所以|AB |=1+13×⎝ ⎛⎭⎪⎫-652-4×⎝ ⎛⎭⎪⎫-275=1635. 11.已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点(4,-10).点M (3,m )在双曲线上. (1)求双曲线的方程; (2)求证:MF 1→·MF 2→=0; (3)求△F 1MF 2的面积.解析 (1)因为e =2,所以双曲线的实轴、虚轴相等.则可设双曲线方程为x 2-y 2=λ.因为双曲线过点(4,-10),所以16-10=λ,即λ=6.所以双曲线方程为x 26-y 26=1.(2)证明:不妨设F 1,F 2分别为左、右焦点,则MF 1→=(-23-3,-m ),MF 2→=(23-3,-m ).所以MF 1→·MF 2→=(3+23)×(3-23)+m 2=-3+m 2,因为M 点在双曲线上,所以9-m 2=6,即m 2-3=0,所以MF 1→·MF 2→=0.(3)△F 1MF 2的底|F 1F 2|=4 3.由(2)知m =± 3.所以△F 1MF 2的高h =|m |=3,所以S △F 1MF 2=12×43×3=6.12.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F (c,0).(1)若双曲线的一条渐近线方程为y =x 且c =2,求双曲线的方程;(2)以原点O 为圆心,c 为半径作圆,该圆与双曲线在第一象限的交点为A ,过A 作圆的切线,斜率为-3,求双曲线的离心率.解析 (1)因为双曲线的渐近线方程为y =±b ax ,所以a =b ,所以c 2=a 2+b 2=2a 2=4,所以a 2=b 2=2,所以双曲线方程为x 22-y 22=1.(2)设点A 的坐标为(x 0,y 0),所以直线AO 的斜率满足y 0x 0(-3)=-1,所以x 0=3y 0,①依题意,圆的方程为x 2+y 2=c 2,将①代入圆的方程得3y 20+y 20=c 2,即y 0=12c ,所以x 0=32c ,所以点A 的坐标为⎝ ⎛⎭⎪⎫32c ,12c ,代入双曲线方程得34c 2a 2-14c 2b 2=1,即34b 2c 2-14a 2c 2=a 2b 2,②又因为a 2+b 2=c 2,所以将b 2=c 2-a 2代入②式,整理得34c 4-2a 2c 2+a 4=0,所以3⎝ ⎛⎭⎪⎫c a 4-8⎝ ⎛⎭⎪⎫c a 2+4=0,所以(3e 2-2)(e 2-2)=0,因为e >1,所以e =2,所以双曲线的离心率为2.13.[选做题](2019·长沙二中月考)在等腰梯形ABCD 中,AB ∥CD ,且|AB |=2,|AD |=1,|CD |=2x ,其中x ∈(0,1),以A ,B 为焦点且过点D 的双曲线的离心率为e 1,以C ,D 为焦点且过点A 的椭圆的离心率为e 2,若对任意x ∈(0,1),不等式t <e 1+e 2恒成立,则t 的最大值为( )A. 3B. 5 C .2D. 2B 解析 由平面几何知识可得|BD |=|AC |=1+4x ,所以e 1=21+4x -1,e 2=2x 1+4x +1,所以e 1e 2=1.因为e 1+e 2=e 1+1e 1=21+4x -1+1+4x -12在x ∈(0,1)上单调递减,所以e 1+e 2>21+4-1+1+4-12= 5.因为对任意x ∈(0,1),不等式t <e 1+e 2恒成立,所以t ≤5,即t 的最大值为 5.第52讲 抛物线课时达标一、选择题1.已知点A (-2,3)在抛物线C :y 2=2px 的准线上,记C 的焦点为F ,则直线AF 的斜率为( )A .-43B .-1C .-34D .-12。
§8.8立体几何中的向量方法(二)——求空间角距离1.两条异面直线所成角的求法设a ,b 分别是两异面直线l 1,l 2的方向向量,则2.斜线和平面所成的角(1)斜线和它在平面内的射影的所成的角叫做斜线和平面所成的角(或斜线和平面的夹角). (2)斜线和它在平面内的射影所成的角,是斜线和这个平面内所有直线所成角中最小的角. 3.二面角(1)从一条直线出发的两个半平面所组成的图形叫做二面角.(2)在二面角α—l —β的棱上任取一点O ,在两半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB 叫做二面角α—l —β的平面角. 4.空间向量与空间角的关系(1)设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2所成的角θ满足cos θ=|cos 〈m 1,m 2〉|.(2)设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α所成角θ满足sin θ=|cos 〈m ,n 〉|. (3)求二面角的大小1°如图①,AB 、CD 是二面角α—l —β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.2°如图②③,n 1,n 2分别是二面角α—l —β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉.概念方法微思考1.利用空间向量如何求线段长度?提示 利用|AB →|2=AB →·AB →可以求空间中有向线段的长度. 2.如何求空间点面之间的距离? 提示 点面距离的求法:已知AB 为平面α的一条斜线段,n 为平面α的法向量,则点B 到平面α的距离为 |BO →|=|AB →||cos 〈AB →,n 〉|.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)两直线的方向向量所成的角就是两条直线所成的角.( × )(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.( × ) (3)两个平面的法向量所成的角是这两个平面所成的角.( × )(4)两异面直线夹角的范围是⎝ ⎛⎦⎥⎤0,π2,直线与平面所成角的范围是⎣⎢⎡⎦⎥⎤0,π2,二面角的范围是[0,π]. ( √ )(5)若二面角α-a -β的两个半平面α,β的法向量n 1,n 2所成角为θ,则二面角α-a-β的大小是π-θ.( ×)题组二 教材改编2.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( ) A.45° B.135° C.45°或135° D.90°答案 C解析 cos 〈m ,n 〉=m·n |m||n |=11·2=22,即〈m ,n 〉=45°.∴两平面所成二面角为45°或180°-45°=135°.3.如图,正三棱柱(底面是正三角形的直棱柱)ABC -A 1B 1C 1的底面边长为2,侧棱长为22,则AC 1与侧面ABB 1A 1所成的角为______.答案π6解析 如图,以A 为原点,以AB →,AE →(AE ⊥AB ),AA 1→所在直线分别为x 轴、y 轴、z 轴(如图)建立空间直角坐标系,设D 为A 1B 1的中点,则A (0,0,0),C 1(1,3,22),D (1,0,22),∴AC 1→=(1,3,22), AD →=(1,0,22).∠C 1AD 为AC 1与平面ABB 1A 1所成的角, cos∠C 1AD =AC 1→·AD→|AC 1→||AD →|=(1,3,22)·(1,0,22)12×9=32, 又∵∠C 1AD ∈⎣⎢⎡⎦⎥⎤0,π2,∴∠C 1AD =π6.题组三 易错自纠4.在直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( ) A.110B.25C.3010D.22 答案 C解析 以点C 为坐标原点,CA ,CB ,CC 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.设BC =CA =CC 1=2,则可得A (2,0,0),B (0,2,0),M (1,1,2),N (1,0,2),∴BM →=(1,-1,2),AN →=(-1,0,2).∴cos〈BM →,AN →〉=BM →·AN →|BM →||AN →|=1×(-1)+(-1)×0+2×212+(-1)2+22×(-1)2+02+22=36×5=3010. 5.已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos 〈m ,n 〉=-12,则l与α所成的角为________. 答案 30°解析 设l 与α所成角为θ,∵cos〈m ,n 〉=-12,∴sin θ=|cos 〈m ,n 〉|=12,∵0°≤θ≤90°,∴θ=30°.题型一求异面直线所成的角例1 如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(1)证明:平面AEC⊥平面AFC;(2)求直线AE与直线CF所成角的余弦值.(1)证明如图所示,连接BD,设BD∩AC=G,连接EG,FG,EF.在菱形ABCD中,不妨设GB=1.由∠ABC=120°,可得AG=GC= 3.由BE⊥平面ABCD,AB=BC=2,可知AE=EC.又AE⊥EC,所以EG=3,且EG⊥AC.在Rt△EBG中,可得BE=2,故DF=22.在Rt△FDG中,可得FG=62.在直角梯形BDFE 中,由BD =2,BE =2,DF =22,可得EF =322,从而EG 2+FG 2=EF 2,所以EG ⊥FG .又AC ∩FG =G ,AC ,FG ⊂平面AFC , 所以EG ⊥平面AFC .因为EG ⊂平面AEC ,所以平面AEC ⊥平面AFC .(2)解 如图,以G 为坐标原点,分别以GB ,GC 所在直线为x 轴、y 轴,|GB →|为单位长度,建立空间直角坐标系Gxyz ,由(1)可得A (0,-3,0),E (1,0,2),F ⎝ ⎛⎭⎪⎫-1,0,22,C (0,3,0), 所以AE →=(1,3,2),CF →=⎝ ⎛⎭⎪⎫-1,-3,22.故cos 〈AE →,CF →〉=AE →·CF →|AE →||CF →|=-33.所以直线AE 与直线CF 所成角的余弦值为33. 思维升华 用向量法求异面直线所成角的一般步骤 (1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量; (3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦值等于两向量夹角余弦值的绝对值.跟踪训练1 三棱柱ABC -A 1B 1C 1中,△ABC 为等边三角形,AA 1⊥平面ABC ,AA 1=AB ,N ,M 分别是A 1B 1,A 1C 1的中点,则AM 与BN 所成角的余弦值为( ) A.110B.35C.710D.45 答案 C解析 如图所示,取AC 的中点D ,以D 为原点,BD ,DC ,DM 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,不妨设AC =2,则A (0,-1,0),M (0,0,2),B (-3,0,0),N ⎝ ⎛⎭⎪⎫-32,-12,2, 所以AM →=(0,1,2), BN →=⎝⎛⎭⎪⎫32,-12,2,所以cos 〈AM →,BN →〉=AM →·BN →|AM →|·|BN →|=725×5=710,故选C.题型二求直线与平面所成的角例2 (2018·全国Ⅰ)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC折起,使点C到达点P的位置,且PF⊥BF.(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.(1)证明由已知可得BF⊥PF,BF⊥EF,PF∩EF=F,PF,EF⊂平面PEF,所以BF⊥平面PEF.又BF⊂平面ABFD,所以平面PEF⊥平面ABFD.(2)解如图,作PH⊥EF,垂足为H.由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF →的方向为y 轴正方向,|BF →|为单位长,建立如图所示的空间直角坐标系Hxyz .由(1)可得,DE ⊥PE . 又DP =2,DE =1, 所以PE = 3.又PF =1,EF =2,所以PE ⊥PF . 所以PH =32,EH =32. 则H (0,0,0),P ⎝ ⎛⎭⎪⎫0,0,32,D ⎝⎛⎭⎪⎫-1,-32,0,DP →=⎝⎛⎭⎪⎫1,32,32,HP →=⎝⎛⎭⎪⎫0,0,32. 又HP →为平面ABFD 的法向量, 设DP 与平面ABFD 所成的角为θ,则sin θ=|cos 〈HP →,DP →〉|=|HP →·DP →||HP →||DP →|=343=34.所以DP 与平面ABFD 所成角的正弦值为34. 思维升华 若直线l 与平面α的夹角为θ,直线l 的方向向量l 与平面α的法向量n 的夹角为β,则θ=π2-β或θ=β-π2,故有sin θ=|cos β|=|l ·n ||l ||n |.跟踪训练2 (2018·全国Ⅱ)如图,在三棱锥P -ABC 中,AB =BC =22,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M -PA -C 为30°,求PC 与平面PAM 所成角的正弦值. (1)证明 因为PA =PC =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3. 如图,连接OB .因为AB =BC =22AC , 所以△ABC 为等腰直角三角形, 所以OB ⊥AC ,OB =12AC =2.由OP 2+OB 2=PB 2知PO ⊥OB .因为OP ⊥OB ,OP ⊥AC ,OB ∩AC =O ,OB ,AC ⊂平面ABC , 所以PO ⊥平面ABC .(2)解 由(1)知OP ,OB ,OC 两两垂直,则以O 为坐标原点,分别以OB ,OC ,OP 所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系Oxyz ,如图所示.由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0), P (0,0,23),AP →=(0,2,23).由(1)知平面PAC 的一个法向量为OB →=(2,0,0). 设M (a ,2-a ,0)(0≤a ≤2),则AM →=(a ,4-a ,0). 设平面PAM 的法向量为n =(x ,y ,z ). 由AP →·n =0,AM →·n =0,得⎩⎨⎧2y +23z =0,ax +(4-a )y =0,可取y =3a ,得平面PAM 的一个法向量为n =(3(a -4),3a ,-a ),所以cos 〈OB →,n 〉=OB →·n |OB →||n |=23(a -4)23(a -4)2+3a 2+a 2. 由已知可得|cos 〈OB →,n 〉|=cos30°=32,所以23|a -4|23(a -4)2+3a 2+a 2=32, 解得a =-4(舍去)或a =43.所以n =⎝ ⎛⎭⎪⎫-833,433,-43.又PC →=(0,2,-23),所以cos 〈PC →,n 〉=34.所以PC 与平面PAM 所成角的正弦值为34. 题型三 求二面角例3 (2018·锦州模拟)如图,在梯形ABCD 中,AB ∥CD ,AD =DC =CB =2,∠ABC =60°,平面ACEF ⊥平面ABCD ,四边形ACEF 是菱形,∠CAF =60°.(1)求证:BF ⊥AE ;(2)求二面角B -EF -D 的平面角的正切值.(1)证明 依题意,在等腰梯形ABCD 中,AC =23,AB =4,∵BC=2,∴AC2+BC2=AB2,即BC⊥AC,又∵平面ACEF⊥平面ABCD,平面ACEF∩平面ABCD=AC,BC⊂平面ABCD,∴BC⊥平面ACEF,而AE⊂平面ACEF,∴AE⊥BC,连接CF,∵四边形ACEF为菱形,∴AE⊥FC,又∵BC∩CF=C,BC,CF⊂平面BCF,∴AE⊥平面BCF,∵BF⊂平面BCF,∴BF⊥AE.(2)解取EF的中点M,连接MC,∵四边形ACEF是菱形,且∠CAF=60°,∴由平面几何易知MC⊥AC,又∵平面ACEF⊥平面ABCD,平面ACEF∩平面ABCD=AC,CM⊂平面ACEF,∴MC⊥平面ABCD.以CA ,CB ,CM 所在直线分别为x ,y ,z 轴建立空间直角坐标系,各点的坐标依次为C (0,0,0),A (23,0,0),B (0,2,0),D (3,-1,0),E (-3,0,3),F (3,0,3),设平面BEF 和平面DEF 的一个法向量分别为n 1=(a 1,b 1,c 1),n 2=(a 2,b 2,c 2), ∵BF →=(3,-2,3),EF →=(23,0,0), ∴⎩⎪⎨⎪⎧BF →·n 1=0,EF →·n 1=0,即⎩⎨⎧3a 1-2b 1+3c 1=0,23a 1=0,即⎩⎪⎨⎪⎧a 1=0,2b 1=3c 1,不妨令b 1=3,则n 1=(0,3,2), 同理可求得n 2=(0,3,-1),设二面角B -EF -D 的大小为θ,由图易知θ为锐角, ∴cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1|·|n 2|=7130,故二面角B -EF -D 的平面角的正切值为97.思维升华 利用向量法求二面角的大小的关键是确定平面的法向量,求法向量的方法主要有两种:①求平面的垂线的方向向量;②利用法向量与平面内两个不共线向量的数量积为零,列方程组求解.跟踪训练3 (2018·全国Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧»CD 所在平面垂直,M 是»CD上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M -ABC 体积最大时,求平面MAB 与平面MCD 所成二面角的正弦值.(1)证明 由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,又DM ⊂平面CMD ,故BC ⊥DM .因为M 为»CD上异于C ,D 的点,且DC 为直径, 所以DM ⊥CM .又BC ∩CM =C ,BC ,CM ⊂平面BMC , 所以DM ⊥平面BMC .又DM ⊂平面AMD ,故平面AMD ⊥平面BMC .(2)解 以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系Dxyz .当三棱锥M -ABC 体积最大时,M 为»CD的中点.由题设得 D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1),AM →=(-2,1,1),AB →=(0,2,0),DA →=(2,0,0),设n =(x ,y ,z )是平面MAB 的法向量,则 ⎩⎪⎨⎪⎧n ·AM →=0,n ·AB →=0,即⎩⎪⎨⎪⎧-2x +y +z =0,2y =0.可取n =(1,0,2), DA →是平面MCD 的一个法向量,因此cos 〈n ,DA →〉=n ·DA →|n ||DA →|=55,sin 〈n ,DA →〉=255.所以平面MAB 与平面MCD 所成二面角的正弦值是255.利用空间向量求空间角例(12分)如图,四棱锥S-ABCD中,△ABD为正三角形,∠BCD=120°,CB=CD=CS=2,∠BSD=90°.(1)求证:AC⊥平面SBD;(2)若SC⊥BD,求二面角A-SB-C的余弦值.(1)证明设AC∩BD=O,连接SO,如图①,因为AB=AD,CB=CD,所以AC 是BD 的垂直平分线, 即O 为BD 的中点,且AC ⊥BD .[1分]在△BCD 中,因为CB =CD =2,∠BCD =120°, 所以BD =23,CO =1.在Rt△SBD 中,因为∠BSD =90°,O 为BD 的中点, 所以SO =12BD = 3.在△SOC 中,因为CO =1,SO =3,CS =2, 所以SO 2+CO 2=CS 2, 所以SO ⊥AC .[4分]因为BD ∩SO =O ,BD ,SO ⊂平面SBD , 所以AC ⊥平面SBD .[5分](2)解 方法一 过点O 作OK ⊥SB 于点K ,连接AK ,CK ,如图②,由(1)知AC ⊥平面SBD ,所以AO ⊥SB . 因为OK ∩AO =O ,OK ,AO ⊂平面AOK , 所以SB ⊥平面AOK .[6分] 因为AK ⊂平面AOK ,所以AK ⊥SB . 同理可证CK ⊥SB .[7分]所以∠AKC 是二面角A -SB -C 的平面角. 因为SC ⊥BD ,由(1)知AC ⊥BD ,且AC ∩SC =C ,AC ,SC ⊂平面SAC , 所以BD ⊥平面SAC .而SO ⊂平面SAC ,所以SO ⊥BD . 在Rt△SOB 中,OK =SO ·OB SB =62. 在Rt△AOK 中,AK =AO 2+OK 2=422, 同理可求CK =102.[10分] 在△AKC 中,cos∠AKC =AK 2+CK 2-AC 22AK ·CK =-10535.所以二面角A -SB -C 的余弦值为-10535.[12分] 方法二 因为SC ⊥BD ,由(1)知,AC ⊥BD ,且AC ∩SC =C ,AC ,SC ⊂平面SAC , 所以BD ⊥平面SAC . 而SO ⊂平面SAC , 所以SO ⊥BD .[6分]由(1)知,AC ⊥平面SBD ,SO ⊂平面SBD , 所以SO ⊥AC .因为AC ∩BD =O ,AC ,BD ⊂平面ABCD , 所以SO ⊥平面ABCD .[7分]以O 为原点,OA →,OB →,OS →的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,如图③,则A (3,0,0),B (0,3,0),C (-1,0,0),S (0,0,3). 所以AB →=(-3,3,0),CB →=(1,3,0), SB →=(0,3,-3).[8分]设平面SAB 的法向量n =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧AB →·n =-3x 1+3y 1=0,SB →·n =3y 1-3z 1=0,令y 1=3,得平面SAB 的一个法向量为n =(1,3,3). 同理可得平面SCB 的一个法向量为m =(-3,1,1).[10分]所以cos 〈n ,m 〉=n ·m |n ||m |=-3+3+37×5=10535.因为二面角A -SB -C 是钝角,所以二面角A -SB -C 的余弦值为-10535.[12分]利用向量求空间角的步骤第一步:建立空间直角坐标系,确定点的坐标;第二步:求向量(直线的方向向量、平面的法向量)坐标;第三步:计算向量的夹角(或函数值),并转化为所求角.1.已知两平面的法向量分别为m =(1,-1,0),n =(0,1,-1),则两平面所成的二面角为( )A.60°B.120°C.60°或120°D.90° 答案 C解析 cos 〈m ,n 〉=m·n |m||n |=-12·2=-12,即〈m ,n 〉=120°.∴两平面所成二面角为120°或180°-120°=60°.2.如图,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1所成角的余弦值为( )A.55B.53C.56D.54答案 A解析 设CA =2,则C (0,0,0),A (2,0,0),B (0,0,1),C 1(0,2,0),B 1(0,2,1),可得向量AB 1→=(-2,2,1),BC 1→=(0,2,-1),由向量的夹角公式得cos 〈AB 1→,BC 1→〉=AB 1→·BC 1→|AB 1→||BC 1→|=0+4-14+4+1×0+4+1=15=55,故选A.3.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( ) A.12B.23C.33D.22 答案 B解析 以A 为原点,AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系Axyz ,设棱长为1,则A 1(0,0,1),E ⎝ ⎛⎭⎪⎫1,0,12,D (0,1,0),∴A 1D →=(0,1,-1),A 1E →=⎝ ⎛⎭⎪⎫1,0,-12.设平面A 1ED 的一个法向量为n 1=(1,y ,z ), 则有⎩⎪⎨⎪⎧A 1D →·n 1=0,A 1E →·n 1=0,即⎩⎪⎨⎪⎧y -z =0,1-12z =0,∴⎩⎪⎨⎪⎧y =2,z =2,∴n 1=(1,2,2).∵平面ABCD 的一个法向量为n 2=(0,0,1), ∴cos〈n 1,n 2〉=23×1=23,即所成的锐二面角的余弦值为23.4.在正方体ABCD —A 1B 1C 1D 1中,AC 与B 1D 所成角的大小为( ) A.π6B.π4C.π3D.π2 答案 D解析 以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,设正方体的边长为1,则A (0,0,0),C (1,1,0),B 1(1,0,1),D (0,1,0). ∴AC →=(1,1,0),B 1D →=(-1,1,-1), ∵AC →·B 1D →=1×(-1)+1×1+0×(-1)=0, ∴AC →⊥B 1D →,∴AC 与B 1D 所成的角为π2.5.(2018·包头模拟)已知正三棱柱ABC -A 1B 1C 1,AB =AA 1=2,则异面直线AB 1与CA 1所成角的余弦值为( ) A.0B.-14C.14D.12答案 C解析 以A 为原点,在平面ABC 内过A 作AC 的垂线为x 轴,以AC 所在直线为y 轴,以AA 1所在直线为z 轴,建立空间直角坐标系,则A (0,0,0),B 1(3,1,2),A 1(0,0,2),C (0,2,0),AB 1→=(3,1,2),A 1C →=(0,2,-2),设异面直线AB 1和A 1C 所成的角为θ, 则cos θ=|AB 1→·A 1C →||AB 1→|·|A 1C →|=|-2|8·8=14.∴异面直线AB 1和A 1C 所成的角的余弦值为14.6.如图,点A ,B ,C 分别在空间直角坐标系O -xyz 的三条坐标轴上,OC →=(0,0,2),平面ABC 的法向量为n =(2,1,2),设二面角C -AB -O 的大小为θ,则cos θ等于( )A.43B.53C.23D.-23答案 C解析 由题意可知,平面ABO 的一个法向量为OC →=(0,0,2), 由图可知,二面角C -AB -O 为锐角,由空间向量的结论可知,cos θ=|OC →·n ||OC →||n |=|4|2×3=23.7.在三棱锥P -ABC 中,PA ⊥平面ABC ,∠BAC =90°,D ,E ,F 分别是棱AB ,BC ,CP 的中点,AB =AC =1,PA =2,则直线PA 与平面DEF 所成角的正弦值为________.答案55解析 以A 为原点,AB ,AC ,AP 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,由AB =AC =1,PA =2, 得A (0,0,0),B (1,0,0),C (0,1,0),P (0,0,2),D ⎝ ⎛⎭⎪⎫12,0,0,E ⎝ ⎛⎭⎪⎫12,12,0,F ⎝⎛⎭⎪⎫0,12,1.∴PA →=(0,0,-2),DE →=⎝ ⎛⎭⎪⎫0,12,0,DF →=⎝ ⎛⎭⎪⎫-12,12,1.设平面DEF 的法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧n ·DE →=0,n ·DF →=0,得⎩⎪⎨⎪⎧y =0,-x +y +2z =0.取z =1,则n =(2,0,1),设直线PA 与平面DEF 所成的角为θ,则sin θ=|cos 〈n ,PA →〉|=|PA →·n ||PA →||n |=55, ∴直线PA 与平面DEF 所成角的正弦值为55. 8.如图,在正方形ABCD 中,EF ∥AB ,若沿EF 将正方形折成一个二面角后,AE ∶ED ∶AD =1∶1∶2,则AF 与CE 所成角的余弦值为________.答案 45解析 ∵AE ∶ED ∶AD =1∶1∶2, ∴AE ⊥ED ,即AE ,DE ,EF 两两垂直, 所以建立如图所示的空间直角坐标系,设AB =EF =CD =2,则E (0,0,0),A (1,0,0),F (0,2,0),C (0,2,1), ∴AF →=(-1,2,0),EC →=(0,2,1), ∴cos〈AF →,EC →〉=AF →·EC →|AF →||EC →|=45,∴AF 与CE 所成角的余弦值为45.9.如图所示,在三棱柱ABC —A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E ,F 分别是棱AB ,BB 1的中点,则直线EF 和BC 1所成的角是__________.答案 60°解析 以B 点为坐标原点,以BC 所在直线为x 轴,BA 所在直线为y 轴,BB 1所在直线为z 轴,建立空间直角坐标系.设AB =BC =AA 1=2,则C 1(2,0,2),E (0,1,0),F (0,0,1), 则EF →=(0,-1,1),BC 1→=(2,0,2), ∴EF →·BC 1→=2,∴cos〈EF →,BC 1→〉=EF →·BC 1→|EF →||BC 1→|=22×22=12,∵异面直线所成角的范围是(0°,90°], ∴EF 和BC 1所成的角为60°.10.(2019·福州质检)已知点E ,F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的锐二面角的正切值为________.答案23解析 方法一 延长FE ,CB 相交于点G ,连接AG ,如图所示.设正方体的棱长为3,则GB =BC =3,作BH ⊥AG 于点H ,连接EH ,则∠EHB 为所求锐二面角的平面角.∵BH =322,EB =1,∴tan∠EHB =EB BH =23. 方法二 如图,以点D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系Dxyz ,设DA =1,由已知条件得A (1,0,0),E ⎝⎛⎭⎪⎫1,1,13,F ⎝⎛⎭⎪⎫0,1,23,AE →=⎝⎛⎭⎪⎫0,1,13,AF →=⎝⎛⎭⎪⎫-1,1,23,设平面AEF 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·AE →=0,n ·AF →=0,得⎩⎪⎨⎪⎧y +13z =0,-x +y +23z =0.令y =1,z =-3,x =-1,则n =(-1,1,-3), 取平面ABC 的法向量为m =(0,0,-1), 设平面AEF 与平面ABC 所成的锐二面角为θ, 则cos θ=|cos 〈n ,m 〉|=31111,tan θ=23. 11.(2018·鄂尔多斯联考)如图,在几何体ABC -A 1B 1C 1中,平面A 1ACC 1⊥底面ABC ,四边形A 1ACC 1是正方形,B 1C 1∥BC ,Q 是A 1B 的中点,且AC =BC =2B 1C 1,∠ACB =2π3.(1)证明:B 1Q ⊥A 1C ;(2)求直线AC 与平面A 1BB 1所成角的正弦值.(1)证明 如图所示,连接AC 1与A 1C 交于M 点,连接MQ .∵四边形A 1ACC 1是正方形, ∴M 是AC 1的中点, 又Q 是A 1B 的中点, ∴MQ ∥BC ,MQ =12BC ,又∵B 1C 1∥BC 且BC =2B 1C 1, ∴MQ ∥B 1C 1,MQ =B 1C 1,∴四边形B 1C 1MQ 是平行四边形,∴B 1Q ∥C 1M , ∵C 1M ⊥A 1C ,∴B 1Q ⊥A 1C .(2)解 ∵平面A 1ACC 1⊥平面ABC ,平面A 1ACC 1∩平面ABC =AC ,CC 1⊥AC ,CC 1⊂平面A 1ACC 1, ∴CC 1⊥平面ABC .如图所示,以C 为原点,CB ,CC 1所在直线分别为y 轴和z 轴建立空间直角坐标系,令AC =BC =2B 1C 1=2,则C (0,0,0),A (3,-1,0),A 1(3,-1,2),B (0,2,0),B 1(0,1,2), ∴CA →=(3,-1,0),B 1A 1—→=(3,-2,0),B 1B →=(0,1,-2),设平面A 1BB 1的法向量为n =(x ,y ,z ), 则由n ⊥B 1A 1—→,n ⊥B 1B →, 可得⎩⎨⎧3x -2y =0,y -2z =0,可令y =23,则x =4,z =3,∴平面A 1BB 1的一个法向量n =(4,23,3), 设直线AC 与平面A 1BB 1所成的角为α, 则sin α=|n ·CA →||n |·|CA →|=23231=9331.12.(2019·盘锦模拟)如图,在四棱锥P -ABCD 中,侧面PAD ⊥底面ABCD ,底面ABCD 为直角梯形,其中AB ∥CD ,∠CDA =90°,CD =2AB =2,AD =3,PA =5,PD =22,点E 在棱AD 上且AE =1,点F 为棱PD 的中点.(1)证明:平面BEF ⊥平面PEC ; (2)求二面角A -BF -C 的余弦值. (1)证明 在Rt△ABE 中,由AB =AE =1, 得∠AEB =45°,同理在Rt△CDE 中,由CD =DE =2,得∠DEC =45°,所以∠BEC =90°,即BE ⊥EC . 在△PAD 中,cos∠PAD =PA 2+AD 2-PD 22PA ·AD =5+9-82×3×5=55,在△PAE 中,PE 2=PA 2+AE 2-2PA ·AE ·cos∠PAE =5+1-2×5×1×55=4, 所以PE 2+AE 2=PA 2,即PE ⊥AD .又平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PE ⊂平面PAD , 所以PE ⊥平面ABCD ,所以PE ⊥BE . 又因为CE ∩PE =E ,CE ,PE ⊂平面PEC , 所以BE ⊥平面PEC ,所以平面BEF ⊥平面PEC .(2)解 由(1)知EB ,EC ,EP 两两垂直,故以E 为坐标原点,以射线EB ,EC ,EP 分别为x 轴、y 轴、z 轴的正半轴建立如图所示的空间直角坐标系,则B (2,0,0),C (0,22,0),P (0,0,2),A ⎝⎛⎭⎪⎫22,-22,0,D (-2,2,0),F ⎝ ⎛⎭⎪⎫-22,22,1, AB →=⎝⎛⎭⎪⎫22,22,0,BF →=⎝ ⎛⎭⎪⎫-322,22,1, BC →=(-2,22,0),设平面ABF 的法向量为m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ·AB →=22x 1+22y 1=0,m ·BF →=-322x 1+22y 1+z 1=0,不妨设x 1=1,则m =(1,-1,22), 设平面BFC 的法向量为n =(x 2,y 2,z 2),则⎩⎨⎧n ·BC →=-2x 2+22y 2=0,n ·BF →=-322x 2+22y 2+z 2=0,不妨设y 2=2,则n =(4,2,52),记二面角A -BF -C 为θ(由图知应为钝角), 则cos θ=-|m ·n ||m |·|n |=-|4-2+20|10·70=-11735,故二面角A -BF -C 的余弦值为-11735.13.如图,在四棱锥S -ABCD 中,SA ⊥平面ABCD ,底面ABCD 为直角梯形,AD ∥BC ,∠BAD =90°,且AB =4,SA =3.E ,F 分别为线段BC ,SB 上的一点(端点除外),满足SF BF =CE BE=λ,当实数λ的值为________时,∠AFE 为直角.答案916解析 因为SA ⊥平面ABCD ,∠BAD =90°,以A 为坐标原点,AD ,AB ,AS 所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Axyz .∵AB =4,SA =3, ∴B (0,4,0),S (0,0,3). 设BC =m ,则C (m ,4,0), ∵SF BF =CE BE=λ, ∴SF →=λFB →.∴AF →-AS →=λ(AB →-AF →).∴AF →=11+λ(AS →+λAB →)=11+λ(0,4λ,3), ∴F ⎝ ⎛⎭⎪⎫0,4λ1+λ,31+λ. 同理可得E ⎝ ⎛⎭⎪⎫m 1+λ,4,0, ∴FE →=⎝ ⎛⎭⎪⎫m 1+λ,41+λ,-31+λ. ∵FA →=⎝ ⎛⎭⎪⎫0,-4λ1+λ,-31+λ,要使∠AFE 为直角, 即FA →·FE →=0,则0·m1+λ+-4λ1+λ·41+λ+-31+λ·-31+λ=0, ∴16λ=9,解得λ=916. 14.(2018·满洲里模拟)如图,已知直三棱柱ABC -A 1B 1C 1中,AA 1=AB =AC =1,AB ⊥AC ,M ,N ,Q 分别是CC 1,BC ,AC 的中点,点P 在直线A 1B 1上运动,且A 1P →=λA 1B 1—→(λ∈[0,1]).(1)证明:无论λ取何值,总有AM ⊥平面PNQ ;(2)是否存在点P ,使得平面PMN 与平面ABC 的夹角为60°?若存在,试确定点P 的位置,若不存在,请说明理由.(1)证明 连接A 1Q .∵AA1=AC=1,M,Q分别是CC1,AC的中点,∴Rt△AA1Q≌Rt△CAM,∴∠MAC=∠QA1A,∴∠MAC+∠AQA1=∠QA1A+∠AQA1=90°,∴AM⊥A1Q.∵N,Q分别是BC,AC的中点,∴NQ∥AB.又AB⊥AC,∴NQ⊥AC.在直三棱柱ABC-A1B1C1中,AA1⊥底面ABC,∴NQ⊥AA1.又AC∩AA1=A,AC,AA1⊂平面ACC1A1,∴NQ⊥平面ACC1A1,∴NQ⊥AM.由NQ∥AB和AB∥A1B1可得NQ∥A1B1,∴N,Q,A1,P四点共面,∴A1Q⊂平面PNQ.∵NQ∩A1Q=Q,NQ,A1Q⊂平面PNQ,∴AM⊥平面PNQ,∴无论λ取何值,总有AM⊥平面PNQ.(2)解如图,以A为坐标原点,AB,AC,AA1所在的直线分别为x轴、y轴、z轴建立空间直角坐标系,则A 1(0,0,1),B 1(1,0,1),M ⎝ ⎛⎭⎪⎫0,1,12,N ⎝ ⎛⎭⎪⎫12,12,0,Q ⎝ ⎛⎭⎪⎫0,12,0,NM →=⎝ ⎛⎭⎪⎫-12,12,12,A 1B 1→=(1,0,0).由A 1P →=λA 1B 1→=λ(1,0,0)=(λ,0,0),可得点P (λ,0,1),∴PN →=⎝ ⎛⎭⎪⎫12-λ,12,-1.设n =(x ,y ,z )是平面PMN 的法向量,则⎩⎪⎨⎪⎧n ·NM →=0,n ·PN →=0,即⎩⎪⎨⎪⎧ -12x +12y +12z =0,⎝ ⎛⎭⎪⎫12-λx +12y -z =0,得⎩⎪⎨⎪⎧y =1+2λ3x ,z =2-2λ3x ,令x =3,得y =1+2λ,z =2-2λ,∴n =(3,1+2λ,2-2λ)是平面PMN 的一个法向量.取平面ABC 的一个法向量为m =(0,0,1).假设存在符合条件的点P ,则|cos 〈m ,n 〉|=|2-2λ|9+(1+2λ)2+(2-2λ)2=12,化简得4λ2-14λ+1=0,解得λ=7-354或λ=7+354(舍去). 综上,存在点P ,且当A 1P =7-354时, 满足平面PMN 与平面ABC 的夹角为60°.15.在四棱锥P -ABCD 中,AB →=(4,-2,3),AD →=(-4,1,0),AP →=(-6,2,-8),则这个四棱锥的高h 等于( )A.1B.2C.13D.26 答案 B解析 设平面ABCD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ⊥AB →,n ⊥AD →,即⎩⎪⎨⎪⎧ 4x -2y +3z =0,-4x +y =0,令y =4,则n =⎝⎛⎭⎪⎫1,4,43, 则cos 〈n ,AP →〉=n ·AP →|n ||AP →|=-6+8-323133×226=-2626, ∴h =2626×226=2. 16.如图所示,在梯形ABCD 中,AB ∥CD ,∠BCD =120°,四边形ACFE 为矩形,且CF ⊥平面ABCD ,AD =CD =BC =CF .(1)求证:EF⊥平面BCF;(2)点M在线段EF上运动,当点M在什么位置时,平面MAB与平面FCB所成的锐二面角最大,并求此时二面角的余弦值.(1)证明设AD=CD=BC=1,∵AB∥CD,∠BCD=120°,∴AB=2,∴AC2=AB2+BC2-2AB·BC·cos60°=3,∴AB2=AC2+BC2,则BC⊥AC.∵CF⊥平面ABCD,AC⊂平面ABCD,∴AC⊥CF,而CF∩BC=C,CF,BC⊂平面BCF,∴AC⊥平面BCF.∵EF∥AC,∴EF⊥平面BCF.(2)解以C为坐标原点,分别以直线CA,CB,CF为x轴、y轴、z轴建立如图所示的空间直角坐标系,设FM =λ(0≤λ≤3),则C (0,0,0),A (3,0,0),B (0,1,0),M (λ,0,1),∴AB →=(-3,1,0),BM →=(λ,-1,1).设n =(x ,y ,z )为平面MAB 的法向量,由⎩⎪⎨⎪⎧ n ·AB →=0,n ·BM →=0,得⎩⎨⎧ -3x +y =0,λx -y +z =0,取x =1,则n =(1,3,3-λ).易知m =(1,0,0)是平面FCB 的一个法向量,∴cos〈n ,m 〉=n ·m |n ||m |=11+3+(3-λ)2×1=1(λ-3)2+4. ∵0≤λ≤3,∴当λ=0时,cos 〈n ,m 〉取得最小值77, ∴当点M 与点F 重合时,平面MAB 与平面FCB 所成的锐二面角最大,此时二面角的余弦值为77.。
§8.1空间几何体的结构、三视图和直观图1.多面体的结构特征2.旋转体的形成3.空间几何体的三视图 (1)三视图的名称几何体的三视图包括:正视图、侧视图、俯视图. (2)三视图的画法①在画三视图时,重叠的线只画一条,挡住的线要画成虚线.②三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察到的几何体的正投影图. 4.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是(1)原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴,y ′轴的夹角为45°或135°,z ′轴与x ′轴和y ′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴;平行于x 轴和z 轴的线段在直观图中保持原长度不变;平行于y 轴的线段在直观图中长度变为原来的一半.知识拓展1.常见旋转体的三视图(1)球的三视图都是半径相等的圆.(2)水平放置的圆锥的正视图和侧视图均为全等的等腰三角形. (3)水平放置的圆台的正视图和侧视图均为全等的等腰梯形. (4)水平放置的圆柱的正视图和侧视图均为全等的矩形. 2.斜二测画法中的“三变”与“三不变” “三变”⎩⎪⎨⎪⎧坐标轴的夹角改变与y 轴平行的线段的长度变为原来的一半图形改变“三不变”⎩⎪⎨⎪⎧平行性不改变与x ,z 轴平行的线段的长度不改变相对位置不改变题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.(×)(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.(×)(3)夹在两个平行的平面之间,其余的面都是梯形,这样的几何体一定是棱台.(×)(4)正方体、球、圆锥各自的三视图中,三视图均相同.(×)(5)用两平行平面截圆柱,夹在两平行平面间的部分仍是圆柱.(×)(6)菱形的直观图仍是菱形.(×)题组二教材改编2.[P19T3]由斜二测画法得到:①相等的线段和角在直观图中仍然相等;②正方形在直观图中是矩形;③等腰三角形在直观图中仍然是等腰三角形;④平行四边形的直观图仍然是平行四边形.上述结论正确的个数是()A.0 B.1 C.2 D.3答案 B解析逐一考查所给的说法:①相等的线段平行时在直观图中仍然相等,原说法错误;②正方形在直观图中是平行四边形,不是矩形,原说法错误;③等腰三角形在直观图中不是等腰三角形,原说法错误;④平行四边形的直观图仍然是平行四边形,原说法正确.综上可得,结论正确的个数是1.故选B.3.[P8T1]在如图所示的几何体中,是棱柱的为________.(填写所有正确的序号)答案③⑤题组三 易错自纠4.某空间几何体的正视图是三角形,则该几何体不可能是( ) A .圆柱 B .圆锥 C .四面体 D .三棱柱答案 A解析 由三视图知识知,圆锥、四面体、三棱柱(放倒看)都能使其正视图为三角形,而圆柱的正视图不可能为三角形.5.(2018·珠海质检)将正方体(如图1所示)截去两个三棱锥,得到如图2所示的几何体,则该几何体的侧视图为( )答案 B解析 侧视图中能够看到线段AD 1,应画为实线,而看不到B 1C ,应画为虚线.由于AD 1与B 1C 不平行,投影为相交线,故选B.6.正三角形AOB 的边长为a ,建立如图所示的直角坐标系xOy ,则它的直观图的面积是________.答案616a 2解析 画出坐标系x ′O ′y ′,作出△OAB 的直观图O ′A ′B ′(如图),D ′为O ′A ′的中点.易知D ′B ′=12DB (D 为OA 的中点),∴S△O′A′B′=12×22S△OAB=24×34a2=616a2.题型一空间几何体的结构特征1.给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0 B.1 C.2 D.3答案 A解析①不一定,只有当这两点的连线平行于轴时才是母线;②不一定,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图所示,它是由两个同底圆锥组成的几何体;③错误,棱台的上、下底面相似且是对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.2.下列命题中正确的为________.(填序号)①存在一个四个侧面都是直角三角形的四棱锥;②如果棱柱有一个侧面是矩形,则其余各侧面也都是矩形;③圆台的任意两条母线所在直线必相交.答案①③解析①如图中的四棱锥,底面是矩形,一条侧棱垂直于底面,那么它的四个侧面都是直角三角形,故①正确;②如图所示的棱柱有一个侧面是矩形,则其余各侧面不是矩形,故②错误;③根据圆台的定义和性质可知,命题③正确.所以答案为①③.思维升华(1)关于空间几何体的结构特征辨析关键是紧扣各种空间几何体的概念,要善于通过举反例对概念进行辨析,即要说明一个命题是错误的,只需举一反例即可.(2)圆柱、圆锥、圆台的有关元素都集中在轴截面上,解题时要注意用好轴截面中各元素的关系.(3)既然棱(圆)台是由棱(圆)锥定义的,所以在解决棱(圆)台问题时,要注意“还台为锥”的解题策略.题型二简单几何体的三视图命题点1已知几何体,识别三视图典例(2017·贵州七校联考)如图所示,四面体ABCD的四个顶点是长方体的四个顶点(长方体是虚拟图形,起辅助作用),则四面体ABCD的三视图是(用①②③④⑤⑥代表图形)()A.①②⑥B.①②③C.④⑤⑥D.③④⑤答案 B解析正视图应该是边长为3和4的矩形,其对角线左下到右上是实线,左上到右下是虚线,因此正视图是①,侧视图应该是边长为5和4的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此侧视图是②;俯视图应该是边长为3和5的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此俯视图是③.命题点2已知三视图,判断几何体的形状典例(2017·全国Ⅰ)某多面体的三视图如图所示,其中正视图和侧视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .16答案 B解析 观察三视图可知,该多面体是由直三棱柱和三棱锥组合而成的,且直三棱柱的底面是直角边长为2的等腰直角三角形,侧棱长为2.三棱锥的底面是直角边长为2的等腰直角三角形,高为2,如图所示.因此该多面体各个面中有两个梯形,且这两个梯形全等,梯形的上底长为2,下底长为4,高为2,故这两个梯形的面积之和为2×12×(2+4)×2=12.故选B.命题点3 已知三视图中的两个视图,判断第三个视图典例 (2018届辽宁凌源二中联考)如图是一个空间几何体的正视图和俯视图,则它的侧视图为( )答案 B解析 由正视图和俯视图可知,该几何体是一个圆柱挖去一个圆锥构成的,结合正视图的宽及俯视图的直径可知其侧视图为B ,故选B. 思维升华 三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.(3)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形状,然后再找其剩下部分三视图的可能形状.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.跟踪训练 (1)(2017·全国Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π答案 B解析 方法一 (割补法)由几何体的三视图可知,该几何体是一个圆柱截去上面虚线部分所得,如图所示.将圆柱补全,并将圆柱从点A 处水平分成上下两部分.由图可知,该几何体的体积等于下部分圆柱的体积加上上部分圆柱体积的12,所以该几何体的体积V =π×32×4+π×32×6×12=63π.故选B.方法二 (估值法)由题意知,12V 圆柱<V 几何体<V 圆柱,又V 圆柱=π×32×10=90π,∴45π<V 几何体<90π.观察选项可知只有63π符合.故选B.(2)一个几何体的三视图中,正视图和侧视图如图所示,则俯视图不可以为( )答案 C解析 A 中,该几何体是直三棱柱,∴A 有可能; B 中,该几何体是直四棱柱,∴B 有可能; C 中,由题干中正视图的中间为虚线知,C 不可能; D 中,该几何体是直四棱柱,∴D 有可能.题型三 空间几何体的直观图典例 (2018·福州调研)已知等腰梯形ABCD ,上底CD =1,腰AD =CB =2,下底AB =3,以下底所在直线为x 轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为________. 答案22解析 如图所示,作出等腰梯形ABCD 的直观图.因为OE =(2)2-1=1,所以O ′E ′=12,E ′F =24,则直观图A ′B ′C ′D ′的面积S ′=1+32×24=22.思维升华 用斜二测画法画直观图的技巧在原图形中与x 轴或y 轴平行的线段在直观图中与x ′轴或y ′轴平行,原图中不与坐标轴平行的直线段可以先画出线段的端点再连线,原图中的曲线段可以通过取一些关键点,作出在直观图中的相应点后,用平滑的曲线连接而画出.跟踪训练 如图,一个水平放置的平面图形的直观图(斜二测画法)是一个底角为45°、腰和上底长均为2的等腰梯形,则这个平面图形的面积是( )A .2+ 2B .1+ 2C .4+2 2D .8+4 2答案 D解析 由已知直观图根据斜二测画法规则画出原平面图形,如图所示, ∴这个平面图形的面积为4×(2+2+22)2=8+42,故选D.1.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是()A.球B.三棱锥C.正方体D.圆柱答案 D解析球、正方体的三视图形状都相同、大小均相等.当三棱锥的三条侧棱相等且两两垂直时,其三视图的形状都相同、大小均相等.不论圆柱如何放置,其三视图的形状都不会完全相同,故选D.2.如图为几何体的三视图,根据三视图可以判断这个几何体为()A.圆锥B.三棱锥C.三棱柱D.三棱台答案 C3.“牟合方盖”(如图1)是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图2所示,图中四边形是为体现其直观性所作的辅助线,其实际直观图中四边形不存在,当其正视图和侧视图完全相同时,它的正视图和俯视图分别可能是()A.a,b B.a,c C.c,b D.b,d答案 A解析当正视图和侧视图完全相同时,“牟合方盖”相对的两个曲面正对前方,正视图为一个圆,俯视图为一个正方形,且两条对角线为实线,故选A.4.(2018·成都质检)如图,在长方体ABCD-A1B1C1D1中,点P是棱CD上一点,则三棱锥P -A1B1A的侧视图是()答案 D解析在长方体ABCD-A1B1C1D1中,从左侧看三棱锥P-A1B1A,B1,A1,A的射影分别是C1,D1,D;AB1的射影为C1D,且为实线,P A1的射影为PD1,且为虚线.故选D.5.如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是AA1,C1D1的中点,G是正方形BCC1B1的中心,则四边形AGFE在该正方体的各个面上的投影不可能是()A.三角形B.正方形C.四边形D.等腰三角形答案 B解析四边形AGFE在该正方体的底面上的投影为三角形,可能为A;四边形AGFE在该正方体的前面上的投影为四边形,可能为C;四边形AGFE在该正方体的底面上的投影为等腰三角形,可能为D;四边形AGFE 在该正方体的左侧面上的投影为三角形,可能为A.故选B.6.(2017·广州模拟)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为83,则该几何体的俯视图可以是( )答案 C解析 该几何体为正方体截去一部分后的四棱锥P —ABCD ,如图所示,该几何体的俯视图为C.7.(2017·东北师大附中、吉林市一中等五校联考)如图所示,在三棱锥D —ABC 中,已知AC =BC =CD =2,CD ⊥平面ABC ,∠ACB =90°.若其正视图、俯视图如图所示,则其侧视图的面积为( )A. 6 B .2 C. 3 D. 2答案 D解析 由几何体的结构特征和正视图、俯视图,得该几何体的侧视图是一个直角三角形,其中一直角边为CD ,其长度为2,另一直角边为底面△ABC 的边AB 上的中线,其长度为2,则其侧视图的面积S =12×2×2= 2.8.如图,在一个正方体内放入两个半径不相等的球O 1,O 2,这两个球外切,且球O 1与正方体共顶点A 的三个面相切,球O 2与正方体共顶点B 1的三个面相切,则两球在正方体的面AA 1C 1C 上的正投影是( )答案 B解析 由题意可以判断出两球在正方体的面上的正投影与正方形相切.由于两球球心连线AB 1与面ACC 1A 1不平行,故两球球心射影所连线段的长度小于两球半径的和,即两个投影圆相交,即为图B.9.(2017·福建龙岩联考)一水平放置的平面四边形OABC ,用斜二测画法画出它的直观图O ′A ′B ′C ′如图所示,此直观图恰好是一个边长为1的正方形,则原平面四边形OABC 的面积为________.答案 2 2解析 因为直观图的面积是原图形面积的24倍,且直观图的面积为1,所以原图形的面积为2 2.10.(2017·南昌一模)如图,在正四棱柱ABCD —A 1B 1C 1D 1中,点P 是平面A 1B 1C 1D 1内一点,则三棱锥P —BCD 的正视图与侧视图的面积之比为________.答案 1∶1解析 根据题意,三棱锥P —BCD 的正视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高;侧视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高,故三棱锥P—BCD的正视图与侧视图的面积之比为1∶1.11.如图,点O为正方体ABCD—A′B′C′D′的中心,点E为平面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的各个面上的射影可能是________.(填出所有可能的序号)答案①②③解析空间四边形D′OEF在正方体的平面DCC′D′上的射影是①;在平面BCC′B′上的射影是②;在平面ABCD上的射影是③,而不可能出现的射影为④中的情况.12.如图,已知三棱锥P—ABC的底面是等腰直角三角形,且∠ACB=90°,侧面P AB⊥底面ABC,AB=P A=PB=4,则这个三棱锥的三视图中标注的尺寸x,y,z分别是__________.答案23,2,2解析由三棱锥及其三视图可知,x为等边△P AB的高,所以x=23,又因为2y为AB的长,所以2y=4,y=2,可得z为点C到AB的距离,由此得z=2.13.用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是()A .8B .7C .6D .5答案 C解析 画出直观图,共六块.14.(2017·湖南省东部六校联考)某三棱锥的三视图如图所示,则该三棱锥的四个面的面积中,最大的面积是( )A .4 3B .8 3C .47D .8 答案 C解析 如图,设该三棱锥为P —ABC ,其中P A ⊥平面ABC ,P A =4,则由三视图可知△ABC 是边长为4的等边三角形,故PB =PC =42,所以S △ABC =12×4×23=43,S △P AB =S △P AC =12×4×4=8,S △PBC =12×4×(42)2-22=47,故四个面中面积最大的为S △PBC =47,故选C.15.(2017·泉州二模)某几何体的三视图如图所示,则该几何体的侧视图中的虚线部分是( )A .圆弧B .抛物线的一部分C .椭圆的一部分D .双曲线的一部分答案 D解析根据几何体的三视图,可得侧视图中的虚线部分是由平行于旋转轴的平面截圆锥所得,故侧视图中的虚线部分是双曲线的一部分,故选D.16.(2018·济南模拟)一只蚂蚁从正方体ABCD—A1B1C1D1的顶点A出发,经正方体的表面,按最短路线爬行到顶点C1的位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图的是()A.①②B.①③C.③④D.②④答案 D解析由点A经正方体的表面,按最短路线爬行到达顶点C1的位置,共有6种路线(对应6种不同的展开方式),若把平面ABB1A1和平面BCC1B1展开到同一个平面内,连接AC1,则AC1是最短路线,且AC1会经过BB1的中点,此时对应的正视图为②;若把平面ABCD和平面CDD1C1展开到同一个平面内,连接AC1,则AC1是最短路线,且AC1会经过CD的中点,此时对应的正视图为④.而其他几种展开方式对应的正视图在题中没有出现.故选D.。
第八章⎪⎪⎪平面解析几何第八节抛物线1.抛物线的定义满足以下三个条件的点的轨迹是抛物线:(1)在平面内;(2)动点到定点F 的距离与到定直线l 的距离相等; (3)定点不在定直线上.2.抛物线的标准方程和几何性质1.(2018·杭州七校联考)抛物线C :y =ax 2的准线方程为y =-14,则其焦点坐标为________,实数a 的值为________.解析:由题意得焦点坐标为⎝⎛⎭⎫0,14,抛物线C 的方程可化为x 2=1a y ,由题意得-14a =-14,解得a =1. 答案:⎝⎛⎭⎫0,14 1 2.焦点在直线2x +y +2=0上的抛物线的标准方程为________. 答案:y 2=-4x 或x 2=-8y3.(教材习题改编)抛物线y =4x 2的焦点坐标为__________;准线方程为____________. 解析:抛物线的标准方程为x 2=14y ,所以焦点坐标为⎝⎛⎭⎫0,116,准线方程为y =-116. 答案:⎝⎛⎭⎫0,116 y =-1161.抛物线的定义中易忽视“定点不在定直线上”这一条件,当定点在定直线上时,动点的轨迹是过定点且与直线垂直的直线.2.抛物线标准方程中参数p 易忽视,只有p >0才能证明其几何意义是焦点F 到准线l 的距离,否则无几何意义.3.抛物线的标准方程的形式要注意,根据方程求焦点坐标或准线方程时,要注意标准形式的确定.[小题纠偏]1.平面内到点(1,1)与到直线x +2y -3=0的距离相等的点的轨迹是( ) A .椭圆 B .双曲线 C .抛物线 D .一条直线答案:D2.抛物线8x 2+y =0的焦点坐标为________. 解析:由8x 2+y =0,得x 2=-18y .∴2p =18,p =116,∴焦点为⎝⎛⎭⎫0,-132. 答案:⎝⎛⎭⎫0,-132考点一 抛物线定义及应用(重点保分型考点——师生共研)[典例引领]1.(2019·温州十校联考)设抛物线C :y =14x 2的焦点为F ,直线l 交抛物线C 于A ,B 两点,|AF |=3,线段AB 的中点到抛物线C 的准线的距离为4,则|BF |=( )A.72 B .5 C .4D .3解析:选B 抛物线C 的方程可化为x 2=4y ,由线段AB 的中点到抛物线C 的准线的距离为4,可得|AF |+|BF |=8,又|AF |=3,所以|BF |=5.2.已知M 是抛物线x 2=4y 上一点,F 为其焦点,点A 在圆C :(x +1)2+(y -5)2=1上,则|MA |+|MF |的最小值是( )A .4B .5C .6D .7解析:选B 依题意,由点M 向抛物线x 2=4y 的准线l :y =-1引垂线,垂足为M 1(图略),则有|MA |+|MF |=|MA |+|MM 1|,结合图形可知|MA |+|MM 1|的最小值等于圆心C (-1,5)到y =-1的距离再减去圆C 的半径,即等于6-1=5,因此|MA |+|MF |的最小值是5,故选B.[由题悟法]应用抛物线定义的2个关键点(1)由抛物线定义,把抛物线上点到焦点距离与到准线距离相互转化.(2)注意灵活运用抛物线上一点P (x ,y )到焦点F 的距离|PF |=|x |+p 2或|PF |=|y |+p 2.[即时应用]1.如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( )A.|BF |-1|AF |-1 B.|BF |2-1|AF |2-1C.|BF |+1|AF |+1D.|BF |2+1|AF |2+1解析:选A 由图形可知,△BCF 与△ACF 有公共的顶点F ,且A ,B ,C 三点共线,易知△BCF 与△ACF 的面积之比就等于|BC ||AC |.由抛物线方程知其焦点F (1,0),作准线l ,则l 的方程为x =-1.∵点A ,B 在抛物线上,过A ,B 分别作AK ,BH 与准线垂直,垂足分别为点K ,H ,且与y 轴分别交于点N ,M .由抛物线定义,得|BM |=|BF |-1,|AN |=|AF |-1.在△CAN 中,BM ∥AN ,∴|BC ||AC |=|BM ||AN |=|BF |-1|AF |-1. 2.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )A.355B .2 C.115D .3解析:选B 由题可知l 2:x =-1是抛物线y 2=4x 的准线,设抛物线的焦点为F (1,0),则动点P 到l 2的距离等于|PF |,则动点P 到直线l 1和直线l 2的距离之和的最小值,即焦点F 到直线l 1:4x -3y +6=0的距离,所以最小值是|4-0+6|5=2.考点二 抛物线的标准方程与几何性质(题点多变型考点——多角探明) [锁定考向]抛物线的标准方程及性质是高考的热点,多以选择题、填空题形式出现. 常见的命题角度有: (1)求抛物线方程;(2)抛物线的对称性.[题点全练]角度一:求抛物线方程1.(2019·台州重点校联考)已知直线l 过抛物线y 2=-2px (p >0)的焦点,且与抛物线交于A ,B 两点,若线段AB 的长是8,AB 的中点到y 轴的距离是2,则此抛物线的方程是( )A .y 2=-12xB .y 2=-8xC .y 2=-6xD .y 2=-4x解析:选B 过A ,B 分别作抛物线的准线的垂线,垂足分别为A 1,B 1,由抛物线定义知|AF |=|AA 1|,|BF |=|BB 1|,则|AA 1|+|BB 1|=2⎝⎛⎭⎫2+p2=8,解得p =4,所以此抛物线的方程是y 2=-8x .角度二:抛物线的对称性2.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)分别交于O ,A ,B 三点,O 为坐标原点.若双曲线的离心率为2,△AOB 的面积为3,则p =( )A .1 B.32C .2D .3解析:选B 双曲线的渐近线方程为y =±ba x , 因为双曲线的离心率为2, 所以1+b 2a 2=2,ba = 3.由⎩⎨⎧y =3x ,y 2=2px , 解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎨⎧x =2p 3,y =23p 3.由曲线的对称性及△AOB 的面积得, 2×12×23p 3×2p 3=3, 解得p 2=94,即p =32⎝⎛⎭⎫p =-32舍去. [通法在握]求抛物线方程的3个注意点(1)当坐标系已建立时,应根据条件确定抛物线方程属于四种类型中的哪一种; (2)要注意把握抛物线的顶点、对称轴、开口方向与方程之间的对应关系; (3)要注意参数p 的几何意义是焦点到准线的距离,利用它的几何意义来解决问题.[演练冲关]1.(2019·宁波质检)已知点M 是抛物线C :y 2=2px (p >0)上一点,F 为C 的焦点,MF 的中点坐标是(2,2),则p 的值为( )A .1B .2C .3D .4解析:选D 抛物线C :y 2=2px (p >0)的焦点为F ⎝⎛⎭⎫p 2,0,设M ⎝⎛⎭⎫y 212p ,y 1,由中点坐标公式可知p 2+y 212p=2×2,y 1+0=2×2,解得p =4.2.(2019·丽水高三质检)过抛物线C :y 2=4x 的焦点F 的直线l 与抛物线C 交于P ,Q 两点,与抛物线准线交于M ,且FM =3FP ,则|FP |=( )A.32B.23C.43D.34解析:选C 设直线l 的倾斜角为θ,如图所示,过点P 作PN 垂直准线于点N ,由抛物线定义知|PN |=|PF |.∵FM =3FP ,∴|FM |=3|FP |,即|PM |=2|PN |.在Rt △MNP 中,cos ∠MPN =12,∵PN ∥x 轴,∴cos θ=12,由抛物线焦半径的性质可得|PF |=p 1+cos θ=21+12=43,即|FP |=43. 考点三 直线与抛物线的位置关系(重点保分型考点——师生共研)[典例引领](2018·长兴中学模拟)已知抛物线C 1:y 2=2px (p >0)的焦点为F ,P 为C 1上一点,|PF |=4,点P 到y 轴的距离等于3.(1)求抛物线C 1的标准方程;(2)设A ,B 为抛物线C 1上的两个动点,且使得线段AB 的中点D 在直线y =x 上,P (0,2)为定点,求△PAB 面积的最大值.解:(1)由题意,p2+3=4,∴p =2,所以抛物线C 1的标准方程为y 2=4x .(2)设直线AB :x =ty +b ,A (x 1,y 1),B (x 2,y 2).联立方程⎩⎪⎨⎪⎧x =ty +b ,y 2=4x消元化简得y 2-4ty -4b =0, Δ=16t 2+16b >0.且y 1+y 2=4t ,x 1+x 2=t (y 1+y 2)+2b =4t 2+2b , 所以D (2t 2+b,2t ),2t 2+b =2t . 由Δ>0得0<t <2.所以点P 到直线AB 的距离d =|-2t -b |1+t 2=|2t 2-4t |1+t 2, 所以|AB |=1+t 216t 2+16b =41+t 22t -t 2,所以S △ABP =12|AB |d =12×41+t 22t -t 2|2t 2-4t |1+t2=22t -t 2·|2t 2-4t |. 令m =2t -t 2,则m ∈(0,1],且S △ABP =4m 3. 由函数单调性可知,(S △ABP )max =4.[由题悟法]解决直线与抛物线位置关系问题的2种常用方法(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用弦长公式.[即时应用]如图所示,已知抛物线C :y 2=4x 的焦点为F ,直线l 经过点F 且与抛物线C 相交于A ,B 两点.(1)若线段AB 的中点在直线y =2上,求直线l 的方程; (2)若线段|AB |=20,求直线l 的方程. 解:(1)由已知,得抛物线的焦点为F (1,0). 因为线段AB 的中点在直线y =2上, 所以直线l 的斜率存在,设直线l 的斜率为k ,A (x 1,y 1),B (x 2,y 2),AB 的中点M (x 0,y 0),由⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,得(y 1+y 2)(y 1-y 2)=4(x 1-x 2),所以2y 0k =4.又y 0=2,所以k =1,故直线l 的方程是y =x -1.(2)设直线l 的方程为x =my +1,与抛物线方程联立得⎩⎪⎨⎪⎧x =my +1,y 2=4x ,消去x ,得y 2-4my-4=0,所以y 1+y 2=4m ,y 1y 2=-4,Δ=16(m 2+1)>0. |AB |=m 2+1|y 1-y 2| =m 2+1·(y 1+y 2)2-4y 1y 2 =m 2+1·(4m )2-4×(-4) =4(m 2+1).所以4(m 2+1)=20,解得m =±2,所以直线l 的方程是x =±2y +1,即x ±2y -1=0.一抓基础,多练小题做到眼疾手快1.(2019·湖州质检)已知抛物线y 2=2px (p >0),点C (-4,0),过抛物线的焦点作垂直于x 轴的直线,与抛物线交于A ,B 两点,若△CAB 的面积为24,则以直线AB 为准线的抛物线的标准方程是( )A .y 2=4xB .y 2=-4xC .y 2=8xD .y 2=-8x解析:选D ∵AB ⊥x 轴,且AB 过点F ,∴AB 是焦点弦,∴|AB |=2p ,∴S △CAB =12×2p ×⎝⎛⎭⎫p 2+4=24,解得p =4或p =-12(舍去),∴直线AB 的方程为x =2,∴以直线AB 为准线的抛物线的标准方程是y 2=-8x ,故选D.2.(2018·江山质检)在抛物线y 2=2px (p >0)上,横坐标为4的点到焦点的距离为5,则p 的值为( )A.12 B .1 C .2D .3解析:选C 由抛物线的定义可知,4+p2=5,解得p =2.3.(2018·珠海模拟)已知抛物线y 2=4x 的焦点为F ,准线为l ,点P 为抛物线上一点,且在第一象限,PA ⊥l ,垂足为A ,|PF |=4,则直线AF 的倾斜角等于( )A.7π12B.2π3C.3π4D.5π6解析:选B 由抛物线y 2=4x 知焦点F (1,0),准线l 的方程为x =-1,由抛物线定义知|PA |=|PF |=4,所以点P 的坐标为(3,23),因此点A 的坐标为(-1,23),所以k AF =23-0-1-1=-3,所以直线AF 的倾斜角为2π3.4.(2019·宁波六校联考)已知抛物线C :y 2=23x ,过焦点F 且斜率为3的直线与C 相交于P ,Q 两点,且P ,Q 两点在准线上的投影分别为M ,N 两点,则S △MFN =( )A .8B .2 3C .4 3D .8 3解析:选B 法一:由题意可得p =3,F⎝⎛⎭⎫32,0.不妨设点P 在x 轴上方,由抛物线定义可知|PF |=|PM |,|Q F |=|Q N |,设直线P Q 的倾斜角为θ,则tan θ=3,∴θ=π3,由抛物线焦半径的性质可知,|PF |=p 1-cos θ=31-cos π3=23,|Q F |=p 1+cos θ=31+cosπ3=233,∴|MN |=|P Q |sin θ=(|PF |+|Q F |)·sin π3=833×32=4,∴S △MFN =12|MN |·p =12×4×3=2 3.法二:由题意可得F⎝⎛⎭⎫32,0,直线P Q 的方程为y =3⎝⎛⎭⎫x -32=3x -32,与抛物线方程y 2=23x 联立,得⎝⎛⎭⎫3x -322=23x ,即3x 2-53x +94=0,设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=533,∴|P Q |=x 1+x 2+p =533+3=833,∵直线P Q 的斜率为3,∴直线P Q 的倾斜角为π3.∴|MN |=|P Q |sinπ3=833×32=4,∴S △MFN =12×4×3=2 3. 5.已知点P 在抛物线y 2=4x 上,且点P 到y 轴的距离与其到焦点的距离之比为12,则点P 到x 轴的距离为________.解析:设点P 的坐标为(x P ,y P ),抛物线y 2=4x 的准线方程为x =-1,根据抛物线的定义,点P 到焦点的距离等于点P 到准线的距离,故x P x P -(-1)=12,解得x P =1,所以y 2P =4,所以|y P |=2. 答案:2二保高考,全练题型做到高考达标1.(2018·临海期初)动圆过点(0,1),且与直线y =-1相切,则动圆圆心的轨迹方程为( ) A .y =0 B .x 2+y 2=1 C .x 2=4yD .y 2=4x解析:选C 设动圆圆心M (x ,y ),则x 2+(y -1)2=|y +1|,解得x 2=4y .2.(2018·绍兴二模)已知抛物线C :y 2=4x 的焦点为F ,直线y =3(x -1)与抛物线C 交于A ,B 两点(A 在x 轴上方).若AF =mFB ,则m 的值为( )A. 3B.32C .2D .3解析:选D 直线方程为x =33y +1,代入y 2=4x 可得y 2-433y -4=0,则y A =23,y B =-233,所以|y A |=3|y B |,因为AF =mFB ,所以m =3.3.(2018·宁波十校联考)已知抛物线x 2=4y ,过焦点F 的直线l 交抛物线于A ,B 两点(点A 在第一象限),若直线l 的倾斜角为30°,则|AF ||BF |的值等于( )A .3B.52C .2D.32解析:选A 由题可得,F (0,1),设l :y =33x +1,A (x 1,y 1),B (x 2,y 2).将直线方程与抛物线方程联立,消去x ,化简得3y 2-10y +3=0,解得y 1=3,y 2=13.由抛物线的定义可知|AF ||BF |=y 1+1y 2+1=3+113+1=3. 4.已知P 为抛物线y =12x 2上的动点,点P 在x 轴上的射影为点M ,点A 的坐标是⎝⎛⎭⎫6,172,则|PA |+|PM |的最小值是( )A .8 B.192C .10D.212解析:选B 依题意可知焦点F ⎝⎛⎭⎫0,12,准线方程为y =-12,延长PM 交准线于点H (图略).则|PF |=|PH |,|PM |=|PF |-12,|PM |+|PA |=|PF |+|PA |-12,即求|PF |+|PA |的最小值. 因为|PF |+|PA |≥|FA |, 又|FA |=62+⎝⎛⎭⎫172-122=10.所以|PM |+|PA |≥10-12=192,故选B.5.(2019·嘉兴六校联考)已知抛物线C :y 2=2px (p >0)的焦点为F ,点M 在抛物线C 上,且|MO |=|MF |=32(O 为坐标原点),则OM ·MF =( )A .-74B.74C.94D .-94解析:选A 设M (m ,2pm ),抛物线C 的焦点F 的坐标为⎝⎛⎭⎫p 2,0,因为|MO |=|MF |=32,所以m 2+2pm =94 ①,m +p 2=32 ②,由①②解得m =12,p =2,所以M ⎝⎛⎭⎫12,2,F (1,0),所以OM =⎝⎛⎭⎫12,2,MF =⎝⎛⎭⎫12,-2,故OM ·MF =14-2=-74.6.(2018·宁波期初)已知抛物线x 2=4y 的焦点为F ,若点M 在抛物线上,|MF |=4,O 为坐标原点,则∠MFO =________.解析:由题可得,p =2,焦点在y 轴正半轴,所以F (0,1). 因为|MF |=4,所以M (±23,3).所以tan ∠MFO =-tan(π-∠MFO )=-233-1=-3,所以∠MFO =2π3. 答案:2π37.设O 为坐标原点,P 是以F 为焦点的抛物线y 2=2px (p >0)上任意一点,M 是线段PF 上的点,且|PM |=2|MF |,则直线OM 的斜率的最大值为________.解析:如图,由题可知F ⎝⎛⎭⎫p 2,0,设P 点坐标为⎝⎛⎭⎫y 202p ,y 0(y 0>0),则OM ―→=OF ―→+FM ―→=OF ―→+13FP ―→=OF ―→+13(OP ―→-OF ―→)=13OP ―→+23OF ―→=⎝⎛⎭⎫y 206p +p 3,y 03,k OM =y 03y 206p +p 3=2y 0p +2p y 0≤222=22,当且仅当y 2=2p 2时等号成立,所以直线OM 的斜率的最大值为22. 答案:228.(2018·嵊州一模)设抛物线y 2=4x 的焦点为F ,过点M (5,0)的直线与抛物线相交于A ,B 两点,与抛物线的准线相交于C 点,|BF |=3,则△BCF 与△ACF 的面积之比S △BCFS △ACF=________.解析:设点A 在第一象限,B 在第四象限,A (x 1,y 1),B (x 2,y 2),直线AB 的方程为x =my + 5.由y 2=4x ,得p =2,因为|BF |=3=x 2+p2=x 2+1,所以x 2=2,则y 22=4x 2=4×2=8,所以y 2=-22,由⎩⎨⎧y 2=4x ,x =my +5,得y 2-4my -45=0,则y 1y 2=-45,所以y 1=10,由y 21=4x 1,得x 1=52.过点A 作AA ′垂直于准线x =-1,垂足为A ′,过点B 作BB ′垂直于准线x =-1,垂足为B ′,易知△CBB ′∽△CAA ′,所以S △BCF S △ACF =|BC ||AC |=|BB ′||AA ′|.又|BB ′|=|BF |=3,|AA ′|=x 1+p 2=52+1=72,所以S △BCF S △ACF =372=67.答案:679.(2018·杭州高三检测)如图,过抛物线M :y =x 2上一点A (点A 不与原点O 重合)作抛物线M 的切线AB 交y 轴于点B ,点C 是抛物线M 上异于点A 的点,设G 为△ABC 的重心(三条中线的交点),直线CG 交y 轴于点D .(1)设A (x 0,x 20)(x 0≠0),求直线AB 的方程; (2)求|OB ||OD |的值. 解:(1)因为y ′=2x ,所以直线AB 的斜率k =y ′|x =x 0=2x 0, 所以直线AB 的方程为y -x 20=2x 0(x -x 0), 即y =2x 0x -x 20.(2)由(1)得,点B 的纵坐标y B =-x 20, 所以AB 的中点坐标为⎝⎛⎭⎫x 02,0.设C (x 1,y 1),G (x 2,y 2),直线CG 的方程为x =my +x 02.由⎩⎪⎨⎪⎧x =my +x 02,y =x 2,得m 2y 2+(mx 0-1)y +x 204=0.因为G 为△ABC 的重心,所以y 1=3y 2. 由根与系数的关系,得y 1+y 2=4y 2=1-mx 0m 2,y 1y 2=3y 22=x 204m 2. 所以y 22=(1-mx 0)216m4=x 2012m 2, 解得mx 0=-3±2 3.所以点D 的纵坐标y D =-x 02m =x 206±43,故|OB ||OD |=⎪⎪⎪⎪y B y D =43±6. 10.(2018·台州模拟)已知抛物线C 1:y 2=4x 和C 2:x 2=2py (p >0)的焦点分别为F 1,F 2,点P (-1,-1),且F 1F 2⊥OP (O 为坐标原点).(1)求抛物线C 2的方程;(2)过点O 的直线交C 1的下半部分于点M ,交C 2的左半部分于点N ,求△PMN 面积的最小值.解:(1)由题意知F 1(1,0),F 2⎝⎛⎭⎫0,p 2,则F 1F 2―→=⎝⎛⎭⎫-1,p 2, ∵F 1F 2⊥OP ,∴F 1F 2―→·OP ―→=⎝⎛⎭⎫-1,p 2·(-1,-1)=1-p 2=0, ∴p =2,∴抛物线C 2的方程为x 2=4y . (2)设过点O 的直线为y =kx (k <0),联立⎩⎪⎨⎪⎧ y =kx ,y 2=4x 得M ⎝⎛⎭⎫4k 2,4k , 联立⎩⎪⎨⎪⎧y =kx ,x 2=4y得N (4k,4k 2),从而|MN |=1+k 2·⎪⎪⎪⎪4k 2-4k =1+k 2·⎝⎛⎭⎫4k 2-4k , 又点P 到直线MN 的距离d =|k -1|1+k 2,故S △PMN =12·|k -1|1+k 2·1+k 2·⎝⎛⎭⎫4k 2-4k =2(1-k )(1-k 3)k 2=2(1-k )2(1+k +k 2)k 2=2⎝⎛⎭⎫k +1k -2⎝⎛⎭⎫k +1k +1, 令t =k +1k (t ≤-2), 则S △PMN =2(t -2)(t +1)≥8,当t =-2,即k =-1时,S △PMN 取得最小值.即当过点O 的直线为y =-x 时,△PMN 面积的最小值为8. 三上台阶,自主选做志在冲刺名校1.(2018·台州高三模拟)已知抛物线x 2=2py (p >0),点M 是抛物线的准线与y 轴的交点,过点A (0,λp )(λ∈R)的动直线l 交抛物线于B ,C 两点.(1)求证:MB ·MC ≥0,并求等号成立时实数λ的值;(2)当λ=2时,设分别以OB ,OC (O 为坐标原点)为直径的两圆相交于另一点D ,求|DO |+|DA |的最大值.解:(1)由题意知动直线l 的斜率存在,且过点A (0,λp ), 则可设动直线l 的方程为y =kx +λp ,代入x 2=2py (p >0),消去y 并整理得x 2-2pkx -2λp 2=0, Δ=4p 2(k 2+2λ)>0, 设B (x 1,y 1),C (x 2,y 2), 则x 1+x 2=2pk ,x 1x 2=-2λp 2,y 1y 2=(kx 1+λp )(kx 2+λp )=k 2x 1x 2+λpk (x 1+x 2)+λ2p 2=λ2p 2,y 1+y 2=k (x 1+x 2)+2λp =2pk 2+2λp =2p (k 2+λ). 因为抛物线x 2=2py 的准线方程为y =-p2,所以点M 的坐标为⎝⎛⎭⎫0,-p 2, 所以MB =⎝⎛⎭⎫x 1,y 1+p 2,MC =⎝⎛⎭⎫x 2,y 2+p2, 所以MB ·MC =x 1x 2+⎝⎛⎭⎫y 1+p 2⎝⎛⎭⎫y 2+p2 =x 1x 2+y 1y 2+p 2(y 1+y 2)+p 24=-2λp 2+λ2p 2+p 2[2p (k 2+λ)]+p 24=p 2⎣⎡⎦⎤k 2+⎝⎛⎭⎫λ-122≥0, 当且仅当k =0,λ=12时等号成立.(2)由(1)知,当λ=2时,x 1x 2=-4p 2,y 1y 2=4p 2, 所以OB ·OC =x 1x 2+y 1y 2=0, 所以OB ⊥OC .设直线OB 的方程为y =mx (m ≠0),与抛物线的方程x 2=2py 联立可得B (2pm,2pm 2), 所以以OB 为直径的圆的方程为x 2+y 2-2pmx -2pm 2y =0. 因为OB ⊥OC ,所以直线OC 的方程为y =-1m x .同理可得以OC 为直径的圆的方程为 x 2+y 2+2p m x -2pm2y =0, 即m 2x 2+m 2y 2+2pmx -2py =0,将两圆的方程相加消去m ,得x 2+y 2-2py =0, 即x 2+(y -p )2=p 2,所以点D 的轨迹是以OA 为直径的圆, 所以|DA |2+|DO |2=4p 2, 由|DA |2+|DO |22≥⎝⎛⎭⎫|DA |+|DO |22, 得|DA |+|DO |≤22p ,当且仅当|DA |=|DO |=2p 时,等号成立. 故(|DA |+|DO |)max =22p .2.如图所示,抛物线关于x 轴对称,它的顶点在坐标原点,点P (1,2),A (x 1,y 1),B (x 2,y 2)均在抛物线上.(1)写出该抛物线的方程及其准线方程.(2)当PA 与PB 的斜率存在且倾斜角互补时,求y 1+y 2的值及直线AB 的斜率.解:(1)由已知条件,可设抛物线的方程为y 2=2px (p >0). 因为点P (1,2)在抛物线上, 所以22=2p ×1, 解得p =2.故所求抛物线的方程是y 2=4x ,准线方程是x =-1. (2)设直线PA 的斜率为k PA ,直线PB 的斜率为k PB . 则k PA =y 1-2x 1-1(x 1≠1),k PB =y 2-2x 2-1(x 2≠1), 因为PA 与PB 的斜率存在且倾斜角互补, 所以k PA =-k PB .由A (x 1,y 1),B (x 2,y 2)均在抛物线上,得⎩⎪⎨⎪⎧y 21=4x 1, ①y 22=4x 2, ②所以y 1-214y 21-1=-y 2-214y 22-1,所以y 1+2=-(y 2+2). 所以y 1+y 2=-4.由①-②得,y 21-y 22=4(x 1-x 2),所以k AB =y 1-y 2x 1-x 2=4y 1+y 2=-1(x 1≠x 2).。
单元质检卷八立体几何(B)(时间:45分钟满分:100分)一、选择题(本大题共6小题,每小题7分,共42分)1.(2018广东化州一模,6)设m,n为两条不同的直线,α为平面,则下列结论正确的是()A.m⊥n,m∥α⇒n⊥αB.m⊥n,m⊥α⇒n∥αC.m∥n,m⊥α⇒n⊥αD.m∥n,m∥α⇒n∥α2.(2019届河北武邑中学三调,10)某几何体的三视图如图所示,则该几何体的体积为()A. B. C.5π D.3.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1B.2C.4D.84.(2019届广东珠海摸底,7)如图,圆锥顶点为P,底面圆心为O,过轴PO的截面为△PAB,C为PA中点,PA=4,PO=6,则从点C经圆锥侧面到点B的最短距离为()A.2B.2-C.6D.2-5.(2018黑龙江鹤岗一中模拟,12)三棱锥P-ABC中,△ABC为等边三角形,PA=PB=PC=1,PA⊥PB,三棱锥P-ABC的外接球的表面积为()A.12πB.3πC.D.2π6.(2019届河北衡水联考,11)将正方形ABCD沿对角线AC折起,点B到达B'的位置.当以A,B',C,D四点为顶点的三棱锥体积最大时,异面直线AD与B'C所成的角为()A. B. C. D.二、填空题(本大题共2小题,每小题7分,共14分)7.(2018福建厦门外国语学校模拟,15)已知棱长为1的正方体有一个内切球(如图),E为底面ABCD的中心,A1E与球相交于EF,则EF的长为.8.已知在正四棱柱ABCD-A1B1C1D1中,AA1=2AB,E为AA1中点,则异面直线BE与CD1所成角的余弦值为.三、解答题(本大题共3小题,共44分)9.(14分)(2019届四川一诊,18)如图所示,四棱锥S-ABCD中,SA⊥底面ABCD,∠ABC=90°,AB=, BC=1,AD=2,∠ACD=60°,E为CD的中点.(1)求证:BC∥平面SAE;(2)求三棱锥S-BCE与四棱锥S-BEDA的体积比.10.(15分)(2018河北唐山一模,18)在直角三角形ABC中,AB=BC=2,D为AC的中点,以BD为折痕将△ABD折起,使点A到达点P的位置且PB⊥CD.(1)求证:PD⊥CD;(2)求A点到平面PBC的距离.11.(15分)(2019届贵州遵义航天高中模拟,18)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠ABC=60°,△PAB为正三角形,且侧面PAB⊥底面ABCD.E,M分别为线段AB,PD的中点.(1)求证:PE⊥平面ABCD;(2)在棱CD上是否存在点G,使平面GAM⊥平面ABCD,请说明理由,并求三棱锥D-ACM的体积.单元质检卷八立体几何(B)1.C对于A,当m⊥n,m∥α时,可能n⊂α或n与α斜交,故A错;对于B,m⊥n,m⊥α⇒n∥α或m⊂α,故B错;对于C,m∥n,m⊥α⇒n⊥α,正确;对于D,m∥n,m∥α⇒n∥α或m⊂α,故D错;故选C.2.A由三视图可知,从左往右为半个圆锥,一个圆柱,一个半圆,故体积为π+π·2+π=π.故选A.3.B由条件知,该几何体是由一个圆柱被过圆柱底面圆直径的平面所截剩下的半个圆柱及一个半球拼接而成,其表面积是一个矩形面积、两个半圆面积、圆柱侧面积的一半、球表面积的一半相加所得,所以表面积为S表=2r×2r+2×πr2+πr×2r+×4πr2=5πr2+4r2=16+20π,解得r=2.4.A先作出圆锥的侧面展开图如图所示,由题得圆锥底面圆的半径为-=2,所以=π·4=4π,∴∠APA'==π,所以∠APB=,所以BC==2.故选A.5.B∵三棱锥P-ABC中,△ABC为等边三角形,PA=PB=PC=1,∴△PAB≌△PAC≌△PBC.∵PA⊥PB, ∴PA⊥PC,PB⊥PC.以PA、PB、PC为过同一顶点的三条棱,作正方体如图,则正方体的外接球同时也是三棱锥P-ABC外接球.∵正方体的对角线长为,∴球直径为,半径R=,因此,三棱锥P-ABC外接球的表面积是4πR2=4π×2=3π.故选B.6.C设O是正方形对角线AC、BD的交点,将正方形ABCD沿对角线AC折起,可得当B'O⊥平面ADC时,点B'到平面ADC的距离等于BO,当B'O与平面ADC不垂直时,设点B'到平面ADC的距离为d,则d<B'O,由此可得当三棱锥B'-ACD的体积最大时,B'O⊥平面ADC.连接B'B,因为AD∥BC,所以∠BCB'就是直线AD与B'C所成的角,设正方形的边长为a,因为B'O⊥平面ADC,OB⊂平面ADC,所以B'O⊥OB,因为B'O=BO=AC=a,所以BB'=BC=B'C=a,即△BB'C是等边三角形,所以∠BCB'=,所以直线AD与B'C所成的角为,故选C.7.设球心O到FE的距离为d,则在△OA1E中,A1E=,OE=.由等面积法可得×d,∴d=,∵球的半径为,∴EF=2.故答案为.8.连接A1B,则∠A1BE是BE与CD1所成的角.设AA1=2AB=2a,则BE=a,A1B=a,则cos∠A1BE=.9.(1)证明因为AB=,BC=1,∠ABC=90°,所以AC=2,∠BCA=60°,在△ACD中,AD=2,AC=2,∠ACD=60°,由余弦定理可得AD2=AC2+CD2-2AC·CDcos∠ACD,解得CD=4.所以AC2+AD2=CD2,所以△ACD是直角三角形,又E为CD的中点,所以AE=CD=CE.又∠ACD=60°,所以△ACE为等边三角形,所以∠CAE=60°=∠BCA,所以BC∥AE,又AE⊂平面SAE,BC⊄平面SAE,所以BC∥平面SAE.(2)解因为SA⊥平面ABCD,所以SA同为三棱锥S-BCE与四棱锥S-BEDA的高.由(1)可得∠BCE=120°,CE=CD=2,所以S△BCE=BC×CE×sin∠BCE=×1×2×.S四边形BEDA=S四边形ABCD-S△BCE=S△ABC+S△ACD-S△BCD=×1+×2×2=2.所以S△BCE∶S四边形ABED=∶2=1∶4.故三棱锥S-BCE与四棱锥S-BEDA的体积比为1∶4.10.解 (1)证明:∵直角三角形ABC中,AB=BC=2,D为AC的中点,∴BD⊥CD,又∵PB⊥CD,BD∩PB=B,∴CD⊥平面PBD,又因为PD⊂平面PBD,∴PD⊥CD.(2)∵AD⊥BD,∴PD⊥BD.又∵PD⊥CD,BD∩CD=D,∴PD⊥平面BCD.在直角三角形ABC中,AB=BC=2,所以PD=AD=,PB=PC=BC=2.S△ABC=2,S△PBC=,设A点到平面PBC的距离为d,由V P-ABC=V A-PBC,得S△ABC×PD=S△PBC×d, ∴d=△.△即A点到平面PBC的距离为.11.(1)证明因为△PAB为正三角形,E为AB的中点,所以PE⊥AB,又因为面PAB⊥面ABCD,面PAB∩面ABCD=AB,PE⊂平面PAB,所以PE⊥平面ABCD.(2)解在棱CD上存在点G,当点G为CD的中点时,平面GAM⊥平面ABCD.证明:连接EC.由(1)得,PE⊥平面ABCD,所以PE⊥CD,因为ABCD是菱形,∠ABC=60°,E为AB的中点,所以△ABC是正三角形,EC⊥AB.因为CD∥AB,所以EC⊥CD.因为PE∩EC=E,所以CD⊥平面PEC,所以CD⊥PC.因为M,G分别为PD,CD的中点,所以MG∥PC,所以CD⊥MG.因为ABCD是菱形,∠ADC=60°,所以△ADC是正三角形.又因为G为CD的中点,所以CD⊥AG,因为MG∩AG=G,所以CD⊥平面MAG,因为CD⊂平面ABCD,所以平面MAG⊥平面ABCD.V D-ACM=V M-ADC=··22·.。
§8.4直线、平面平行的判定与性质1.线面平行的判定定理和性质定理2.面面平行的判定定理和性质定理知识拓展 重要结论:(1)垂直于同一条直线的两个平面平行,即若a ⊥α,a ⊥β,则α∥β. (2)垂直于同一个平面的两条直线平行,即若a ⊥α,b ⊥α,则a ∥b . (3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.( × ) (2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线.( × ) (3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.( × ) (4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.( √ ) (5)若直线a 与平面α内无数条直线平行,则a ∥α.( × ) (6)若α∥β,直线a ∥α,则a ∥β.( × )题组二 教材改编2.[P61A 组T1(1)]下列命题中正确的是( )A .若a ,b 是两条直线,且a ∥b ,那么a 平行于经过b 的任何平面B .若直线a 和平面α满足a ∥α,那么a 与α内的任何直线平行C .平行于同一条直线的两个平面平行D .若直线a ,b 和平面α满足a ∥b ,a ∥α,b ⊄α,则b ∥α 答案 D解析 A 中,a 可以在过b 的平面内;B 中,a 与α内的直线也可能异面;C 中,两平面可相交;D 中,由直线与平面平行的判定定理知b ∥α,正确.3.[P62A 组T3]如图,在正方体ABCD -A 1B 1C 1D 1中,E 为DD 1的中点,则BD 1与平面AEC 的位置关系为________.答案平行解析连接BD,设BD∩AC=O,连接EO,在△BDD1中,E为DD1的中点,O为BD的中点,所以EO为△BDD1的中位线,则BD1∥EO,而BD1⊄平面ACE,EO⊂平面ACE,所以BD1∥平面ACE.题组三易错自纠4.若平面α∥平面β,直线a∥平面α,点B∈β,则在平面β内且过B点的所有直线中() A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一与a平行的直线答案 A解析当直线a在平面β内且过B点时,不存在与a平行的直线,故选A.5.设α,β,γ为三个不同的平面,a,b为直线,给出下列条件:①a⊂α,b⊂β,a∥β,b∥α;②α∥γ,β∥γ;③α⊥γ,β⊥γ;④a⊥α,b⊥β,a∥b.其中能推出α∥β的条件是______.(填上所有正确的序号)答案②④解析在条件①或条件③中,α∥β或α与β相交;由α∥γ,β∥γ⇒α∥β,条件②满足;在④中,a⊥α,a∥b⇒b⊥α,又b⊥β,从而α∥β,④满足.6.如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为________.答案平行四边形解析 ∵平面ABFE ∥平面DCGH ,又平面EFGH ∩平面ABFE =EF ,平面EFGH ∩平面DCGH =HG , ∴EF ∥HG .同理EH ∥FG , ∴四边形EFGH 是平行四边形.题型一 直线与平面平行的判定与性质命题点1 直线与平面平行的判定典例 如图,在四棱锥P -ABCD 中,AD ∥BC ,AB =BC =12AD ,E ,F ,H 分别为线段AD ,PC ,CD 的中点,AC 与BE 交于O 点,G 是线段OF 上一点.(1)求证:AP ∥平面BEF ; (2)求证:GH ∥平面P AD .证明 (1)连接EC , ∵AD ∥BC ,BC =12AD ,∴BC 綊AE ,∴四边形ABCE 是平行四边形,∴O 为AC 的中点.又F 是PC 的中点,∴FO ∥AP , 又FO ⊂平面BEF ,AP ⊄平面BEF ,∴AP ∥平面BEF . (2)连接FH ,OH ,∵F ,H 分别是PC ,CD 的中点, ∴FH ∥PD ,又PD ⊂平面P AD ,FH ⊄平面P AD , ∴FH ∥平面P AD .又O 是BE 的中点,H 是CD 的中点,∴OH ∥AD ,又AD ⊂平面P AD ,OH ⊄平面P AD , ∴OH ∥平面P AD .又FH ∩OH =H ,∴平面OHF ∥平面P AD . 又GH ⊂平面OHF ,∴GH ∥平面P AD .命题点2 直线与平面平行的性质典例 (2017·长沙调研)如图,四棱锥P -ABCD 的底面是边长为8的正方形,四条侧棱长均为217.点G ,E ,F ,H 分别是棱PB ,AB ,CD ,PC 上共面的四点,平面GEFH ⊥平面ABCD ,BC ∥平面GEFH .(1)证明:GH ∥EF ;(2)若EB =2,求四边形GEFH 的面积.(1)证明 因为BC ∥平面GEFH ,BC ⊂平面PBC , 且平面PBC ∩平面GEFH =GH ,所以GH ∥BC . 同理可证EF ∥BC ,因此GH ∥EF .(2)解 如图,连接AC ,BD 交于点O ,BD 交EF 于点K ,连接OP ,GK .因为P A =PC ,O 是AC 的中点,所以PO ⊥AC , 同理可得PO ⊥BD .又BD ∩AC =O ,且AC ,BD ⊂底面ABCD , 所以PO ⊥底面ABCD .又因为平面GEFH ⊥平面ABCD , 且PO ⊄平面GEFH ,所以PO ∥平面GEFH . 因为平面PBD ∩平面GEFH =GK , 所以PO ∥GK ,且GK ⊥底面ABCD , 从而GK ⊥EF .所以GK 是梯形GEFH 的高.由AB =8,EB =2得EB ∶AB =KB ∶DB =1∶4, 从而KB =14DB =12OB ,即K 为OB 的中点.再由PO ∥GK 得GK =12PO ,即G 是PB 的中点,且GH =12BC =4.由已知可得OB =42,PO =PB 2-OB 2=68-32=6, 所以GK =3.故四边形GEFH 的面积S =GH +EF 2·GK =4+82×3=18. 思维升华 判断或证明线面平行的常用方法 (1)利用线面平行的定义(无公共点).(2)利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α). (3)利用面面平行的性质(α∥β,a ⊂α⇒a ∥β).(4)利用面面平行的性质(α∥β,a ⊄α,a ⊄β,a ∥α⇒a ∥β).跟踪训练 (2018届昆明一中摸底)如图,在直三棱柱ABC —A 1B 1C 1中,∠BAC =90°,AB =AC =2,点M ,N 分别为A 1C 1,AB 1的中点.(1)证明:MN ∥平面BB 1C 1C ;(2)若CM ⊥MN ,求三棱锥M —NAC 的体积.(1)证明 连接A 1B ,BC 1,点M ,N 分别为A 1C 1,AB 1的中点,所以MN 为△A 1BC 1的一条中位线,MN ∥BC 1,又因为MN ⊄平面BB 1C 1C ,BC 1⊂平面BB 1C 1C , 所以MN ∥平面BB 1C 1C .(2)解 设点D ,E 分别为AB ,AA 1的中点,AA 1=a ,连接ND ,CD ,则CM 2=a 2+1,MN 2=1+a 2+44=a 2+84,CN 2=a 24+5=a 2+204,由CM ⊥MN ,得CM 2+MN 2=CN 2,解得a =2,又NE ⊥平面AA 1C 1C ,NE =1, V 三棱锥M —NAC =V 三棱锥N —AMC =13S △AMC ·NE=13×12×2×2×1=23. 所以三棱锥M —NAC 的体积为23.题型二平面与平面平行的判定与性质典例如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.证明(1)∵G,H分别是A1B1,A1C1的中点,∴GH是△A1B1C1的中位线,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)∵E,F分别是AB,AC的中点,∴EF∥BC.∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1G綊EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.又∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.又∵A1E∩EF=E,A1E,EF⊂平面EF A,∴平面EF A1∥平面BCHG.引申探究在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D.证明如图所示,连接A1C交AC1于点M,∵四边形A1ACC1是平行四边形,∴M是A1C的中点,连接MD,∵D为BC的中点,∴A1B∥DM.∵A1B⊂平面A1BD1,DM⊄平面A1BD1,∴DM∥平面A1BD1.又由三棱柱的性质知,D1C1綊BD,∴四边形BDC1D1为平行四边形,∴DC1∥BD1.又DC1⊄平面A1BD1,BD1⊂平面A1BD1,∴DC1∥平面A1BD1.又∵DC1∩DM=D,DC1,DM⊂平面AC1D,∴平面A1BD1∥平面AC1D.思维升华证明面面平行的方法(1)面面平行的定义.(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(3)利用垂直于同一条直线的两个平面平行.(4)两个平面同时平行于第三个平面,那么这两个平面平行.(5)利用“线线平行”“线面平行”“面面平行”的相互转化.跟踪训练(2018届江西南昌市摸底)如图,在四棱锥P—ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,P A⊥平面ABCD,P A=2,AB=1.设M,N分别为PD,AD的中点.(1)求证:平面CMN∥平面P AB;(2)求三棱锥P—ABM的体积.(1)证明∵M,N分别为PD,AD的中点,∴MN∥P A.又∵MN⊄平面P AB,P A⊂平面P AB,∴MN∥平面P AB.在Rt△ACD中,∠CAD=60°,CN=AN,∴∠ACN=60°.又∵∠BAC=60°,∴CN∥AB.∵CN⊄平面P AB,AB⊂平面P AB,∴CN∥平面P AB.又∵CN∩MN=N,CN,MN⊂平面CMN,∴平面CMN∥平面P AB.(2)解由(1)知,平面CMN∥平面P AB,∴点M到平面P AB的距离等于点C到平面P AB的距离.由已知得,AB=1,∠ABC=90°,∠BAC=60°,∴BC=3,∴三棱锥P—ABM的体积V=V三棱锥M—P AB=V三棱锥C—P AB=V三棱锥P—ABC=13×12×1×3×2=33.题型三平行关系的综合应用典例如图所示,平面α∥平面β,点A∈α,点C∈α,点B∈β,点D∈β,点E,F分别在线段AB,CD上,且AE∶EB=CF∶FD.(1)求证:EF∥平面β;(2)若E,F分别是AB,CD的中点,AC=4,BD=6,且AC,BD所成的角为60°,求EF的长.(1)证明①当AB,CD在同一平面内时,由平面α∥平面β,平面α∩平面ABDC=AC,平面β∩平面ABDC=BD知,AC∥BD.∵AE∶EB=CF∶FD,∴EF∥BD.又EF⊄β,BD⊂β,∴EF∥平面β.②当AB与CD异面时,如图所示,设平面ACD∩平面β=DH,且DH=AC,∵平面α∥平面β,平面α∩平面ACDH=AC,∴AC∥DH,∴四边形ACDH是平行四边形,在AH上取一点G,使AG∶GH=CF∶FD,连接EG,FG,BH.又∵AE∶EB=CF∶FD=AG∶GH,∴GF∥HD,EG∥BH.又EG∩GF=G,BH∩HD=H,∴平面EFG∥平面β.又EF⊂平面EFG,∴EF∥平面β.综合①②可知,EF ∥平面β.(2)解 如图所示,连接AD ,取AD 的中点M ,连接ME ,MF . ∵E ,F 分别为AB ,CD 的中点, ∴ME ∥BD ,MF ∥AC , 且ME =12BD =3,MF =12AC =2.∴∠EMF 为AC 与BD 所成的角或其补角, ∴∠EMF =60°或120°. ∴在△EFM 中,由余弦定理得 EF =ME 2+MF 2-2ME ·MF ·cos ∠EMF =32+22±2×3×2×12=13±6,即EF =7或EF =19.思维升华 利用线面平行的性质,可以实现与线线平行的转化,尤其在截面图的画法中,常用来确定交线的位置,对于最值问题,常用函数思想来解决.跟踪训练 如图所示,四边形EFGH 为空间四边形ABCD 的一个截面,若截面为平行四边形.(1)求证:AB ∥平面EFGH ,CD ∥平面EFGH ;(2)若AB =4,CD =6,求四边形EFGH 周长的取值范围. (1)证明 ∵四边形EFGH 为平行四边形, ∴EF ∥HG .∵HG ⊂平面ABD ,EF ⊄平面ABD , ∴EF ∥平面ABD .又∵EF ⊂平面ABC ,平面ABD ∩平面ABC =AB , ∴EF ∥AB ,又∵AB ⊄平面EFGH ,EF ⊂平面EFGH , ∴AB ∥平面EFGH .同理可证,CD ∥平面EFGH . (2)解 设EF =x (0<x <4), ∵EF ∥AB ,FG ∥CD , ∴CF CB =x 4,则FG 6=BF BC =BC -CF BC =1-x4. ∴FG =6-32x .∵四边形EFGH 为平行四边形,∴四边形EFGH 的周长l =2⎝⎛⎭⎫x +6-32x =12-x . 又∵0<x <4,∴8<l <12,即四边形EFGH 周长的取值范围是(8,12).1.若直线l 不平行于平面α,且l ⊄α,则( ) A .α内的所有直线与l 异面 B .α内不存在与l 平行的直线 C .α与直线l 至少有两个公共点 D .α内的直线与l 都相交 答案 B解析 因为l ⊄α,直线l 不平行于平面α,所以直线l 只能与平面α相交,于是直线l 与平面α只有一个公共点,所以平面α内不存在与l 平行的直线. 2.已知直线a 和平面α,那么a ∥α的一个充分条件是( ) A .存在一条直线b ,a ∥b 且b ⊂α B .存在一条直线b ,a ⊥b 且b ⊥α C .存在一个平面β,a ⊂β且α∥β D .存在一个平面β,a ∥β且α∥β 答案 C解析 在A ,B ,D 中,均有可能a ⊂α,错误;在C 中,两平面平行,则其中一个平面内的任一条直线都平行于另一平面,故C 正确.3.(2018·攀枝花质检)平面α∥平面β,点A ,C ∈α,点B ,D ∈β,则直线AC ∥直线BD 的充要条件是( ) A .AB ∥CD B .AD ∥CBC .AB 与CD 相交 D .A ,B ,C ,D 四点共面答案 D解析 充分性:A ,B ,C ,D 四点共面,由平面与平面平行的性质知AC ∥BD .必要性显然成立.4.一条直线l 上有相异的三个点A ,B ,C 到平面α的距离相等,那么直线l 与平面α的位置关系是( ) A .l ∥αB .l ⊥αC .l 与α相交但不垂直D .l ∥α或l ⊂α答案 D解析 当l ∥α时,直线l 上任意点到α的距离都相等;当l ⊂α时,直线l 上所有的点到α的距离都是0;当l ⊥α时,直线l 上有两个点到α的距离相等;当l 与α斜交时,也只能有两个点到α的距离相等.故选D.5.对于空间中的两条直线m ,n 和一个平面α,下列命题中的真命题是( ) A .若m ∥α,n ∥α,则m ∥n B .若m ∥α,n ⊂α,则m ∥n C .若m ∥α,n ⊥α,则m ∥n D .若m ⊥α,n ⊥α,则m ∥n答案 D解析 对A ,直线m ,n 可能平行、异面或相交,故A 错误;对B ,直线m 与n 可能平行,也可能异面,故B 错误;对C ,m 与n 垂直而非平行,故C 错误;对D ,垂直于同一平面的两直线平行,故D 正确.6.在空间四边形ABCD 中,E ,F 分别为AB ,AD 上的点,且AE ∶EB =AF ∶FD =1∶4,又H ,G 分别是BC ,CD 的中点,则( )A .BD ∥平面EFG ,且四边形EFGH 是平行四边形B .HG ∥平面ABD ,且四边形EFGH 是平行四边形C .EF ∥平面BCD ,且四边形EFGH 是梯形 D .EF ∥平面ADC ,且四边形EFGH 是梯形 答案 C解析 如图,由条件知,EF ∥BD ,且EF =15BD ,GH ∥BD ,且HG =12BD ,∴EF ∥HG ,且EF =25HG ,∴四边形EFGH 为梯形,排除A ,B ; ∵EF ∩平面ADC =F ,∴排除D.故选C.7.如图,E ,F ,G 分别是四面体ABCD 的棱BC ,CD ,DA 的中点,则此四面体与过E ,F ,G 的截面平行的棱的条数是________.答案 2解析 此四面体与过E ,F ,G 的截面平行的棱为AC ,BD ,只有两条.8.设α,β,γ是三个不同的平面,m,n是两条不同的直线,在命题“α∩β=m,n⊂γ,且________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.①α∥γ,n⊂β;②m∥γ,n∥β;③n∥β,m⊂γ.可以填入的条件有________.答案①或③解析由面面平行的性质定理可知,①正确;当n∥β,m⊂γ时,n和m在同一平面内,且没有公共点,所以平行,③正确.9.(2017·承德模拟)如图所示,在正四棱柱ABCD—A1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M只需满足条件______时,就有MN∥平面B1BDD1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)答案点M在线段FH上(或点M与点H重合)解析连接HN,FH,FN,则FH∥DD1,HN∥BD,∴平面FHN∥平面B1BDD1,只需M∈FH,则MN⊂平面FHN,∴MN∥平面B1BDD1.10.(2018·海口调研)将一个真命题中的“平面”换成“直线”、“直线”换成“平面”后仍是真命题,则该命题称为“可换命题”.给出下列四个命题:①垂直于同一平面的两直线平行;②垂直于同一平面的两平面平行;③平行于同一直线的两直线平行;④平行于同一平面的两直线平行.其中是“可换命题”的是________.(填序号) 答案①③解析由线面垂直的性质定理可知①是真命题,且垂直于同一直线的两平面平行也是真命题,故①是“可换命题”;因为垂直于同一平面的两平面可能平行或相交,所以②是假命题,不是“可换命题”;由公理4可知③是真命题,且平行于同一平面的两平面平行也是真命题,故③是“可换命题”;因为平行于同一平面的两条直线可能平行、相交或异面,故④是假命题,故④不是“可换命题”.11.如图,E ,F ,G ,H 分别是正方体ABCD -A 1B 1C 1D 1的棱BC ,CC 1,C 1D 1,AA 1的中点.求证:(1)EG ∥平面BB 1D 1D ; (2)平面BDF ∥平面B 1D 1H .证明 (1)如图,取B 1D 1的中点O ,连接GO ,OB ,因为OG 綊12B 1C 1綊BE ,所以BE 綊OG ,所以四边形BEGO 为平行四边形,故OB ∥EG , 因为OB ⊂平面BB 1D 1D , EG ⊄平面BB 1D 1D , 所以EG ∥平面BB 1D 1D . (2)由题意可知BD ∥B 1D 1. 连接HB ,D 1F , 因为BH 綊D 1F ,所以四边形HBFD 1是平行四边形,故HD 1∥BF . 又B 1D 1∩HD 1=D 1, BD ∩BF =B ,所以平面BDF ∥平面B 1D 1H .12.如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,底面ABCD 为正方形,BC =PD =2,E 为PC 的中点,CB =3CG .(1)求证:PC ⊥BC ;(2)AD 边上是否存在一点M ,使得P A ∥平面MEG ?若存在,求出AM 的长;若不存在,请说明理由.(1)证明 因为PD ⊥平面ABCD ,BC ⊂平面ABCD , 所以PD ⊥BC .因为四边形ABCD 是正方形,所以BC ⊥CD . 又PD ∩CD =D ,PD ,CD ⊂平面PCD , 所以BC ⊥平面PCD .因为PC ⊂平面PDC ,所以PC ⊥BC .(2)解 连接AC ,BD 交于点O ,连接EO ,GO , 延长GO 交AD 于点M ,连接EM ,则P A ∥平面MEG . 证明如下:因为E 为PC 的中点,O 是AC 的中点, 所以EO ∥P A .因为EO ⊂平面MEG ,P A ⊄平面MEG , 所以P A ∥平面MEG . 因为△OCG ≌△OAM , 所以AM =CG =23,所以AM 的长为23.13.(2018·南昌质检)在四面体ABCD 中,截面PQMN 是正方形,则在下列结论中,错误的是( )A .AC ⊥BDB .AC ∥截面PQMN C .AC =BDD .异面直线PM 与BD 所成的角为45° 答案 C解析 因为截面PQMN 是正方形,所以MN ∥QP , 又PQ ⊂平面ABC ,MN ⊄平面ABC , 则MN ∥平面ABC ,由线面平行的性质知MN ∥AC ,又MN ⊂平面PQMN ,AC⊄平面PQMN,则AC∥截面PQMN,同理可得MQ∥BD,又MN⊥QM,则AC⊥BD,故A,B正确.又因为BD∥MQ,所以异面直线PM与BD所成的角等于PM与QM所成的角,即为45°,故D正确.14.(2018届广西桂林模拟)在正四棱柱ABCD—A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,若存在实数λ,使得CQ=λCC1时,平面D1BQ∥平面P AO,则λ=________.答案1 2解析当Q为CC1的中点时,平面D1BQ∥平面P AO.理由如下:当Q为CC1的中点时,∵Q为CC1的中点,P为DD1的中点,∴QB∥PA.∵P,O为DD1,DB的中点,∴D1B∥PO.又PO∩P A=P,D1B∩QB=B,D1B∥平面P AO,QB∥平面P AO,∴平面D1BQ∥平面P AO.15.如图所示,侧棱与底面垂直,且底面为正方形的四棱柱ABCD—A1B1C1D1中,AA1=2,AB=1,M,N分别在AD1,BC上移动,始终保持MN∥平面DCC1D1,设BN=x,MN=y,则函数y=f(x)的图象大致是()答案 C解析过M作MQ∥DD1,交AD于点Q,连接QN.∵MN∥平面DCC1D1,MQ∥平面DCC1D1,MN∩MQ=M,∴平面MNQ∥平面DCC1D1.又平面ABCD与平面MNQ和DCC1D1分别交于QN和DC,∴NQ∥DC,可得QN=CD=AB=1,AQ=BN=x,∵MQ AQ =DD 1AD=2,∴MQ =2x . 在Rt △MQN 中,MN 2=MQ 2+QN 2,即y 2=4x 2+1,∴y 2-4x 2=1(x ≥0,y ≥1),∴函数y =f (x )的图象为焦点在y 轴上的双曲线上支的一部分.故选C.16.(2018·哈尔滨模拟)在三棱锥S -ABC 中,△ABC 是边长为6的正三角形,SA =SB =SC =15,平面DEFH 分别与AB ,BC ,SC ,SA 交于点D ,E ,F ,H .D ,E 分别是AB ,BC 的中点,如果直线SB ∥平面DEFH ,那么四边形DEFH 的面积为________. 答案452解析 如图,取AC 的中点G , 连接SG ,BG .易知SG ⊥AC ,BG ⊥AC ,SG ∩BG =G ,SG ,BG ⊂平面SGB , 故AC ⊥平面SGB , 所以AC ⊥SB .因为SB ∥平面DEFH ,SB ⊂平面SAB , 平面SAB ∩平面DEFH =HD , 则SB ∥HD . 同理SB ∥FE .又D ,E 分别为AB ,BC 的中点, 则H ,F 也为AS ,SC 的中点, 从而得HF 綊12AC 綊DE ,所以四边形DEFH 为平行四边形. 又AC ⊥SB ,SB ∥HD ,DE ∥AC , 所以DE ⊥HD ,所以四边形DEFH 为矩形,其面积S =HF ·HD =⎝⎛⎭⎫12AC ·⎝⎛⎭⎫12SB =452.。
单元质检八解析几何(时间:100分钟满分:150分)一、选择题(本大题共8小题,每小题5分,共40分)1.到直线3x-4y+1=0的距离为3,且与此直线平行的直线方程是()A.3x-4y+4=0B.3x-4y+4=0或3x-4y-2=0C.3x-4y+16=0D.3x-4y+16=0或3x-4y-14=0=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()2.已知方程-A.(-1,3)B.(-1,)C.(0,3)D.(0,)3.若双曲线C:=1(a>0,b>0)的一条渐近线被圆(x-2)2+y2=4所截得的弦长为2,则C的离心率为()A.2B.C.D.4.已知直线过点A(0,3),圆(x-1)2+y2=4被该直线截得的弦长为2,则该直线的方程是()A.y=-x+3B.x=0或y=-x+3C.x=0或y=x+3D.x=05.(2018全国Ⅱ,理12)已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过点A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=1 0°,则C的离心率为()A. B.1 C.1 D.16.(2018全国Ⅰ,理11)已知双曲线C:-y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A. B.3 C.2 D.47.已知抛物线y2=2px(p>0)与双曲线=1(a>0,b>0)的两条渐近线分别交于两点A,B(A,B异于原点),抛物线的焦点为F.若双曲线的离心率为2,|AF|=7,则p=()A.3B.6C.12D.428.已知抛物线C:y2=2px(p>0)的焦点为F,准线为l,A,B是C上两动点,且∠AFB=α(α为常数),线段AB中点为M,过点M作l的垂线,垂足为N.若的最小值为1,则α=()A. B. C. D.二、填空题(本大题共6小题,每小题5分,共30分)9.若双曲线x2-=1的离心率为,则实数m= .=1的渐近线的距离为.10.抛物线y2=8x的焦点到双曲线111.已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线-y2=1的左顶点为A.若双曲线一条渐近线与直线AM平行,则实数a= .12.已知抛物线C:y2=2px(p>0)的焦点为F,M是抛物线C上的点.若三角形OFM的外接圆与抛物线C 的准线相切,且该圆的面积为36π,则p的值为.13.已知双曲线C:=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M,N两点.若∠MAN= 0°,则C的离心率为.14.(2018全国Ⅲ,理16)已知点M(-1,1)和抛物线C:y2=4x,过C的焦点且斜率为k的直线与C交于A,B两点.若∠AMB=90°,则k= .三、解答题(本大题共6小题,共80分)15. (13分)如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4,设圆C的半径为1,圆心在l 上.(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使|MA|=2|MO|,求圆心C的横坐标a的取值范围.16.(13分)已知椭圆C:=1(a>b>0)的离心率为 1 ,F1,F2是椭圆的两个焦点,P是椭圆上任意一点,且△PF1F2的周长是8+2 1 .(1)求椭圆C的方程;,过椭圆的上顶点M作圆T的两条切线交椭圆于E,F两点,求直线EF的斜率.(2)设圆T:(x-2)2+y2=917.(13分)(2018全国Ⅲ,文20)已知斜率为k的直线l与椭圆C:=1交于A,B两点,线段AB的中点为M(1,m)(m>0).(1)证明:k<-1;(2)设F为C的右焦点,P为C上一点,且=0.证明:2||=||+||.18.(13分)已知双曲线=1(a>0,b>0)的右焦点为F(c,0).(1)若双曲线的一条渐近线方程为y=x,且c=2,求双曲线的方程;(2)以原点O为圆心,c为半径作圆,该圆与双曲线在第一象限的交点为A,过A作圆的切线,斜率为-,求双曲线的离心率.19.(14分)(2018上海,20)设常数t>2,在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线Γ:y2=8x(0≤x≤t,y≥0).l与x轴交于点A,与Γ交于点B,P,Q分别是曲线Γ与线段AB上的动点.(1)用t表示点B到点F的距离;(2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求△AQP的面积;(3)设t=8,是否存在以FP,FQ为邻边的矩形FPEQ,使得点E在Γ上?若存在,求点P的坐标;若不存在,说明理由.20.(14分)设椭圆=1(a>b>0)的左焦点为F,右顶点为A,离心率为1,已知A是抛物线y2=2px(p>0)的焦点,F到抛物线的准线l的距离为1.(1)求椭圆的方程和抛物线的方程;(2)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于点A),直线BQ与x轴相交于点D.若△APD的面积为,求直线AP的方程.单元质检八解析几何1.D解析设所求直线方程为3x-4y+m=0(m≠1),由-1 =3,解得m=16或m=-14.即所求直线方程为3x-4y+16=0或3x-4y-14=0.2.A解析由题意得(m2+n)(3m2-n)>0,解得-m2<n<3m2.又由该双曲线两焦点间的距离为4,得m2+n+3m2-n=4,即m2=1,所以-1<n<3.3.A解析可知双曲线C的渐近线方程为bx±ay=0,取其中的一条渐近线方程为bx+ay=0,则圆心(2,0)到这条渐近线的距离为-1,即,所以c=2a,所以e=2,故选A.4.B解析当弦所在的直线斜率不存在时,即弦所在直线的方程为x=0,此时圆(x-1)2+y2=4被截得的弦长为2.当弦所在的直线斜率存在时,设弦所在直线l的方程为y=kx+3,即kx-y+3=0.因为弦长为2,圆的半径为2,所以弦心距为-( )=1.由点到直线距离公式,=1,解得k=-.得(-1)综上所述,所求直线方程为x=0或y=-x+3.5.D解析∵A(-a,0),△PF1F2为等腰三角形,∴|PF2|=|F1F2|=2c.过点P作PE⊥x轴.∵∠F1F2P=1 0°,∴∠PF2E= 0°.∴|F2E|=c,|PE|=c,∴P(2c,c).∵k PA=,∴PA所在直线的方程为y=(x+a).∴c=(2c+a).∴e=1.6.B解析由条件知F(2,0),渐近线方程为y=±x,所以∠NOF=∠MOF= 0°,∠MON= 0°≠90°.不妨设∠OMN=90°,则|MN|=|OM|.又|OF|=2,在Rt△OMF中,|OM|= cos 0°=,所以|MN|=3.7.B解析因为双曲线的离心率为2,所以e2==4,即b2=3a2,所以双曲线=1(a>0,b>0)的两条渐近线方程为y=±x,代入y2=2px(p>0),得x=p或x=0,故x A=x B=p.又因为|AF|=x A+p+=7,所以p=6.8.C解析如图,过点A,B分别作准线的垂线AQ,BP,垂足分别是Q,P.设|AF|=a,|BF|=b,连接AF,BF.由抛物线定义,得|AF|=|AQ|,|BF|=|BP|.在梯形ABPQ中,2|MN|=|AQ|+|BP|=a+b.由余弦定理得,|AB|2=a2+b2-2ab cosα.∵的最小值为1,∴a2+b2-2ab cosα≥(),当α=时,不等式恒成立.故选C.9.2解析由题意知a=1,b=,m>0,c=1,则离心率e=1,解得m=2.10.1解析抛物线y2=8x的焦点坐标为(2,0),其到双曲线1=1的渐近线x±y=0的距离d=1=1.11.19解析由题意可知,抛物线y2=2px(p>0)的准线方程为x=-4,则p=8,所以点M(1,4).因为双曲线-y2=1的左顶点为A(-,0),所以直线AM的斜率为1.由题意得11,解得a=19.12.8解析设△OFM的外接圆圆心为O1,则|O1O|=|O1F|=|O1M|,所以O1在线段OF的垂直平分线上.又因为☉O1与抛物线的准线相切,所以O1在抛物线上,所以O1,.又因为圆面积为36π,所以半径为6,所以11p2=36,所以p=8.13.解析如图所示,由题意可得|OA|=a,|AN|=|AM|=b.∵∠MAN= 0°,∴|AP|=b,|OP|=--.设双曲线C的一条渐近线y=x的倾斜角为θ,则tanθ=-.又tanθ=,∴-,解得a2=3b2,∴e=111.14.2解析设直线AB:x=my+1,联立1,⇒y2-4my-4=0.设A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=-4.而=(x1+1,y1-1)=(my1+2,y1-1),=(x2+1,y2-1)=(my2+2,y2-1).∵∠AMB=90°,∴ =(my1+2)(my2+2)+(y1-1)(y2-1)=(m2+1)y1y2+(2m-1)(y1+y2)+5=-4(m2+1)+(2m-1)·4m+5=4m2-4m+1=0.∴m=1.∴k=1=2.15.解(1)由- ,-1,得圆心C(3,2).又因为圆C的半径为1,所以圆C的方程为(x-3)2+(y-2)2=1.显然切线的斜率一定存在,设所求圆C的切线方程为y=kx+3,即kx-y+3=0,则=1,所以|3k+1|=1,即2k(4k+3)=0.所以k=0或k=-.所以所求圆C的切线方程为y=3或y=-x+3,即y=3或3x+4y-12=0.(2)由圆C的圆心在直线l:y=2x-4上,可设圆心C为(a,2a-4), 则圆C的方程为(x-a)2+[y-(2a-4)]2=1.设M(x,y),又因为|MA|=2|MO|,所以(- )=2,整理得x2+(y+1)2=4.设方程x2+(y+1)2=4表示的是圆D,所以点M既在圆C上又在圆D上,即圆C和圆D有交点,所以2-1≤ ( - )-(-1) ≤ +1, 解得a的取值范围为0,1 .16.解(1)由题意,得e= 1 -,可知a=4b,c= 1 b.∵△PF1F2的周长是8+2 1 ,∴2a+2c=8+2 1 ,∴a=4,b=1.∴椭圆C的方程为1+y2=1.(2)椭圆的上顶点为M(0,1),由题意知过点M与圆T相切的直线存在斜率,则设其方程为l:y=kx+1.由直线y=kx+1与圆T相切可知,即32k2+36k+5=0,∴k1+k2=-9,k1k2=.由11,11,得(1+161)x2+32k1x=0,∴x E=-11 1 1.同理x F=-1 1,k EF=--1--=11-1 1.故直线EF的斜率为.17.证明(1)设A(x1,y1),B(x2,y2),则11=1,=1.两式相减,并由1-1-=k,得11·k=0.由题设知1=1,1=m,于是k=-.由题设得0<m<,故k<-1.(2)由题意得F(1,0).设P(x3,y3),则(x3-1,y3)+(x1-1,y1)+(x2-1,y2)=(0,0).由(1)及题设得x3=3-(x1+x2)=1,y3=-(y1+y2)=-2m<0.又点P在C上,所以m=,从而P1,-,||=.于是||=(1-1)1=(1-1)1-1=2-1.同理||=2-.所以||+||=4-1(x1+x2)=3.故2||=||+||.18.解(1)双曲线=1的渐近线方程为y=±x.由双曲线的一条渐近线方程为y=x,可得=1,解得a=b.因为c==2,所以a=b=.故双曲线的方程为=1.(2)设A的坐标为(m,n),可得直线AO的斜率满足k=,即m=n.①因为以点O为圆心,c为半径的圆的方程为x2+y2=c2,所以将①代入圆的方程,得3n2+n2=c2,解得n=1c,m= c.将点A,1代入双曲线方程,得1=1,化简得c2b2-1c2a2=a2b2.又因为c2=a2+b2,所以上式化简整理得c4-2c2a2+a4=0.两边都除以a4,整理得3e4-8e2+4=0,解得e2=或e2=2.因为双曲线的离心率e>1,所以该双曲线的离心率e=(负值舍去).故双曲线的离心率为.19.解(1)(方法一)设B(t,2),则|BF|=(- )=t+2.(方法二)设B(t,2),由抛物线的定义可知,|BF|=t+2.(2)由题意,得F(2,0),|FQ|=2,t=3,∴|FA|=1,∴|AQ|=,∴Q(3,).设OQ的中点为D,则D,,k PF=-0-=-,∴直线PF的方程为y=-(x-2).由- (- ),,整理,得3x2-20x+12=0,解得x=或x=6(舍去).∴△AQP的面积S=1-.(3)存在.设P,,E,,则k PF=--1,k FQ=1 -,直线QF的方程为y=1 -(x-2),∴y Q=1 -(8-2)=-,Q ,-.∵ ,∴E ,.∴=8,解得y2=1 .∴存在以FP,FQ为邻边的矩形FPEQ,使得点E在Γ上,且P,.20.解(1)设F的坐标为(-c,0).依题意,1=a,a-c=1,解得a=1,c=1,p=2,于是b2=a2-c2=.所以椭圆的方程为x2+=1,抛物线的方程为y2=4x.(2)设直线AP的方程为x=my+1(m≠0),与直线l的方程x=-1联立,可得点P-1,-, 故Q-1,.将x=my+1与x2+=1联立,消去x,整理得(3m2+4)y2+6my=0,解得y=0或y=-.由点B异于点A,可得点B-,-.由Q-1,,可得直线BQ的方程为--(x+1)--1-=0.令y=0,得x=-,故D-,0.所以|AD|=1--.又因为△APD的面积为,故1,整理得3m2-2|m|+2=0,解得|m|=,所以m=±.所以直线AP的方程为3x+y-3=0或3x-y-3=0.。