高二数学必修五选修2-1综合考试题
- 格式:doc
- 大小:305.50 KB
- 文档页数:7
①2013-2014学年第一学期期末考试题高二数学(理科必修5与2-1)一.选择题(每小题5分,共60分). 1.不等式12--x x ≥0的解集是( ) A.[2,+∞) B.(-∞,1)∪[2,+∞) C. (-∞,1) D.(-∞,1)∪[2,+∞)2.某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样 的方法抽取一个容量为150的样本,则样本中松树苗的数量为( ) A .30 B .25 C .20 D .15 3.已知{}n a 是等差数列,124a a +=,7828a a +=,则该数列前10项和10S 等于( ) A .64B .100C .110D .1204.双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( ) A .6B .3C .2D .335.设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值( )A .2-B .4-C .6-D .8-6.设集合A={x |1xx -<0},B={x |0<x <3},那么“m ∈A ”是“m ∈B ”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件7.已知抛物线2:8C y x =的焦点为F ,准线与x 轴的交点为K ,点A 在C 上且2A K A F=,则AFK ∆的面积为( ) A.4 B.8 C.16 D.38.已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是( )A .,,αγβγαβ⊥⊥若则‖B .,,m n m n αα⊥⊥若则‖C .,,m n m n αα若则‖‖‖D .,,m m αβαβ若则‖‖‖9.设等比数列{}n a 的公比2q =,前n 项和为n S ,则42S a =( )②A. 2B. 4C.152D.17210.已知点()1,3,4P --,且该点在三个坐标平面yoz 平面,zox 平面,xoy 平面上的射 影的坐标依次为()111,,x y z ,()222,,x y z 和()333,,x y z ,则( )A 、2222310x y z ++= B 、2221230x y z ++= C 、2223120x y z ++= D 、以上结论都不对 11.命题:“若12<x ,则11<<-x ”的逆否命题是( )A.若12≥x ,则11-≤≥x x ,或 B.若11<<-x ,则12<x C.若11-<>x x ,或,则12>x D.若11-≤≥x x ,或,则12≥x 12.双曲线2218yx -=上有一点P 到左焦点的距离为3,求P 到右焦点的距离 ( )A. 1或5B. 1C. 5D. 3填空题(本大题共4小题,每小题4分,共16分)13.阅读右边的程序框图,若输入4m =,6n =,则输出a = ,i = .(注:框图中的赋值符号“=”也可以写成“←”或“:=”) 14.若直线340x y m ++=与圆222440x y x y +-++=没有 公共点,则实数m 的取值范围是15.若一个球的体积为43π,则它的表面积为 . 16.设.11120,0的最小值,求且yx y x y x +=+>>解答题(本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤) 17.(10分)在ABC △中,5cos 13B =-,4cos 5C =. (Ⅰ)求sin A 的值;(Ⅱ)设ABC △的面积332ABC S =△,求BC 的长.开始 1i =n 整除a ? 是 输入m n ,结束 a m i =⨯输出a i , 1i i =+图3 否③18.(10分)设F 1, F 2分别为椭圆C : 12222=+by a x (a >b >0)的左、右两个焦点,若椭圆C 上的点A (1,23)到F 1, F 2两点的距离之和等于4. (1)写出椭圆C 的方程;(2)设K 椭圆上的动点,求线段F 1K 的中点M 的轨迹方程;19.(12分)如图,已知点P 在正方体ABC D -A 1B 1C 1D 1的对角线BD 1上,∠PDA=60°。
本册综合素质检测(一)时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.命题“∀a 、b ∈R ,如果a =b ,则a 2=ab ”的否命题是( )A .∀a 、b ∈R ,如果a 2=ab ,则a =bB .∀a 、b ∈R ,如果a 2=ab ,则a ≠bC .∀a 、b ∈R ,如果a 2≠ab ,则a ≠bD .∀a 、b ∈R ,如果a ≠b ,则a 2≠ab [答案] D[解析] 否命题既否定条件,又否定结论,故原命题的否命题是“∀a 、b ∈R ,如果a ≠b ,则a 2≠ab ”.2.下列说法中正确的是( )A .“x >5”是“x >3”的必要条件B .命题“∀x ∈R ,x 2+1>0”的否定是“∃x ∈R ,x 2+1≤0”C .∃m ∈R ,使函数f (x )=x 2+mx (x ∈R )是奇函数D .设p 、q 是简单命题,若p ∨q 是真命题,则p ∧q 也是真命题 [答案] B[解析] 命题“∀x ∈R ,x 2+1>0”的否定是“∃x ∈R ,x 2+1≤0”,故选B.3.已知A 、B 、C 三点不共线,对于平面ABC 外的任一点O ,下列条件中能确定点M 与点A 、B 、C 一定共面的是( )A.OM →=OA →+OB →+OC →B.OM →=2OA →-OB →-OC →C.OM →=OA →+12OB →+13OC →D.OM →=12OA →+13OB →+16OC →[答案] D[解析] 若点M 与点A 、B 、C 一定共面,则OM →=xOA →+yOB →+zOC →且x +y +z =1,故选D. 4.已知方程x 21+k +y 24-k=1表示双曲线,则k 的取值范围是( )A .-1<k <4B .k <-1或k >4C .k <-1D .k >4[答案] B[解析] 由题意,得(1+k )(4-k )<0,∴(k +1)(k -4)>0,∴k >4或k <-1.5.设l 、m 、n 均为直线,其中m 、n 在平面α内,则“l ⊥α”是“l ⊥m 且l ⊥n ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件[答案] A[解析] ∵l ⊥α,m ⊂α,n ⊂α,∵l ⊥m 且l ⊥n ,故充分性成立;又l ⊥m 且l ⊥n 时,m 、n ⊂α,不一定有m 与n 相交,∴l ⊥α不一定成立,∴必要性不成立,故选A.6.设p :2x 2-3x +1≤0,q :x 2-(2a +1)x +a (a +1)≤0,若¬p 是¬q 的必要不充分条件,则实数a 的取值范围是( )A .[0,12]B .(0,12)C .(-∞,0]∪[12,+∞)D .(-∞,0)∪(12,+∞)[答案] A[解析] 由2x 2-3x +1≤0,得12≤x ≤1,¬p 为x <12或x >1,由x 2-(2a +1)x +a (a +1)≤0得a ≤x ≤a +1,¬q 为x <a 或x >a +1.若¬p 是¬q 的必要不充分条件,应有⎩⎪⎨⎪⎧a ≤12,a +1>1或⎩⎪⎨⎪⎧a +1≥1,a <12,所以0≤a ≤12.故选A.7.如图所示,椭圆的中心在原点,焦点F 1、F 2在x 轴上,A 、B 是椭圆的顶点,P 是椭圆上一点,且PF 1⊥x 轴,PF 2∥AB ,则此椭圆的离心率是( )A.12 B .55 C.13 D .22[答案] B[解析] 点P 的坐标(-c ,b 2a ),于是k AB =-b a ,kPF 2=-b 22ac ,由k AB =kPF 2得b =2c ,故e =c a =55. 8.设抛物线的顶点在原点,其焦点F 在y 轴上,又抛物线上的点P (k ,-2)与点F 的距离为4,则k 等于( )A .4B .4或-4C .-2D .-2或2[答案] B[解析] 由题设条件可设抛物线方程为x 2=-2py (p >0),又点P 在抛物线上,则k 2=4p , ∵|PF |=4∴p2+2=4,即p =4,∴k =±4.9.已知a 、b 是两异面直线,A 、B ∈a ,C 、D ∈b ,AC ⊥b ,BD ⊥b 且AB =2,CD =1,则直线a 、b 所成的角为( )A .30°B .60°C .90°D .45°[答案] B[解析] 由于AB →=AC →+CD →+DB →,∴AB →·CD →=(AC →+CD →+DB →)·CD →=CD →2=1.cos 〈AB →,CD →〉=AB →·CD →|AB →|·|CD →|=12⇒〈AB →,CD →〉=60°,故选B.10.设抛物线C :y 2=4x 的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若|AF |=3|BF |,则l 的方程为( )A .y =x -1或y =-x +1B .y =33(x -1)或y =-33(x -1) C .y =3(x -1)或y =-3(x -1) D .y =22(x -1)或y =-22(x -1) [答案] C[解析] 由抛物线方程y 2=4x 知焦点F (1,0),准线x =-1,设直线l :x =my +1,代入y 2=4x 中消去x 得,y 2-4my -4=0.由根与系数的关系得,y 1+y 2=4m ,y 1y 2=-4, 设A (x 1,y 1),B (x 2,y 2),则y 1>0>y 2, ∵|AF |=3|BF |,∴y 1=-3y 2,由⎩⎪⎨⎪⎧y 1y 2=-4y 1=-3y 2,解得y 2=-23,∴y 1=2 3.∴m =y 1+y 24=33,∴直线l 的方程为x =33y +1. 由对称性知,这样的直线有两条.11.双曲线的实轴长与虚轴长之和等于其焦距的2倍,且一个顶点的坐标为(0,2),则双曲线的标准方程为( )A.x 24-y 24=1 B .y 24-x 24=1 C.y 24-x 28=1 D .x 28-y 24=1[答案] B[解析] 由题意知,焦点在y 轴上,且2a +2b =22c ,即a +b =2c ,又a =2,且a 2+b 2=c 2,所以a =2,b =2.所以双曲线的标准方程为y 24-x 24=1.12.在三棱锥P -ABC 中,AB ⊥BC ,AB =BC =12P A ,点O 、D 分别是AC 、PC 的中点,OP⊥底面ABC ,则直线OD 与平面PBC 所成角的正弦值为( )A.216 B .833 C.21060D .21030[答案] D[解析] ∵OP ⊥平面ABC ,OA =OC ,AB =BC , ∴OA ⊥OB ,OA ⊥OP ,OB ⊥OP .以O 为原点,建立如图所示的空间直角坐标系O -xyz . 设AB =a ,则A (22a,0,0)、B (0,22a,0)、C (-22a,0,0). 设OP =h ,则P (0,0,h ), ∵P A =2a ,∴h =142a . ∴OD →=(-24a,0,144a ).由条件可以求得平面PBC 的法向量n =(-1,1,77), ∴cos 〈OD →,n 〉=OD →·n |OD →||n |=21030.设OD 与平面PBC 所成的角为θ, 则sin θ=|cos 〈OD →,n 〉|=21030.二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线为y =34x ,则此双曲线的离心率为________.[答案] 54[解析] 由题意知b a =34,∴b 2a 2=916,∴c 2-a 2a 2=916,∴e 2=2516,∴e =54.14.已知在空间四边形OABC 中,OA →=a 、OB →=b 、OC →=c ,点M 在OA 上,且OM =3MA ,N 为BC 中点,用a 、b 、c 表示MN →,则MN →等于________.[答案] -34a +12b +12c[解析] 显然MN →=ON →-OM →=12(OB →+OC →)-34OA →=12b +12c -34a .15.若双曲线x 2m -y 2m +2=1的一个焦点与抛物线y 2=8x 的焦点相同,则实数m =________.[答案] 1[解析] ∵抛物线y 2=8x 的焦点坐标为(2,0),∴双曲线x 2m -y 2m +2=1的一个焦点为(2,0),∴a 2=m ,b 2=m +2,∴c 2=2m +2=4,∴m =1.16.过二面角α-l -β内一点P 作P A ⊥α于A ,作PB ⊥β于B ,若P A =5,PB =8,AB =7,则二面角α-l -β的度数为________.[答案] 120°[解析] 设P A →=a ,PB →=b ,由条件知|a |=5,|b |=8,|AB →|=7, ∴AB 2=|AB →|2=|b -a | =|b |2+|a |2-2a ·b =64+25-2a ·b =49, ∴a ·b =20,∴cos 〈a ,b 〉=a ·b |a |·|b |=12, ∴〈a ,b 〉=60°,∴二面角α-l -β为120°.三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)已知命题p :“方程x 2a -1+y 27-a =1表示焦点在y 轴上的椭圆”;命题q :“∃x ∈R ,使得x 2-(a -1)x +1<0”.(1)若命题p 为真命题,求实数a 的取值范围; (2)若命题p ∧q 为真命题,求实数a 的取值范围. [解析] (1)若命题p 为真命题,则有 ⎩⎪⎨⎪⎧a -1>07-a >07-a >a -1,∴1<a <4.故实数a 的取值范围是(1,4).(2)若命题p ∧q 为真命题,则p 真、q 真,由(1)知p 真,1<a <4. 若q 真,则不等式x 2-(a -1)x +1<0有解,即Δ=(a -1)2-4>0, ∴a 2-2a -3>0,∴a >3或a <-1. 又∵1<a <4,∴3<a <4. 故实数a 的取值范围是(3,4).18.(本小题满分12分)已知椭圆C 的中心在坐标原点,焦点坐标为(2,0),短轴长为4 3.(1)求椭圆C 的标准方程及离心率;(2)设P 是椭圆C 上一点,且点P 与椭圆C 的两个焦点F 1、F 2构成一个直角三角形,且|PF 1|>|PF 2|,求|PF 1||PF 2|的值.[解析] (1)设椭圆C 的标准方程为x 2a 2+y 2b 2=1.由题意得c =2,b =23,∴a =4.故椭圆C 的标准方程为x 216+y 212=1,离心率e =c a =12.(2)当点P 为短轴的一个端点时,∠F 1PO =30°, ∴∠F 1PF 2=60°.故不论点P 在椭圆C 上的任何位置时,∠F 1PF 2≠90°. ∵|PF 1|>|PF 2|,∴∠PF 2F 1=90°. ∴|PF 2|=b 2a =124=3.又∵|PF 1|+|PF 2|=2a =8, ∴|PF 1|=5,∴|PF 1||PF 2|=53.19.(本小题满分12分)已知抛物线y 2=4x 截直线y =2x +m 所得弦长|AB |=3 5.(1)求m 的值;(2)设P 是x 轴上的点,且△ABP 的面积为9,求点P 的坐标. [思路分析] (1)由弦长公式建立关于m 的方程求解; (2)设出P 点坐标,根据面积S =12|AB |·d 求解.[解析] (1)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =2x +m ,y 2=4x 得4x 2+4(m -1)x +m 2=0, 由根与系数的关系得x 1+x 2=1-m ,x 1·x 2=m 24,∴|AB |=1+k 2(x 1+x 2)2-4x 1x 2 =1+22(1-m )2-4×m 24=5(1-2m ),∵|AB |=35,∴5(1-2m )=35,解得m =-4. (2)设P (a,0),P 到直线AB 的距离为d , 则d =|2a -0-4|22+(-1)2=2|a -2|5,又S △ABP =12|AB |·d ,则d =2·S △ABP |AB |,∴2|a -2|5=2×935,∴|a -2|=3,∴a =5或a =-1,故点P 的坐标为(5,0)或(-1,0).20.(本小题满分12分)(2015·湖南澧县一中高二期中测试)如图,四边形ABCD 是正方形,四边形BDEF 是矩形,AB =2BF ,DE ⊥平面ABCD .(1)求证:CF ∥平面ADE ; (2)求二面角C -EF -B 的余弦值. [解析] (1)∵四边形ABCD 是正方形, ∴AD ∥BC .又∵四边形BDEF 是矩形,∴BF ∥DE .又∵BC ∩BF =B ,BC ⊂平面BCF ,BF ⊂平面BCF ,AD ⊂平面ADE ,DE ⊂平面ADE , ∴平面BCF ∥平面ADE ,又∵CF ⊂平面BCF ,∴CF ∥平面ADE .(2)建立如图所示的空间直角坐标系D -xyz .设AB =a ,则BF =a2,则B (a ,-a,0)、C (a,0,0)、E (0,0,a 2)、F (a ,-a ,a2).∴CE →=(-a,0,a 2)、CF →=(0,-a ,a 2)、BE →=(-a ,a ,a 2)、BF →=(0,0,a 2).设平面CEF 的一个法向量为n 1=(x 1,y 1,z 1),平面BEF 的一个法向量为n 2=(x 2,y 2,z 2). 则⎩⎪⎨⎪⎧n 1·CE →=0n 1·CF →=0,⎩⎪⎨⎪⎧n 2·BE →=0n 2·BF →=0.即⎩⎨⎧-ax 1+a2z 1=0-ay 1+a2z 1=0,⎩⎨⎧-ax 2+ay 2+a2z 2=0a2z 2=0,解得⎩⎪⎨⎪⎧ x 1=1y 1=1z 1=2,⎩⎪⎨⎪⎧x 2=1y 2=1z 2=0.∴n 1=(1,1,2),n 2=(1,1,0). cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=223=33.∴二面角C -EF -B 的余弦值是33. 21.(本小题满分12分)设双曲线C :x 2a 2-y 2=1(a >0)与直线l :x +y =1相交于两个不同的点A 、B .(1)求双曲线C 的离心率e 的取值范围;(2)设直线l 与y 轴的交点为P ,且P A →=512PB →,求a 的值.[解析] (1)由C 与l 相交于两个不同的点,故知方程组⎩⎪⎨⎪⎧x 2a 2-y 2=1x +y =1,有两组不同的实数解,消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0.①所以⎩⎪⎨⎪⎧1-a 2≠04a 4+8a 2(1-a 2)>0,解得0<a <2且a ≠1,双曲线的离心率e =1+a 2a =1a 2+1, ∵0<a <2且a ≠1,∴e >62,且e ≠2,即离心率e 的取值范围为(62,2)∪(2,+∞) (2)设A (x 1,y 1)、B (x 2,y 2)、P (0,1),∵P A →=512PB →,∴(x 1,y 1-1)=512(x 2,y 2-1).由此得x 1=512x 2,由于x 1、x 2都是方程①的根,且1-a 2≠0,所以1712x 2=-2a 21-a 2,512x 22=-2a 21-a 2. 消去x 2得,-2a 21-a 2=28960. 由a >0,所以a =1713.22.(本小题满分14分)(2014·天津理,17)如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点.(1)证明:BE ⊥DC ;(2)求直线BE 与平面PBD 所成角的正弦值;(3)若F 为棱PC 上一点,满足BF ⊥AC ,求二面角F -AB -P 的余弦值.[解析] 解法一:依题意,以点A 为原点建立空间直角坐标系(如图),可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2),由E 为棱PC 的中点, 得E (1,1,1).(1)BE →=(0,1,1)、DC →=(2,0,0),故BE →·DC →=0,所以BE ⊥DC .(2)BD →=(-1,2,0)、PB →=(1,0,-2),设n =(x ,y ,z )为平面PBD 的法向量,则 ⎩⎪⎨⎪⎧n ·BD →=0n ·PB →=0,即⎩⎪⎨⎪⎧-x +2y =0x -2z =0,不妨令y =1,可得n =(2,1,1)为平面PBD 的一个法向量,于是有 cos 〈n ,BE →〉=n ·BE →|n |·|BE →|=26×2=33.所以,直线BE 与平面PBD 所成角的正弦值为33. (3)向量BC →=(1,2,0),CP →=(-2,-2,2),AC →=(2,2,0),AB →=(1,0,0),由点F 在棱PC 上,设CF →=λCP →,0≤λ≤1.故BF →=BC →+CF →=BC →+λCP →=(1-2λ,2-2λ,2λ),由BF ⊥AC ,得BF →·AC →=0,因此,2(1-2λ)+2(2-2λ),解得λ=34,即BF →=(-12,12,32).设n 1=(x 1,y 1,z 1)为平面F AB 的法向量,则 ⎩⎪⎨⎪⎧ n 1·AB →=0n 1·B F →=0,即⎩⎪⎨⎪⎧x 1=0-12x 1+12y 1+32z 1=0, 不妨令z 1=1,可得n 1=(0,-3,1)为平面F AB 的一个法向量,取平面ABP 的法向量n 2=(0,1,0),则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-310×1=-31010.易知,二面角F -AB -P 是锐角,所以其余弦值为31010.解法二:(1)证明:如图,取PD 中点M ,连接EM 、AM .由于E 、M 分别为PC 、PD 的中点,故EM ∥DC ,且EM =12DC ,又由已知,可得EM ∥AB 且EM =AB ,故四边形ABEM 为平行四边形,所以BE ∥AM .因为P A ⊥底面ABCD ,故P A ⊥CD ,而CD ⊥DA ,从而CD⊥平面P AD ,因为AM ⊂平面P AD ,于是CD ⊥AM ,又BE ∥AM ,所以BE ⊥CD . (2)连接BM ,由(1)有CD ⊥平面P AD ,得CD ⊥PD ,而EM ∥CD ,故PD ⊥EM ,又因为AD =AP ,M 为PD 的中点,故PD ⊥AM ,可得PD ⊥BE ,所以PD ⊥平面BEM ,故平面BEM ⊥平面PBD ,所以,直线BE 在平面PBD 内的射影为直线BM ,而BE ⊥EM ,可得∠EBM 为锐角,故∠EBM 为直线BE 与平面PBD 所成的角.依题意,有PD =22,而M 为PD 中点,可得AM =2,进而BE =2,故在直角三角形BEM 中,tan ∠EBM =EM BE =AB BE =12,因此sin ∠EBM =33.所以,直线BE 与平面PBD 所成角的正弦值为33. (3)如图,在△P AC 中,过点F 作FH ∥P A 交AC 于点H ,因为P A ⊥底面ABCD ,故FH ⊥底面ABCD ,从而FH ⊥AC ,又BF ⊥AC ,得AC ⊥平面FHB ,因此AC ⊥BH ,在底面ABCD 内,可得CH =3HA ,从而CF =3FP .在平面PDC 内,作FG ∥DC 交PD 于点G ,于是DG =3GP ,由于DC ∥AB ,故GF ∥AB ,所以A 、B 、F 、G 四点共面,由AB ⊥P A ,AB ⊥AD ,得AB ⊥平面P AD ,故AB ⊥AG ,所以∠P AG 为二面角F -AB -P 的平面角.在△P AG 中,P A =2,PG =14PD =22,∠APG =45°,由余弦定理可得AG =102,cos ∠P AG =31010. 所以,二面角F -AB -P 的余弦值为31010.。
高中数学选修2-1综合测试卷带答案解析:p是q的必要不充分条件,即p成立时q一定成立,但q成立时p不一定成立。
根据题目中的条件,当a=3,b=2,c=5,d=4时,q成立但p不成立。
因此选项A不成立,选项B、C、D均成立。
答案:BCD8.若f(x)=x3-3x2-9x+19,则f(x)的最小值为()A.-5B.-6C.4D.5解析:f(x)=x3-3x2-9x+19=(x-1)3-9(x-1)+10,令x-1=t,则f(x)=t3-9t+10,f'(x)=3t2-9=0,解得t=±1,代入f(x)得f(0)=10,f(2)=-5,所以f(x)的最小值为-5.答案:B9.已知等差数列{an}的公差为d,若a1+a2+a3+a4=10,a2+a3+a4+a5=20,则d的值为()A.2B.4C.6D.8解析:将等式a1+a2+a3+a4=10两边同时加上a5-a1,得a5+a2+a3+a4=a1+a2+a3+a4+a5-2a1=20-2a1.因为a2+a3+a4+a5=20,所以a5+a2+a3+a4=20-a1.联立以上两式,得2a1=10,所以a1=5.又因为a1+a2+a3+a4=10,所以2a1+3d=10,解得d=2.答案:A10.已知函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,则必存在ξ∈(0,1),使得f(ξ)=ξ。
()A.正确B.错误解析:考虑函数g(x)=f(x)-x,g(0)=0,g(1)=0,因此在区间[0,1]上必存在一点ξ,使得g'(ξ)=0,即f'(ξ)-1=0,即f(ξ)=ξ。
答案:A11.已知圆锥的底半径为R,高为H,若圆锥的体积为底面积的三倍,则圆锥的母线长为()A.3RB.4RC.5RD.6R解析:设圆锥的母线长为l,则圆锥的底面积为πR2,体积为(1/3)πR2H,根据题意得(1/3)πR2H=3πR2,解得H=9R/π,根据勾股定理得l2=H2+R2,代入H的值,得l=(82+π2)R/π,约等于5R。
必修5和选修2-1测试卷A (5)学号: 姓名:分数:选择题5D.5 或— 3D . 4AB 与D 1E 所成角的余弦值为5 C . 11 A . 1 B .66305.已知△ ABC 的三个顶点为 A (3, 3, 2), B (4,— 3, 7), C (0, 5, 1),贝 U BC 边上的 中线长为 ( )A . 5B . 4C . 3D . 24.数列{a n }的前n 项和为S n ,若a n)w.w.w.k.s.5.u.c.o.mx + 2y — 3= 0,则该双曲线的离1.等差数列{a n }中,已知前15项的和 S 1590,则a 8等于(45A .2B . 1245 C —42.在厶ABC 中, a = 2; 3 , b = 2,2 , B = 45°贝U A 等于A . 30 °B . 60 °60 或 120 °D . 30 或 150 °3.不等式x 2 3x 40的解集为A . {x| 1 x 4}B . { x | x 4或x1} C . x | x 1 或 x4 D . {x| 4 x 1}1,则S 5等于(n (n 1)6、已知对称轴为坐标轴的双曲线有 '条渐近线平行于直线心率为( )5A.5 或一B. 5或乜 C . 3 或 34 2 27.若 a b 1,(a,b R ),则 11的最小值为(ab A . 1 B . 2 C . 3A .10B.10D.59.已知双曲线2b 21(a 0,b 0)的一条渐近线方程是 沪3x ,它的一个焦点在抛物2 2(A ) xy36 1081 (B )2 22L 工1 9 2710、已知空间四边形 OABC 中,OA a,OBN 为BC 中点, 则MN : =( )1 r2 - 1 ■A . a b c2 3 22x(C )-2 y_1(D )2x2y1 108 36279b,OCc ,点 M 在 OA 上, 且 OM=2MA ,2 ' 1 ,1 'B . a b c 3 2 2&在正方体ABCD A1BGD 1 中, E 是棱AB 1的中点,则线y 2 24x 的准线上,则双曲线的方程为1 1 12 • 2 • 1 •C. — a b cD. - a b c2 2 23 3 211.已知数列{a n},如果a〔,a? a〔,a a2 , ,a n a n 1, 是首项为1,公比为2的等比数列,那么a n = ()A. 2n+1—1B. 2n—1C. 2n—1D. 2n+112、以下四个关于圆锥曲线的命题中:uu uuu①设A、B为两个定点,k为正常数,I PA| |PB| k,则动点P的轨迹为椭圆;2 2 2W %/ W②双曲线1与椭圆y2 1有相同的焦点;25 9 35③方程2x2 5x 2 0的两根可分别作为椭圆和双曲线的离心率;④和定点A(5,0)及定直线l : x 色的距离之比为5 x2-的点的轨迹方程为—2上14 4 16 9其中真命题的个数为()A、4B、3C、2D、 1二、填空题213 .命题“ x0 R, x0X。
高二理科数学考试时间:120分钟;命题人:田儒森学校:__________姓名:__________班级:__________考号:__________一、单项选择((每小题5分,共70分))1、已知直线,a b ,平面,αβ,且a α⊥,b β⊂,则“a b ⊥”是“//αβ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 【答案】B【解析】a α⊥,若//αβ,则 β⊥a .又因b β⊂,所以a b ⊥成立.而a b ⊥,显然不能推出//αβ.所以“a b ⊥”是“//αβ”的必要不充分条件.故选B .考点:以立体几何为背景的充分性、必要性的判断.≠>则【方法点睛】本题主要考查充分性、必要性,属于容易题.解此类题目首先是注意问题的实质是判断命题的真假,然后掌握以下四种情况:q p ⇒且p q ⇒,则 p 是q 成立的充要条件;q p ⇒且q ≠>p ,则 p 是q 成立的充分不必要条件;p ≠>q 且p q ⇒,则 p 是q 成立的必要不充分条件;p ≠>q 且q ≠>p ,则 p 是q 成立既不充分也不必要条件.2、已知命题p :|x -1|≥2,命题q :x ∈Z ,若“p 且q ”与“非q ”同时为假命题,则满足条件的x 为( )A .{x|x ≥3或x ≤-1,x ∈Z}B .{x|-1≤x ≤3, x ∈Z}C .{0,1,2}D .{-1,0,1,2,3} 【答案】C【解析】命题p:13-≤≥x x 或,命题q:x ∈Z .由“p 且q ”与“非q ”同时为假命题知,p 假q 真,所以z x x ∈<<且31-,所以210,,=x 。
故选C 。
考点:复合命题的真假性应用。
3、某程序框图如图所示,若输出的S =57,则判断框内为( )A .k >3?B .k >4?C .k >5?D .k >6? 【答案】B【解析】循环体中计算的结果依次为;;;,这时循环结束,因此判断条件是或,故选B .考点:程序框图.4、执行如图的程序框图,则输出的结果是( )A .16 B .2524 C .34 D .1112【答案】D【解析】模拟算法:开始:0,2,S n ==8n <成立,11022S =+=,224n =+= 8n <成立,113244S =+=,426n =+=8n <成立,31114612S =+=,628n =+=8n <不成立,输出1112S =,故选D .考点:程序框图.5、在样本颇率分布直方图中,共有9个小长方形,若中间一个小长方形的面积等于它8个长方形的面积和的,且样本容量为140,则中间一组的频数为( ) A .28 B .40 C .56 D .60 【答案】B【解析】试题分析:设中间一组的频数为x ,利用中间一个小长方形的面积等于它8个长方形的面积和的,建立方程,即可求x . 试题解析:解:设中间一组的频数为x ,因为中间一个小长方形的面积等于它8个长方形的面积和的, 所以其他8组的频数和为,由x+=140,解得x=40.故选B .考点:频率分布直方图.点评:本题主要考查频率直方图的应用,比较基础.6、从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b a >的概率是( )A.15B.25C.35D.45 【答案】A 【解析】7、一组样本数据,容量为150。
新化十二中2014-2015学年度第一学期高二理科数学期末综合测试卷(一) 一、选择题1.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c =2,b =6,B =120°,则a 等于( ) A. 6 B .2 C. 3 D. 22.在等差数列{a n }中,已知a 1=2,a 2+a 3=13,则a 4+a 5+a 6等于( ) A .40 B .42 C .43 D .453.若不等式ax 2+8ax +21<0的解集是{x |-7<x <-1},那么a 的值是( )A .1B .2C .3D .44.(2010年浙江)设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2=( )A .11B .5C .-8D .-11 5.若x 、y 是正实数,则(x +y )⎝⎛⎭⎫1x +4y 的最小值为( )A .6B .9C .12D .156.已知A (2,-5,1),B (2,-2,4),C (1,-4,1),则向量AB →与AC →的夹角为( )A .30°B .45°C .60°D .90° 7.设命题p :∃x ∈Z ,使x 2+2x +m ≤0,则¬p 是( )A .∃x ∈Z ,使x 2+2x +m >0B .不存在x ∈Z ,使x 2+2x +m >0C .对于∀x ∈Z ,都有x 2+2x +m ≤0D .对于任意x ∈Z ,都有x 2+2x +m >08.若点P 在椭圆x 22+y 2=1上,F 1、F 2分别是椭圆的两焦点,且∠F 1PF 2=60°,则△F 1PF 2的面积是( )A .2B .1 C.32 D.339.在公比为整数的等比数列{}n a 中,如果,12,183241=+=+a a a a 那么该数列的前8项之和为( )A .513B .512C .510D .822510.在△ABC 中,a =32,b =22,B =45°,则A 等于()A .30°B .60°C .60°或120°D . 30°或15011.设抛物线28y x =上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( ) A. 4 B. 6 C. 8 D. 1212.以下有四种说法,其中正确说法的个数为:( ) (1)“m 是实数”是“m 是有理数”的充分不必要条件; (2) “a b >”是“22a b >”的充要条件;(3) “3x =”是“2230x x --=”的必要不充分条件; (4)“A B B =I ”是“A φ=”的必要不充分条件.A. 0个B. 1个C. 2个D. 3个二、填空题13.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,bc =30,S △ABC =152 3,则∠A =________.14.(2010年广东)若向量a =(1,1,x ),b =(1,2,1),c =(1,1,1),满足条件(c -a )·(2b )=-2,则x =________.15.直线y =x -1被抛物线y 2=4x 截得线段的中点坐标是____________.16.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,平面AB 1C 与平面A 1C 1D 间的距离为 。
本册综合测试一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的)1.已知p :2x -3<1,q :x 2-3x <0,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 p :x <2,q :0<x <3.∴pD ⇒/q ,qD ⇒/p .∴p 是q 的既不充分也不必要条件.答案 D2.抛物线y =14x 2的焦点坐标为( )A .(116,0)B .(-116,0)C .(0,1)D .(0,-1)解析 由y =14x 2,得x 2=4y ,∴焦点坐标为(0,1).答案 C3.已知命题p :3是奇数,q :3不是质数.由它们构成的“p ∨q ”“p ∧q ”“非p ”形式的命题中真命题有( )A .0个B .1个C .2个D .3个解析 命题p 为真,q 为假,∴“p ∨q ”为真,“p ∧q ”、“綈p ”为假,故应选B.答案 B4.双曲线x 24+y 2k =1的离心率e ∈(1,2),则k 的取值范围是( )A .(-∞,0)B .(-3,0)C .(-12,0)D .(-60,-12)解析 由x 24+y 2k =1表示双曲线知,k <0,且a 2=4,b 2=-k ,∴e 2=c 2a 2=4-k 4,∵1<e <2,∴1<4-k 4<4.∴4<4-k <16,∴-12<k <0.答案 C5.下列结论正确的个数是( )①命题“所有的四边形都是平行四边形”是特称命题;②命题“∀x ∈R ,x 2+1>0”是全称命题;③若p :∃x ∈R ,x 2+2x +1≤0,则綈p :∀x ∈R ,x 2+2x +1≤0.A .0B .1C .2D .3解析 ①是全称命题,②是全称命题,③綈p :∀x ∈R ,x 2+2x +1>0.∴①不正确,②正确,③不正确.答案 B6.设α,β,γ是互不重合的平面,m ,n 是互不重合的直线,给出下列命题:①若m ⊥α,m ⊥β,则α∥β;②若α⊥γ,β⊥γ,则α∥β;③若m ⊥α,m ∥β,则α⊥β;④若m ∥α,n ⊥α,则m ⊥n .其中真命题的个数是( )A .1B .2C .3D .4解析 ①正确,②不正确,③正确,④正确.答案 C7.已知a =(m +1,0,2m ),b =(6,2n -1,2),若a ∥b ,则m 与n 的值分别为( )A.15,12 B .5,2 C .-15,-12 D .-5,-2解析 ∵a ∥b ,∴a =λb ,∴⎩⎪⎨⎪⎧ m +1=6λ,0=λ(2n -1),2m =2λ,解得⎩⎪⎨⎪⎧ m =15,n =12,λ=15.∴m =15,n =12.答案 A8.若双曲线x 23-16y 2p 2=1的左焦点在抛物线y 2=2px 的准线上,则p 的值为( )A .2B .3C .4D .4 2解析 设双曲线的焦距为2c ,由双曲线方程知c 2=3+p 216,则其左焦点为(-3+p 216,0).由抛物线方程y 2=2px 知其准线方程为x =-p 2,由双曲线的左焦点在抛物线的准线上知,3+p 216=p 24,且p >0,解得p =4.答案 C 9.已知双曲线x 2a 2-y 2b 2=1的左、右焦点分别为F 1、F 2,点P 在双曲线上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为( )A.43B.32C.53 D .2解析 由双曲线的定义知,|PF 1|-|PF 2|=2a ,又|PF 1|=4|PF 2|,∴|PF 1|=8a 3,|PF 2|=2a 3.又|PF 2|≥c -a ,即2a 3≥c -a .∴c a ≤53.即e ≤53.答案 C10.如图所示,在直三棱柱ABC -A 1B 1C 1中,AB =BC =AA 1,∠ABC =90°,点EF 分别是棱AB ,BB 1的中点,则直线EF 和BC 1所成的角是( )A .45°B .60°C .90°D .120°解析 建立空间直角坐标如图所示.设AB =2,则EF →=(0,-1,1).BC 1→=(2,0,2),∴cos 〈EF →·BC 1→〉=EF →·BC 1→|EF →||BC 1→|=28·2=12, 故EF 与BC 1所成的角为60°.答案 B11.给出下列曲线,其中与直线y =-2x -3有交点的所有曲线是( )①4x +2y -1=0;②x 2+y 2=3;③x 22+y 2=1;④x 22-y 2=1. A .①③ B .②④ C .①②③ D .②③④解析 直线y =-2x -3与4x +2y -1=0平行,所以与①不相交.②中圆心(0,0)到直线2x +y +3=0的距离d =35< 3.所以与②相交.把y =-2x -3代入x 22+y 2=1,得x 22+4x 2+12x +9=1,即9x 2+24x +16=0,Δ=242-4×9×16=0,所以与③有交点.观察选项知,应选D. 答案 D12.过点M (-2,0)的直线l 与椭圆x 2+2y 2=2交于P 1,P 2两点,设线段P 1P 2的中点为P .若直线l 的斜率为k 1(k 1≠0),直线OP 的斜率为k 2,则k 1·k 2等于( )A .-12 B.12 C .-2 D .2解析 设直线l 的方程为y =k 1(x +2),代入x 2+2y 2=2,得(1+2k 21)x 2+8k 21x +8k 21-2=0,设P 1(x 1,y 1),P 2(x 2,y 2),则x 1+x 2=-8k 211+2k 21, 而y 1+y 2=k 1(x 1+x 2+4)=4k 11+2k 21. ∴k 2=y 1+y 22x 1+x 22=-12k 1,∴k 1·k 2=-12. 答案 A二、填空题(本大题共4小题,每小题5分,满分20分.把答案填在题中横线上)13.命题“存在一个三角形没有外接圆”的否定是________.解析 命题“存在一个三角形没有外接圆”是特称命题,它的否定是全称命题“任意一个三角形都有外接圆.”答案任意一个三角形都有外接圆14.已知命题p:1≤x≤2,q:a≤x≤a+2,且綈p是綈q的必要不充分条件,则实数a的取值范围是________.解析“p是q的必要不充分条件”的逆否命题是“q是p的必要不充分条件”.∴{x|1≤x≤2}{x|a≤x≤a+2},∴0≤a≤1.答案0≤a≤115.已知直线l1的一个方向向量为(-7,4,3),直线l2的一个方向向量为(x,y,6),且l1∥l2,则x=________,y=________.答案-14816.如图在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则AC1与平面ABCD所成角的余弦值为________.解析由题意知,AC1=22+22+1=3,AC=22+22=22,在Rt△AC1C中,cos∠C1AC=ACAC1=22 3.答案22 3三、解答题(本大题共6小题,满分70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知命题p :不等式|x -1|>m -1的解集为R ,命题q :f (x )=-(5-2m )x 是减函数,若p 或q 为真命题,p 且q 为假命题,求实数m 的取值范围.解 由|x -1|>m -1的解集为R ,知m -1<0,∴m <1.即p :m <1.又f (x )=-(5-2m )x 是减函数,∴5-2m >1,即m <2,即q :m <2.若p 真q 假,则⎩⎪⎨⎪⎧ m <1,m ≥2,m 不存在. 若p 假q 真,则⎩⎪⎨⎪⎧m ≥1,m <2,∴1≤m <2. 综上知,实数m 的取值范围是[1,2).18.(12分)求证:a +2b =0是直线ax +2y +3=0和直线x +by +2=0互相垂直的充要条件.证明 充分性:当b =0时,如果a +2b =0,那么a =0,此时直线ax +2y +3=0平行于x 轴,直线x +by +2=0平行于y 轴,它们互相垂直;当b ≠0时,直线ax +2y +3=0的斜率k 1=-a 2,直线x +by+2=0的斜率k 2=-1b ,如果a +2b =0,那么k 1k 2=(-a 2)×(-1b )=-1.故两直线互相垂直.必要性:如果两条直线互相垂直且斜率都存在,那么k 1k 2=(-a 2)×(-1b )=-1,所以a +2b =0,若两条直线中有直线的斜率不存在,且互相垂直,则b =0,且a =0,所以a +2b =0.综上可知,a +2b =0是直线ax +2y +3=0和直线x +by +2=0互相垂直的充要条件.19.(12分)抛物线y =-x 22与过点M (0,-1)的直线l 相交于A ,B 两点,O 为原点,若OA 和OB 的斜率之和为1,求直线l 的方程.解 显然直线l 垂直于x 轴不合题意,故设所求的直线方程为y =kx -1,代入抛物线方程化简,得x 2+2kx -2=0.由根的判别式Δ=4k 2+8=4(k 2+2)>0,于是有k ∈R .设点A 的坐标为(x 1,y 1),点B 的坐标为(x 2,y 2),则y 1x 1+y 2x 2=1.① 因为y 1=kx 1-1,y 2=kx 2-1,代入① ,得2k -(1x 1+1x 2)=1.② 又因为x 1+x 2=-2k ,x 1x 2=-2,代入②得k =1.所以直线l 的方程为y =x -1.20.(12分)已知椭圆C 的中心为平面直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别是7和1.(1)求椭圆C 的方程;(2)若P 为椭圆C 上的动点,M 为过P 且垂直于x 轴的直线上的点,|OP ||OM |=e (e 为椭圆C 的离心率),求点M 的轨迹方程,并说明轨迹是什么曲线.解 (1)设椭圆长半轴长及半焦距分别为a ,c 由已知得⎩⎪⎨⎪⎧ a -c =1,a +c =7,解得⎩⎪⎨⎪⎧a =4,c =3, 所以椭圆C 的方程为x 216+y 27=1.(2)设M (x ,y ),P (x ,y 1),其中x ∈[-4,4].由已知得x 2+y 21x 2+y2=e 2. 而e =34,故16(x 2+y 21)=9(x 2+y 2).①由点P 在椭圆C 上得y 21=112-7x 216,代入①式并化简得9y 2=112,所以点M 的轨迹方程为y =±473(-4≤x ≤4),它是两条平行于x轴的线段.21.(12分)如图,在正三棱柱ABC -A 1B 1C 1中,AB =2AA 1,点D 是A 1B 1的中点,点E 在A 1C 1上,且DE ⊥AE .(1)证明:平面ADE ⊥平面ACC 1A 1;(2)求直线AD 和平面ABC 1所成角的正弦值.解 (1)证明:由正三棱柱ABC -A 1B 1C 1的性质知AA 1⊥平面A 1B 1C 1.又DE ⊂平面A 1B 1C 1,所以DE ⊥AA 1.而DE ⊥AE ,AA 1∩AE =A ,所以DE ⊥平面ACC 1A 1.又DE ⊂平面ADE ,故平面ADE ⊥平面ACC 1A 1.(2)如图所示,设O 是AC 的中点,以O 为原点建立空间直角坐标系.不妨设AA 1=2,则AB =2,相关各点的坐标分别是A (0,-1,0),B (3,0,0),C 1(0,1,2),D (32,-12,2).易知AB →=(3,1,0),AC 1→=(0,2,2),AD →=(32,12,2). 设平面ABC 1的一个法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧ n ·AB →=3x +y =0,n ·AC 1→=2y +2z =0. 解得x =-33y ,z =-2y .故可取n =(1,-3,6).所以cos 〈n ,AD →〉=n ·AD →|n ||AD →|=2310×3=105. 由此可知,直线AD 和平面ABC 1所成角的正弦值为105.22.(12分)如图所示,在直四棱柱ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.(1)设E是DC的中点,求证:D1E∥平面A1BD;(2)求二面角A1—BD—C1的余弦值.解(1)证明:在图中连接B,E,则四边形DABE为正方形,∴BE=AD=A1D1,且BE∥AD∥A1D1.∴四边形A1D1EB为平行四边形.∴D1E∥A1B.又D1E⊄平面A1BD,A1B⊂平面A 1BD,∴D1E∥平面A1BD.(2)以D为原点,DA,DC,DD1所在直线分别为x轴,y轴,z 轴建立如图所示的空间直角坐标系,不妨设DA=1,则D(0,0,0),A(1,0,0),B(1,1,0),C1(0,2,2),A1(1,0,2).∴DA1→=(1,0,2),DB→=(1,1,0).设n=(x,y,z)为平面A1BD的一个法向量,由n ⊥DA 1→,n ⊥DB →,得⎩⎪⎨⎪⎧ x +2z =0,x +y =0, 取z =1,则n =(-2,2,1).又DC 1=(0,2,2),DB →=(1,1,0), 设m =(x 1,y 1,z 1)为平面C 1BD 的一个法向量,由m ⊥DC 1→,m ⊥DB →,得⎩⎪⎨⎪⎧2y 1+2z 1=0,x 1+y 1=0,取z 1=1,则m =(1,-1,1). 设m 与n 的夹角为α,二面角A 1-BD -C 1为θ,显然θ为锐角,∴cos α=m ·n |m ||n |=-39×3=-33. ∴cos θ=33,即所求二面角A 1-BD -C 1的余弦值为33.。
高二数学期末综合测试题 (A 组)1.ABC ∆中, 30,3,1=∠==A b a °,则B ∠等于 ( )A .60°B .60°或120°C .30°或150°D .1202.已知命题p :所有有理数都是实数,命题q :正数的对数都是正数,则下列命题中为真命题的是( )A .q p ∨⌝)(B .q p ∧C .)()(q p ⌝∧⌝D .)()(q p ⌝∨⌝ 3.f x ax ax ()=+-21在R 上满足f x ()<0,则a 的取值范围是( ) A .a ≤0 B .a <-4 C .-<<40a D .-<≤40a4.已知等比数列{}n a 的公比13q =-,则13572468a a a a a a a a ++++++等于( )A .13-B .3-C .13D .35.若=(0,1,-1),b =(1,1,0)且⊥+)(λ,则实数λ的值是( )A .-1B .0C .-2D .16.若方程05)2(2=++++m x m x 只有正根,则m 的取值范围是( ). A .4-≤m 或4≥m B . 45-≤<-m C .45-≤≤-m D . 25-<<-m7.目标函数y x z +=2,变量y x ,满足⎪⎩⎪⎨⎧≥<+≤+-12553034x y x y x ,则有( )A .3,12min max ==z zB .,12max =z z 无最小值C .z z ,3min =无最大值D .z 既无最大值,也无最小值8.已知310<<x ,则)31(x x -取最大值时x 的值是( ) A .31 B .61 C .43 D .329.若抛物线的准线方程为7-=x , 则抛物线的标准方程为( )A .y x 282-=B .x y 282=C .x y 282-=D .y x 282=10.如果33log log 4m n +=,那么n m +的最小值是( )A .4B .34C .9D .1811.已知数列{a n }的前n 项和3n S n =,则65a a +的值为( ) A .91 B .152 C .218 D .27912.“方程22121x y m m-=++表示双曲线”的一个充分不必要条件是( )A .21m -<<-B .2m <-或1m >-C .0m <D .0m > 13.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 和N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值是( )A .52-B .52 C .53D .1010 14.在ABC ∆中, 60,3,8===A c b ,则此三角形的外接圆的面积为________15.双曲线192522=-y x 的两个焦点分别为21,F F , 双曲线上的点P 到1F 的距离为12, 则P 到2F 的距离为 . 16. 不等式31<+xx 的解集为 17.已知{}n a 为等差数列,3822a a +=,67a =,则5a =_______;=10S ______ 18.若异面直线b a ,所成角为60°,AB 是公垂线,E ,F 分别是异面直线b a ,上到A ,B 距离为2,1的两点,当|EF |=3时,线段AB 的长为______19.椭圆22162x y +=和双曲线2213x y -=的公共点为P F F ,,21是两曲线的一个交点, 那么21cos PF F ∠的值是___________。
模块综合测试时间:90 分钟分值: 150分第Ⅰ卷 (选择题,共 60分)一、选择题 (每小题 5 分,共 60分)1.命题“对任意的 x∈R,x3-x2+1≤ 0”的否定是 ( )A .不存在 x∈R, x3-x2+ 1≤0B.存在 x∈R, x3-x2+1≤0C.对任意的 x∈R,x3- x2+1>0D.存在 x∈R, x3-x2+1>0解析:含有量词的命题的否定,一是要改变相应的量词,二是要否定结论.答案:D2.命题“若 A? B,则 A=B”与其逆命题、否命题、逆否命题这四个命题中,真命题有 ( )A.0 个B.2个C.3个D.4 个解析:逆命题与否命题正确,原命题与其逆否命题错误.答案:Bx 2y23.设椭圆的标准方程为k-x3+5-y k=1,其焦点在 x 轴上,则 k 的取值范围是 ( )A .4<k<5 B. 3<k<5C. k>3 D. 3<k<4解析:由题意知, k-3>5-k>0,解得 4<k<5. 答案:A 4.已知α,β表示两个不同的平面, m 为平面α内的一条直线,则“ α⊥β”是“ m⊥β”的 ( )A .充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:若 m⊥β,由面面垂直的判定定理,则α⊥β,反之不成立.答案:B5.已知条件 p:|x-1|<2,条件 q:x2-5x-6<0,则 p是 q的( )A .充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分又不必要条件解析:命题 p:- 1<x<3,记 A={ x|-1<x<3} ,命题 q:- 1<x<6,记 B={x|-1<x<6} ,∵A B,∴p是 q的充分不必要条件.答案:B16.已知命题 p:“x∈ R 时,都有 x2-x+4<0”;命题q:“存在x∈R,使 sinx+ cosx= 2成立”.则下列判断正确的是 ( ) A.p∨q为假命题B.p∧q 为真命题C.綈 p∧ q 为真命题D.綈 p∨綈 q 是假命题解析:易知 p假, q真,从而可判断得 C正确.答案:Cx 2y27.以双曲线x4-y5=1 的中心为顶点,且以该双曲线的右焦点为焦点的抛物线方程是 ( )A.y2=12x B.y2=- 12xC.y2=6x D.y2=- 6xx 2y2解析:由4-5=1,得 a2=4,b2=5,∴c2=a2+b2=9.∴右焦点的坐标为 (3,0),故抛物线的焦点坐标为 (3,0),顶点坐标为(0,0).故p2=3.∴抛物线方程为 y2=12x.答案:A8.对于空间任意一点 O 和不共线的三点 A、B、C,有如下关系:6O→P=O→A+2O→B+3O→C,则 ( )A.四点 O、A、B、C 必共面B.四点 P、A、B、C 必共面C.四点 O、P、B、C 必共面D.五点 O、 P、A、 B、C 必共面1 1 1 1 1 1解析:由已知得 O→P=6O→A+3O→B+2O→C,而6+3+2=1,∴四点 P、A、B、C 共面.答案:B9.如图,将边长为 1的正方形 ABCD 沿对角线 BD 折成直二面角, 11 若点 P 满足B →P =12B →A -21B →C +B →D ,则|B →P|2的值为 ( )解析:由题可知 |B →A|=1,|B →C|=1,|B →D|= 2.〈B →A ,B →D 〉= 45 °, 〈 B →D ,B →C 〉= 45 °,〈B →A ,B →C 〉= 60 °.∴|B →P|2=(12B →A -12B →C +B →D)2=14B →A2+14B →C2+B →D2-12B →A ·B →C + B →A ·B →D -B →C ·B →D1 1 1 12 2 9= 4+4+2-2×1×1×2+1× 2× 2 -1× 2× 2 =4.答案:Dx2 y 210.已知 P 是双曲线 a 2-b 2=1(a>0,b>0)上的点, F 1,F 2是其焦 点,双曲线的离心率是 54,且P →F 1·P →F 2=0,若△2B3PF1F2的面积为 9,则 a+b的值为 ( )A .5 B. 6C. 7 D. 8解析: 由P →F 1·P →F 2=0,得P →F 1⊥P →F 2,设 |P →F 1|=m ,|P →F 2|=n ,不妨设 m>n ,则 m 2+n 2=4c 2,m-n = 2a , 12mn =9,c a =54,解得 a =4,c =5,故 b = 3.因此 a + b = 7,选 C. 答案:C11.在正方体 ABCD -A 1B 1C 1D 1中,直线 BC 1 与平面 A 1BD 所成 角的余弦值为 ( )B.32D.23解析:建立如下图所示的空间直角坐标系. 设正方体的棱长为 1,则 D(0,0,0), A 1(1,0,1),B(1,1,0),C 1(0,1,1). ∴DA 1=(1,0,1),DB =(1,1,0),BC 1=(-1,0,1). 设平面 A 1BD 的法向量为 n =(x , y ,z),则 n ·D →A 1=0,n ·D →B =0.A.C.答案:C12.双曲线 a x2- b y2=1(a>0, b>0)的两个焦点为 F 1、F 2,若 P 为其上一点,且 |PF 1|=2|PF 2|,则双曲线离心率的取值范围为 ( )解析: 由题意知在双曲线上存在一点 P ,使得 |PF 1|= 2|PF 2|,如右 图所示.又∵|PF 1|-|PF 2|=2a ,∴|PF 2|=2a ,即在双曲线右支上恒存在点 P 使得|PF 2|=2a ,即|AF 2|≤2a.x +z =0, x +y令 x =1,则 n =(1,- 1,-1),∴cos 〈n ,BC 1〉 n ·B →C 1 = -2=- 6|n||B →C 1| 3· 23∴直线BC 1与平面 A 1BD 所成角的正弦值为 6. 3. ∴直线BC 1与平面 A 1BD 所成角的余弦值为3.3.A .(1,3) C . (3,+B .(1,)∴|OF 2|- |OA|= c-a≤ 2a.∴c≤ 3a. 又∵c>a,∴a<c≤3a.c∴1< ≤3,即 1<e≤3.a答案:B第Ⅱ卷(非选择题,共 90 分)二、填空题(每小题 5 分,共 20分)13.命题 p:? m∈ R,方程 x2+mx+ 1=0 有实数根,则“非 p” 形式的命题是___________ ,此命题是命题(填“真”或“假” ).解析:命题 p 为特称命题,所以綈 p 是全称命题,∴ 綈 p 是? m ∈R,方程 x2+mx+1=0没有实数根.∵m≥2或m≤-2时,Δ≥0,即该方程有实数根,所以 p真,綈 p假.答案: ? m∈R,方程 x2+mx+1=0没有实数根假14.双曲线x a2-b y2=1 的离心率 e∈(1,2),则其中一条渐近线的斜率取值范围是.a2+b2b解析: e=a∈(1,2),解得 0<a b< 3,又双曲线的渐近线方 aa程为 y=±a b x,故其中一条渐近线的斜率取值范围是(0,3)或(- 3, 0)).答案:(0, 3)或(- 3,0)15.如图,在四棱锥 O —ABCD 中,底面 ABCD 是边长为 2 的正 方形, OA ⊥平面 ABCD ,OA =2,M 为 OA 的中点.则异面直线 OB 与 MD 所成角余弦值为解析:以 A 为原点建立空间直角坐标系,如图则O →B =(2,0,-2),M →D =(0,2,-1).设O →B ,M →D 所成的角为 θ,O →B ·M →D = 2 = 10. |O →B||M →D |2 2·5 10 16.若直线 y = kx -2 与抛物线 y 2=8x 交于 A ,B 两点,若线段AB 的中点的横坐标是 2,则|AB|= __ .y 2=8x , 4k +8解析: k 2x 2-(4k +8)x +4=0,x 1+x 2= k 2 =4,y = kx -2, k则 cos θ= 答案:10 10得 k =-1或 2,当 k =-1 时,x 2-4x +4=0 有两个相等的实数根,不合题意.当 k =2 时,|AB|= 1+k 2|x 1-x 2|= 5 x 1+x 2 2- 4x 1x 2= 5 16- 4=2 15.答案: 2 15三、解答题 (写出必要的计算步骤,只写最后结果不得分,共 70 分)轴上的椭圆; q :实数 t 满足不等式 t 2-(a - 1)t -a<0.(1)若 p 为真,求实数 t 的取值范围;(2)若 p 是 q 的充分不必要条件,求实数 a 的取值范围.x 2 y 2解:(1)∵方程 x + y =1 所表示的曲线为焦点在 x 轴上的椭圆,3- t t +1∴3-t>t +1>0.解得- 1<t<1.(2)∵p 是 q 的充分不必要条件,∴ { t|-1<t<1}是不等式 t 2-(a -1)t -a<0解集的真子集.解方程 t 2-(a -1)t -a =0得 t =-1或 t =a.①当 a>-1时,不等式的解集为 {t|-1<t<a},此时,a>1.②当 a =- 1时, 不等式的解集为 ?,不满足题意.③当 a<-1 时,不等式的解集为 {t|a<t< 17.(10 分)已知 p :方程 223-t +t+1 1 所表示的曲线为焦点在-1} ,不满足题意.综上, a>1.18.(12 分)ABC— A1B1C1 中, CA= CB,AB= AA1,∠ BAA1= 60°.(1)证明: AB⊥A1C;(2)若平面 ABC⊥平面 AA1B1B,AB= CB,求直线 A1C 与平面 BB1C1C 所成角的正弦值.解:(1)取 AB 的中点 O,连接 OC,OA1,A1B.因为 CA= CB,所以 OC⊥ AB.由于 AB=AA1,∠BAA1=60°,故△AA1B 为等边三角形,所以 OA1 ⊥AB.因为 OC∩OA1=O,所以 AB⊥平面 OA1C.又 A1C? 平面 OA1C,故 AB⊥ A1C.(2)由(1)知 OC⊥ AB,OA1⊥AB.又平面 ABC⊥平面 AA1B1B,交线为 AB,所以 OC⊥平面AA1B1B,故 OA ,OA 1,OC 两两相互垂直.以 O 为坐标原点, O →A 的方向为 x 轴的正方向, |O →A|为单位长,建 立如图所示的空间直角坐标系 O - xyz.由题设知 A (1,0,0),A 1(0, 3, 0), C (0,0,3),B (-1,0,0).则B →C =(1,0, 3),B →B 1= A →A 1=(-1, 3,0),A →1C =(0,- 3, 3).设 n =(x ,y ,z )是平面 BB 1C 1C 的法向量,n ·B →C =0x + 3z = 0 则 → ,即n ·B →B 1=0 -x + 3y = 0可取 n =( 3,1,- 1).所以 A 1C 与平面 BB 1C 1C 所成角的正弦值为 19.(12 分)已知定点 F (0,1)和定直线 l 1:y =- 1,过定点 F 与直 线 l 1 相切的动圆圆心为点 C.(1)求动点 C 的轨迹方程;(2)过点 F 的直线 l 2交轨迹于两点 P ,Q ,交直线 l 1于点 R ,求R →P ·R →Q 的最小值.解:(1)由题意,点 C 到点 F 的距离等于它到 l 1的距故 cos n , A →1C n ·A →1C =- 10 |n||A →1C| 5 105离,∴点C 的 轨迹是以 F 为焦点, l 1 为准线的抛物线.∴所求轨迹的方程为 x 2=4y.(2)由题意,直线 PQ 的斜率存在,且不为 0,设直线 l 2 的方程为 y =kx +1(k ≠ 0),与抛物线方程联立消去 y ,得 x 2- 4kx -4=0.记 P (x 1, 2y 1),Q (x 2,y 2),则 x 1+ x 2=4k ,x 1x 2=- 4.易得点 R 的坐标为 -k ,-1 , → → 2 2 2 2∴R →P ·R →Q = x 1+ k , y 1+ 1 ·x 2+k ,y 2+1 = x 1+ k x 2+k + (kx 1+2)(kx 2 + 2)= (1 + k 2)x 1x 2 + k 2+2k (x 1 + x 2) + k 42 + 4 = - 4(1 + k 2) + 2 4 1 14k k +2k +k 2+4= 4 k 2+k 2 +8,∵k 2+k 2≥ 2,当且仅当 k 2=1 时取到 等号,∴R →P ·R →Q ≥4×2+8=16,即 R →P ·R →Q 的最小值为 16.x 2y220.(12 分)设 F 1,F 2 分别是椭圆: a 2+b 2= 1(a>b>0)的左、右焦 点,过 F 1倾斜角为 45°的直线 l 与该椭圆相交于 P ,Q 两点,且 |PQ| 4=3a.(1)求该椭圆的离心率.(2)设点 M (0,- 1)满足|MP|=|MQ|,求该椭圆的方程. 解:(1)直线 PQ 斜率为 1,设直线 l 的方程为 y= x+c,其中 c= a2-b2.y=x+c,设 P(x1,y1),Q(x2,y2),则 P,Q 两点坐标满足方程组 x2 y2+b2=1,a2化简得(a2+ b2)x2+2a2cx+a2(c2- b2)=0,- 2a2c a2c2-b2则 x1+ x2= 2 2, x1x2= 2 2.a2+b2a2+ b2所以 |PQ|= 2|x2-x1|= 2[ x1+ x2 2-4x1x2] =34a.4 4ab2得34a=a42+ab b2,故a2=2b2,(2)设 PQ 的中点为 N(x0,y0),2x1+ x2 -a2c 2 c y0=x0+c=3由|MP|= |MQ|得 k MN=- 1.y0+1即0x+01=-1,得 c=3,从而 a=3 2,b= 3.x 2y2 故椭圆的方程为1x8+y9=1.21.(12 分)所以椭圆的离如图所示,在四棱锥 P-ABCD 中, PA⊥平面 ABCD,AC⊥AD, AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.(1)求证: PC⊥AD;(2)求二面角 A- PC-D 的正弦值;(3)设E为棱 PA上的点,满足异面直线 BE与 CD所成的角为 30°,求 AE 的长.解:如右图所示,以点 A 为原点建立空间直角坐标系,依题意得11A(0,0,0), D(2,0,0),C(0,1,0),B -2,2,0 ,P(0,0,2).(1)证明: P→C=(0,1,-2),A→D=(2,0,0),所以P→C·A→D=0,所以PC ⊥AD.(2)解:P →C =(0,1,-2),C →D =(2,-1,0). 设平面 PCD 的法向量为 n = (x , y , z ),故平面 PCD 的一个法向量为 n =(1,2,1).可取平面 PAC 的法向量为 m =(1,0,0).所以二面角 A —PC — D 的正弦值为 630.(3)解:设点 E 的坐标为 (0,0,h ),其中 h ∈[0,2] ,→1 1→ 由此得B →E = 2,-2,h ,又C →D =(2,-1,0),以 = cos30 =°2 ,解得 h = 10 h =- 1100舍去 ,即AE =10+20h2 2 10 1010.10 .22.(12分)(2014 大·纲全国卷 )已知抛物线 C :y 2=2px (p>0)的焦点5n ·PC =0, n ·C →D =0, y -2z =0, 即 2x -y =0.不妨令 z = 1,则 x =1, y = 2, 于是 cos m , n m ·n 1 6|m| ·|n|= 6=,从而 sinm ,n 30=6,故 cos 〈 B →E ,C →D 〉 =B →E ·C →D |B →E| ·|12+h 2× 5 10+ 20h 2为 F,直线 y=4 与 y 轴的交点为 P,与 C 的交点为 Q,且|QF|=4|PQ|.(1)求 C 的方程;(2)过 F 的直线 l 与 C 相交于 A,B 两点,若 AB 的垂直平分线 l′ 与 C相交于 M,N两点,且 A,M,B,N四点在同一圆上,求 l 的方程.8解:(1)设 Q(x0,4),代入 y2= 2px 得 x0=p.8 p p 8 所以|PQ|=p,|QF|=2+x0=2+p.p 8 5 8由题设得2p+8p=45×p8,解得 p=- 2(舍去)或 p=2.所以 C 的方程为 y2=4x.(2)依题意知 l 与坐标轴不垂直,故可设 l 的方程为 x = my+ 1(m≠0).代入 y2=4x 得 y2- 4my- 4= 0.设 A(x1,y1),B(x2,y2),则 y1+y2=4m,y1y2=-4.故 AB 的中点为 D(2m2+1,2m),|AB|= m2+1|y1- y2|=4(m2+ 1).1又 l′的斜率为- m,所以 l′的方程为 x=-m y+2m2+3.4将上式代入 y2= 4x,并整理得 y2+m y-4(2m2+3)=0.4设 M(x3,y3),N(x4,y4),则 y3+y4=-m,y3y4=- 4(2m2+3). 22故 MN 的中点为 E m2+2m2+3,-m,1 4 m 2+1 2m2+ 1|MN|= 1+m2|y3-y4|=m2 .由于 MN 垂直平分 AB,故 A,M,B,N 四点在同一圆上等价于 |AE|1 1 1=|BE|=2|MN|,从而4|AB|2+|DE|2=4|MN|2,22即 4(m2+1)2+ 2m+m2+m2+ 2 24 m2+1 2 2m2+ 1=m4,化简得 m2-1=0,解得 m=1 或 m=- 1.所求直线 l 的方程为 x-y-1=0 或 x+y-1=0.。
2021年高二数学选修2 1同步模块综合测试题3套(人教版带答案和解释)----f6bad6ac-6ea2-11ec-bb68-7cb59b590d7d2021年高二数学选修2-1同步模块综合测试题3套(人教版带答案和解释)实用精品文献共享2021年高二数学选修2-1同步模块综合测试题3套(人教版带答案(和解释)模块综合检测(a)(时间:120分钟满分:150分)一、如果命题A和命题B的总数为1.0,那么y=0.0,如果命题A和命题B的总数为12,那么命题y的总数为0.0,那么命题y的总数为0.0,那么命题y的总数为0.2,命题y的总数为0.0;命题q:如果a>b,那么1A<1b,给出以下四个复合命题:① P和Q;②P或Q;③? P④? q、真命题的数量是()a.1b。
2c。
3d。
43.焦点为x24-y212=-1的椭圆方程为顶点,顶点的焦点为()a.x216+y212=1b x212+y216=1c。
x216+y24=1d。
X24+y216=14。
如果a>0是已知的,那么x0满足关于X的方程AX=B的充分必要条件是()a?十、∈r、 12ax2-bx≥12ax20-bx0b。
?十、∈r、 12ax2-bx≤12ax20-bx0c。
?十、∈r、 12ax2-bx≥12ax20-bx0d。
?十、∈ R、12ax2 bx≤ 12ax20-bx05。
已知椭圆x2a2+y2b2=1(a>b>0),M是椭圆上的移动点,F1是椭圆的左焦点,那么线段MF1的中点P的轨迹是()a.椭圆b.圆C.a.双曲线6的线段。
如果向量a=(1,0,z)和向量b=(2,1,2)之间的夹角的余弦是23,那么z等于()a.0b。
1c.-1d。
27如图所示,立方体中的m abcdda′B′C′D′是AB的中点,sin的值<cm→ > is()a.12b 21015c。
23d。
11158.通过抛物线y2=4x的焦点在两点a(x1,Y1)和B(X2,y2)处形成一条与抛物线相交的直线。
高二数学期末复习综合卷 一.选择题
1.已知{}n a 为等差数列,),(,2,042n f S a a n =-==则)(n f 的最大值为( )
A .
8
9 B .
4
9 C .1 D .0
2.双曲线两条渐近线的夹角为60º,该双曲线的离心率为( )
A B C 或2 D 或2 3.“a 和b 都不是偶数”的否定形式是( )
A .a 和b 至少有一个是偶数
B .a 和b 至多有一个是偶数
C .a 是偶数,b 不是偶数
D .a 和b 都是偶数
4.已知椭圆的焦点是12F F 、,P 是椭圆上的一动点.如果延长1F P 到Q ,使得
2||||PQ PF =, 那么动点Q 的轨迹是( )
A .双曲线的一支
B .椭圆
C .圆
D .抛物线
5.已知数列}{n a 的通项公式是1
1
++=n n a n ,前n 项和9n S =,则n 等于( )
A .100
B .99
C .10
D .9
6.条件甲:“00>>b a 且”,条件乙:“方程12
2=-b
y a x 表示双曲线”,那么甲是乙的( )
A 。
充分不必要条件
B 。
必要不充分条件
C . 充要条件
D 。
既不充分也不必要条件 7.下列结论正确的是( )
A .当2
lg 1lg ,10≥+≠>x x x x 时且 B .当0x >2≥
C .x
x x 1
,2+
≥时当的最小值为2 D .当x
x x 1
,20-
≤<时无最大值 8.中心在原点,焦点在坐标为(0,±52)的椭圆被直线3x -y -2=0截得的弦的中点 的横坐标为
2
1
,则椭圆方程为( ) A .222212575x y += B .222217525x y += C .2212575x y += D .22
17525
x y +=
9.已知双曲线C 的焦点、实轴端点分别恰好是椭圆
22
12516
x y +=的长轴端点、焦点,则双曲线C 的渐近线方程为( )
A .430x y ±=
B .340x y ±=
C .450x y ±=
D .540x y ±=
10.双曲线13
62
2=-y x 的渐近线与圆)0()3(222>=+-r r y x 相切,则r =( ) A .6 B .2 C .3 D .3
11.已知点F 为双曲线19
162
2=-y x 的右焦点,M 是双曲线右支上一动点,定点A 的坐标是(5,4),则4│MF │-5│MA │的最大值为( )
A .12
B .20
C .9
D .16
12.已知椭圆22
22:1(0)x y C a b a b
+=>>的离心率为32,过右焦点F 且斜率为(0)
k k >的直线与C 相交于A 、B 两点.若3AF FB =,则k =( )
A .1
B .2
C .3
D .2 二.填空题(本大题共4小题,每小题5分,共20分)
13.已知△ABC 中,A =60°,最大边和最小边是方程2
980x x -+=的两个实数根,那 么BC 边长是___________. 14.短轴长为5,离心率2
3
e =
的椭圆的两焦点为1F 、2F ,过1F 作直线交椭圆于A 、B 两点,则2ABF ∆周长为___________.
15.当(1
2)x ∈,时,不等式2
40x mx ++<恒成立,则m 的取值范围是_ _. 16.双曲线22221x y a b -=的离心率为1e ,双曲线22
221y x a b
-=的离心率为2e ,则12e e +的
最小值为____________.
三.解答题(本大题共6小题,共70分.解答应写出文字说明,演算步骤或证明过程)
在△ABC 中,角A ,B ,C 的对边分别是,,a b c ,且1
cos 3
A =。
(1)求2
sin
cos 22
B C
A ++的值;
(2)若a =
ABC 面积S 的最大值.
18.(本小题满分12分)
已知双曲线22
1167
x y +=的左、右两个焦点分别为1F 、2F ,动点P 满足124PF PF -=. (1)求动点P 的轨迹E 的方程;
(2)若M 是曲线E 上的一个动点,求12MF MF ⋅的最小值.
已知等差数列{}
n a 的前n 项和为n S ,且35a =,15225S =. (1)求数列{}
n a 的通项n a ; (2)设22n
a n
b n =+,求数列{}n b 的前n 项和n T .
20.(本小题满分12分)
已知椭圆122
22=+b
y a x (a >b >0)的离心率22e =, 直线
10x y ++=与椭圆交于P ,Q 两点, 且OP ⊥OQ (如图) .
(1)求这个椭圆方程;
(2)求弦长|PQ |.
21、(本小题满分12分)
某学校拟建一块周长为400m 的操场如图所示,操场的两头是半圆形,中间区域是矩形,学生做操一般安排在矩形区域,为了能让学生的做操区域尽可能大,试问如何设计矩形的长和宽?
22.(本小题满分12分)
已知椭圆22
22:1(0)x y C a b a b
+=>>,
(1)求椭圆C 的方程;
(2)设直线l 与椭圆C 交于A 、B 两点,坐标原点O 到直线l ,求AOB △面积的最大值.
答案:CDACB ABDAD CB
m ≤-
17、解:(1)19
-
;(.
18、解:(1)22
145
x y -=;(2)-5. 19、解:(1)21n a n =-;(2)2(41)(1)3
n
n T n n =
-++.
20、解:(1)22
243x y += (2)
3
. 21、解:设矩形的长为x m ,半圆的直径是d ,中间的矩形区域面积为S m 2. 由题知:S=dx ,且2x +πd =400 ∴S=
1()(2)2d x ππ21220000()22d x πππ
+≤= 当且仅当πd=2x=200,即x=100时等号成立
设计矩形的长为100m 宽约为63.7m 时,矩形面积最大.
21.解:(Ⅰ)设椭圆的半焦距为c
,依题意3c a a ⎧=⎪
⎨⎪=⎩,1b ∴=,∴所求椭圆方程为
2
213
x y +=. (Ⅱ)设11()A x y ,,22()B x y ,.(1)当AB x ⊥
轴时,AB . (2)当AB 与x 轴不垂直时,设直线AB 的方程为y kx m =+. 由已
知
=
,得2
23(1)4m k =+.把y kx m =+代入椭圆方程,整理得
2
2
2
(31)6330k x kmx m +++-=,122631
km
x x k -∴+=+,21223(1)31m x x k -=+.
2
2
2
21(1)()AB k x x ∴=+-2222
222
3612(1)(1)(31)31k m m k k k ⎡⎤
-=+-⎢⎥++⎣⎦
222222222
12(1)(31)3(1)(91)
(31)(31)k k m k k k k ++-++==
++242
22121212
33(0)34196123696k k k k k k
=+=+≠+=++⨯+++≤. 当且仅当2
2
1
9k k
=
,即3k =±时等号成立.当0k =
时,AB =, 综上所述max 2AB =.∴当AB 最大时,AOB △面积取最大
值
max 12S AB =⨯=.。