中国古代数学体系的特点
- 格式:docx
- 大小:18.91 KB
- 文档页数:5
中国古代数学成就及应用中国古代数学是世界上最早的数学体系之一,具有丰富的成就和广泛的应用。
古代中国数学的发展可以追溯到商朝时期,通过对商代甲骨文的研究可以发现早期的计数和算术符号。
随着时间的推移,中国古代数学逐渐发展并形成了独特的理论和应用。
一、古代数学成就1. 数字系统:中国古代数学发展了一套完整的数字系统,包括整数和分数。
在《九章算术》中,古代数学家提出了用竖式计算整数和分数的方法,并发展了有理数的运算规则。
2. 代数学:古代中国数学家在代数学方面也取得了重要成就。
《海岛算经》是一本重要的数学著作,其中包含了一些代数方程的解法。
古代数学家还发展了一些用于求解线性方程和二次方程的方法。
3. 几何学:古代中国的几何学主要以《几何原本》为代表。
这本著作介绍了许多几何定理和方法,包括平行线的性质、等腰三角形和等边三角形的性质等。
古代数学家还发展了一种称为“方程术”的几何方法,用于求解复杂的几何问题。
4. 概率论:中国古代数学家也研究了概率论。
《孙子算经》中就包含了一些概率问题的解法。
古代数学家还提出了一种称为“古典概型”的概率计算方法。
二、古代数学的应用1. 建筑工程:古代中国的建筑工程中广泛应用了数学知识。
例如,在修建宫殿和寺庙时,古代建筑师使用了几何学的知识来设计建筑物的布局和结构。
他们还使用了代数学的知识来计算建筑物的尺寸和比例。
2. 农业生产:农业是古代中国的主要经济活动之一,数学在农业生产中起到了重要的作用。
古代农民使用数学知识来计算土地的面积和产量,从而提高农业生产的效率。
3. 商业贸易:商业贸易是古代中国经济的重要组成部分,数学在商业贸易中起到了关键的作用。
古代商人使用数学知识来计算商品的价格、利润和税收,从而进行商业交易。
4. 天文学:古代中国的天文学也离不开数学的应用。
古代天文学家使用数学知识来计算星体的运动轨迹、日食和月食的发生时间等。
他们还使用数学方法来计算太阳和月亮的大小和距离。
中国数学史各阶段的特点1.引言1.1 概述中国数学史是指中国数学发展的历史过程,经历了古代、中世纪和近代三个阶段。
每个阶段都具有自己独特的特点和贡献。
本文将详细探讨每个阶段的数学特点,并总结各个阶段的特点,同时对未来发展方向进行展望。
在古代数学阶段,中国数学的特点主要体现在其对整数、代数、几何和算法的研究上。
古代中国人培养了一种强大的计算能力,他们通过日常生活中的实际问题激发了数学研究的动力。
重要的数学著作如《九章算术》和《孙子算经》被广泛传播和使用,成为后来数学发展的基础。
古代数学家在几何学上取得了突破,发展了割圆术和尺规作图法等重要的几何方法。
此外,他们还在代数学方面引入了象数、算术和代数基本理论,使得数学在提升计算能力的同时也开始具备了抽象思维能力。
进入中世纪数学阶段,中国数学面临了一定的停滞和衰退。
这个时期受到了外来文化的影响,特别是印度和阿拉伯数学的传入。
因此,在一段时间内,中国数学的发展主要借鉴了这些外来数学的成就。
然而,尽管主要受外来文化的影响,中国数学家依然在算法、代数和几何等方面进行了创新。
值得一提的是,中世纪时期中国数学家发展了一种新的计算方法,即推算和筹算,这种方法将数学与实际问题相结合,为后来数学的应用奠定了坚实基础。
进入近代数学阶段,中国数学经历了现代科学的兴起和西方数学的传入。
这个时期,中国数学面临了重大的挑战和机遇。
中国数学家开始研究西方的数学方法和理论,并通过翻译和借鉴逐渐吸收了西方数学的成就。
这使得中国数学在代数、几何、数论和概率论等领域取得了突破性的进展。
同时,中国数学家也借鉴了现代科学研究的方法和理念,将实证主义和数学方法相结合,为中国数学的发展开辟了新的道路。
总结各个阶段的特点,古代数学以其强大的计算能力和几何研究的突破而闻名;中世纪数学虽然受到外来文化的影响,但仍然在算法和几何等方面有所创新;近代数学则面临着西方数学的传入和现代科学思想的冲击,为中国数学发展带来了宝贵的机遇和挑战。
中国古代的数学智慧中国古代数学是世界数学史上的重要组成部分,它展现了中国古代智慧和科学的辉煌成就。
在古代,中国数学经历了不同的发展阶段,从最早的计数和计算开始,逐渐发展为包括代数、几何、概率等多个分支的综合体系。
中国古代数学的独特之处在于它的实用性和应用性,以及其思维方式和解题方法的独特性。
中国古代数学的起源可以追溯到远古时期的计数和计算活动。
在当时,人们通过手指、竹签等方式进行简单的计数。
随着社会的发展,人们开始使用符号和计算工具,如算筹和算盘,来进行更复杂的计算。
这标志着中国古代数学的第一个重要阶段的开始。
春秋战国时期,中国古代数学进入了一个新的发展阶段。
这个时期出现了一批重要的数学家和数学著作,如《九章算术》。
《九章算术》是中国古代数学的重要著作之一,它系统地总结了当时的数学知识和计算方法,包括整数运算、分数运算、方程求解、几何等内容。
这些内容对后来的数学发展产生了深远影响。
中国古代数学的另一个重要特点是其几何学的发展。
中国古代几何学主要以《几何原本》为代表,这是中国古代几何学的重要著作之一。
《几何原本》主要讨论了平面几何和立体几何的基本概念和性质,包括点、线、面、角、圆等。
它的出现标志着中国古代几何学的发展达到了一个新的高度。
除了代数和几何,中国古代数学还涉及到其他一些分支,如概率和数论。
中国古代数学家在这些领域也取得了一些重要的成果。
例如,中国古代数学家刘徽提出了中国古代数论的基本概念和方法,并在其著作《九章算术》中进行了系统总结。
这些成果为后来的数学发展打下了坚实的基础。
中国古代数学的独特性不仅体现在它的学科内容上,还体现在其思维方式和解题方法上。
中国古代数学家注重实际问题的解决,强调数学与实际应用的结合。
他们在解题过程中,善于运用抽象思维和逻辑推理,通过分析问题的本质和特征,找出解题的关键点。
这种思维方式和解题方法在中国古代数学中得到了充分的体现。
中国古代的数学智慧展现了中国古代智慧和科学的辉煌成就。
中国古代数学以计算为中心的特点中国古代数学是世界数学史上的重要组成部分,有着独特的特点和贡献。
其中,以计算为中心是中国古代数学的一个重要特点。
中国古代数学注重实用性和实际应用。
在古代社会,数学主要应用于土地测量、农业生产、商业交易、天文预测等实际问题中。
因此,计算成为中国古代数学的核心内容之一。
古代中国的数学家们通过观察和实践,总结出了一系列计算方法和技巧,为实际问题的解决提供了帮助。
中国古代数学注重计算的精确性和准确性。
古代中国的数学家们深知计算的重要性,他们致力于提高计算的准确性,并发展了一系列精确的计算方法。
例如,《九章算术》是中国古代最早的数学专著之一,其中包含了大量的计算方法和技巧,如加减乘除、求平方根、开方等。
这些计算方法经过长期的实践检验,被证明是相当准确和可靠的。
中国古代数学注重计算方法的简便性和易操作性。
古代中国的数学家们在实际计算过程中,不断总结经验,提炼出一些简便易行的计算方法。
他们尽可能地避免繁琐的计算步骤,以提高计算效率和准确度。
例如,在计算开方时,古代中国的数学家们经过不断尝试,发现了一种称为“开方术”的简便计算方法,可以在不使用精确的开方运算的情况下,近似地计算平方根的值。
这些简便的计算方法使得古代中国的数学家们能够在较短的时间内完成复杂的计算任务。
中国古代数学注重计算方法的系统性和完备性。
古代中国的数学家们通过整理和归纳,建立了一套相对完备的计算体系,包括了各种计算方法和技巧。
这些计算方法和技巧相互补充,形成了一个相对完整的计算体系。
例如,在《周髀算经》中,古代中国的数学家们提出了一种称为“方程法”的计算方法,在解决实际问题中被广泛应用。
这种方法通过建立方程,将复杂的问题转化为简单的计算,从而提高了计算的效率和准确度。
中国古代数学以计算为中心是其一个重要特点。
古代中国的数学家们注重实用性和实际应用,致力于提高计算的精确性和准确性,追求计算方法的简便性和易操作性,建立了一个系统性和完备性的计算体系。
论中国古代数学的主要成就和主要特点下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!中国古代数学的主要成就和主要特点一、古代中国数学的主要成就。
中国古代数学的特点
x
一、中国古代数学的特点
中国古代数学是中国古代文化的重要组成部分,也是中国古代文明的骨干。
它不仅在中国古代文化中发挥着重要作用,而且也为世界数学发展做出了重要的贡献。
中国古代数学的特点主要表现在以下几个方面:
1、数理化的特点
中国古代数学以数学和天文学、地理学等科学的结合为特征,强调“数理化”。
它将数学、天文学、地理学和技术应用结合起来从而促进了古代科学的发展。
比如,《九章算术》将数学、天文学、地理学结合起来,对古代科学的发展发挥了重要作用。
2、计算技术的特点
中国古代数学以计算技术的发展为特征,古代中国书法、计算机等科学技术都是由古代数学家们研究和创造出来的。
比如,古代中国的书法技术是古代数学家研究并开发出来的,他们的书法技术可以用来解决很多计算问题,对古代计算技术有重要的贡献。
3、几何学的特点
中国古代数学的几何学是中国古代科技文化的重要组成部分,它不仅通过计算来研究几何学中的形状和线段,而且也使用几何学来研究古代文字、文字编码和文字数学等,为古代科技文化的发展做出了重要贡献。
4、文献的特点
中国古代数学的文献记载了我国古代数学的辉煌历史,古代中国的数学书籍包括《九章算术》、《白乐天算经》、《张邱建算经》等等。
这些书籍记载了古代中国数学的研究成果,也对古代中国科技文化的发展起到了重要的作用。
总之,中国古代数学的特点是多方面的,它涵盖了从数理化、计算技术,几何学到文献记录的多种特点,为古代中国科技文化发展作出了重要贡献。
中国古代数学体系形成的标志中国古代数学体系的形成标志中国古代数学体系的形成可以追溯到两千多年前的春秋战国时期,这一时期是中国古代数学发展的关键时期,也是中国数学体系形成的标志。
在春秋战国时期,中国古代数学开始逐渐形成自己的独特特点和体系。
首先,中国古代数学的特点之一是注重实际应用。
在这个时期,数学开始被广泛应用于农业、商业、军事等实际领域。
例如,古代农业生产中的土地测量、灌溉系统设计等问题,商业中的贸易计算、利润分配等问题,都需要运用数学知识来解决。
古代数学家们通过实际问题的探索和解决,逐渐积累了大量的数学知识和技巧,为中国古代数学体系的形成奠定了基础。
中国古代数学的特点之二是强调观察和归纳。
在古代中国,数学的发展主要依靠数学家们的观察和归纳能力。
他们通过观察实际问题现象,总结规律和模式,并进行归纳和抽象。
例如,古代数学家张邱建在《张邱建算经》中总结了一系列数学方法和技巧,其中包括了求根公式、勾股定理等,这些都是通过观察和归纳得出的。
观察和归纳的方法使得中国古代数学在解决实际问题中具有很强的适应性和灵活性,也为中国数学体系的形成提供了重要的思维方式。
中国古代数学的特点之三是重视整体思维和系统性。
在中国古代数学的发展过程中,数学家们注重将各个数学分支联系起来,形成了一个完整的数学体系。
例如,古代数学家张丘建的《算经》就是一个系统化的数学著作,其中包括了算术、代数、几何等多个数学分支的内容。
这种整体思维和系统性的方法使得中国古代数学在思想上更加统一,也为中国古代数学体系的形成打下了基础。
中国古代数学体系形成的标志主要表现在注重实际应用、强调观察和归纳以及重视整体思维和系统性等方面。
这些特点使得中国古代数学在发展过程中具有独特的鲜明特色,也为中国数学体系的形成奠定了坚实的基础。
中国古代数学体系的形成标志着中国数学进入了一个全新的发展阶段,为后世的数学研究和应用奠定了重要的基础。
中国古代数学的特点1.实用主义:中国古代数学非常实用,不仅仅是一种学术研究,更是为了解决实际问题而发展起来的。
例如,古代中国的农民需要测算土地面积和边界长度,工匠需要计算材料的用量和工艺精度。
因此,中国古代数学的发展始终与社会生产和实际应用紧密相关。
2.算术大成:算术在中国古代数学中占据了首要地位。
中国古代算数发扬光大,涉及整数、分数、百分数、分数四则运算、开方等。
中国古代的《九章算术》就是一部重要的算术著作,系统阐述了各种算术方法和问题的解决技巧。
3.方程与代数:中国古代数学中对方程和代数问题解决方法的研究相对较少,但仍有一些重要成果。
例如,《九章算术》中包括了许多解方程的问题,使用了一些基本的代数方法。
另外,中国古代数学家还发展了一些特殊的代数记号,如“筹算”、“参真”。
4.几何优势:中国古代数学的一个显著特点是对几何问题的研究和突破。
古代中国数学家对于几何图形的性质和变换有着深入的认识,建立了一套独特的几何体系。
例如,《九章算术》中有关于平行四边形、三角形和梯形性质的论证和计算问题。
这些研究为后来的数学几何奠定了基础。
5.近似与折线法:中国古代数学家在计算中常常使用近似方法和折线法,这是他们解决实际问题的一种常用技术。
例如,他们利用近似法计算圆周长和圆的面积,并使用折线法来逼近曲线的形状。
6.小学算法:中国古代学术中的小学算法是一种重要的数学方法。
这些算法是用来进行简化和计算的步骤,并且普遍应用于商业和工程领域。
中国古代的商业活动和技术工程对算法的需求非常大,因此小学算法在古代中国的数学中扮演了重要角色。
7.整体观念与经验归纳:中国古代数学家注重整体观念和经验归纳,他们更关注方法的应用,而非严格的逻辑推理。
这种思维方式影响了中国古代数学的发展,使得中国数学在许多实际问题上取得了巨大的成就。
总的来说,中国古代数学具有实用主义、算术大成、几何优势和小学算法等特点。
虽然中国古代数学对方程和代数问题的研究较少,但它在实际应用中起到了重要的作用,并为后来数学的发展做出了宝贵的贡献。
论中国传统数学的特点1、以计算为中心。
演算在中国传统数学里占有重要的地位, 几乎每一部中国古代数学著作都是以“问题—解答”的形式存在。
以计算为主的中国传统数学, 还导致了算筹和算盘等计算工具的发明。
但中国传统数学把计算发展到淋漓尽致的地步, 不仅有精妙的迭代和高超的技巧, 还从中归纳出分数四则运算理论、比例计算理论、正负数运算理论、方程理论、勾股理论、割圆术、体积理论、同余理论等举世公认的成就。
另外, 它的计算方法往往从一整类问题中概括出来, 具有一般性, 对现在的数学机器证明具有参考价值。
、社会性以帝王君主为主的政治体制对中国传统数学的影响。
首先,中国是一个相对来说比较安定的国家,各地文化差异不大,没有刺激文化发展的因素;其次,中国是一个专制型非常强的国家,哪怕有着“百家争鸣”的景象但是也没维持多久,而且在这样的严苛制度下,人民的思想相对钝化,没有学术意识,只能听从帝王的话,这也是影响中国古代数学的一大原因;最后,在古代大多数文化人便是朝中的官员,在这种制度下,他们有着绝对的权威,下面的人也只能言听计从,这也导致了中国古代数学的形式较为单一。
3、实用性强。
1首先,中国文明史大河背景下的农耕文明,农业经济成为发展的关键,农业的发展离不开统筹和规划,学术要为这些现实服务,于是造就了中国传统数学的实用性;其次,儒家思想在中国古代有着领导性的地位,它重视实用, 追求功利性。
如中国古代数学家在著书立说时, 或多或少都会谈到数学的实用价值。
社会实践成了衡量数学好坏的标准, 如果数学适合生活需要, 能够解决实际问题就是好数学, 会得到发展,否则得不到重视甚至被抛弃。
这种思想几千年来一直以来都影响着中国古代的数学家。
这也导致了中国古代数学具有浓厚的实用性。
如春秋时期齐国的官书《考工记》,它展现的就是当时手工生产设计的规范、制作工艺等问题,其中就涉及到了众多数学知识,但是该书的目的是为了使群众更好更熟练的运用其技能,制作出精良的工艺品,还有现在人们日产生活中所不可或缺的十进位值制、干支纪日法、天文历法等等。
1 引言中国是四大文明古国之一,也是数学的发源地之一,由于地域、文化等特点,中国古代数学与欧洲数学存在着巨大的差别.这不仅表现在对理论与计算的偏重上,还表现在数学与社会关系的处理上.欧洲数学注重理论的逻辑推演和系统的建立.而与之相对,中国数学注重算法的研究和知识的现实可用性.这些特点使得中国数学在很长一段时间里成就位居世界之首.尤其是在古希腊数学衰落之后,中国数学取得了许多举世瞩目的成就.当西欧进入黑暗时代时,中国数学却在腾飞,许多成就比后来欧洲在文艺复兴和文艺复兴之后取得的同样成就早得多.这些成就的取得固然令我们感到骄傲,但到了十四世纪以后中国数学却开始走向了衰落.几百年来,中国人在数学这片领域上几乎找不到任何重大的发现与创新.这其中的原因不能不令我们深思.对历史进行研究能让我们看到中国古代数学由兴到衰的过程.对产生这种结果的诸多因数进行分析就能让我们深刻认识到衰落的真正原因,从而弃其糟粕,取其精华.中国古代数学究竟取得了那些重要成就?中国古代数学又是怎样走向衰落的?为弄清这些问题,首先让我们来回顾一下中国的数学发展史.2 中国古代数学发展简史数学在中国的历史悠久绵长.在殷墟出土的甲骨文中有一些是记录数字的文字,包括从一至十,以及百、千、万,最大的数字为三万;司马迁的史记提到大禹治水使用了规、矩、准、绳等作图和测量工具,而且知道“勾三股四弦五”;《易经》中还包含有组合数学与二进制思想.2002年在湖南发掘的秦代古墓中,考古人员发现了距今大约2200多年的九九乘法表,与现代小学生使用的乘法口诀“小九九”十分相似.算筹是中国古代的计算工具,它在春秋时期已经很普遍;使用算筹进行计算称为筹算.中国古代数学的最大特点是建立在筹算基础之上,这与西方及阿拉伯数学是明显不同的.但是,真正意义上的中国古代数学体系形成于自西汉至南北朝的三、四百年期间.《算数书》成书于西汉初年,是传世的中国最早的数学专著,它是1984年由考古学家在湖北江陵张家山出土的汉代竹简中发现的.《周髀算经》编纂于西汉末年,它虽然是一本关于“盖天说”的天文学著作,但是包括两项数学成就——(1)勾股定理的特例或普遍形式(“若求邪至日者,以日下为句,日高为股,句股各自乘,并而开方除之,得邪至日.”——这是中国最早关于勾股定理的书面记载);(2)测太阳高或远的“陈子测日法”.《九章算术》在中国古代数学发展过程中占有非常重要的地位.它经过许多人整理而成,大约成书于东汉时期.全书共收集了246个数学问题并且提供其解法,主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等.在代数方面,《九章算术》在世界数学史上最早提出负数概念及正负数加减法法则;现在中学讲授的线性方程组的解法和《九章算术》介绍的方法大体相同.注重实际应用是《九章算术》的一个显著特点.该书的一些知识还传播至印度和阿拉伯,甚至经过这些地区远至欧洲.《九章算术》标志以筹算为基础的中国古代数学体系的正式形成.中国古代数学在三国及两晋时期侧重于理论研究,其中以赵爽与刘徽为主要代表人物.赵爽是三国时期吴人,在中国历史上他是最早对数学定理和公式进行证明的数学家之一,其学术成就体现于对《周髀算经》的阐释.在《勾股圆方图注》中,他还用几何方法证明了勾股定理,其实这已经体现“割补原理”的方法.用几何方法求解二次方程也是赵爽对中国古代数学的一大贡献.三国时期魏人刘徽则注释了《九章算术》,其著作《九章算术注》不仅对《九章算术》的方法、公式和定理进行一般的解释和推导,而且系统地阐述了中国传统数学的理论体系与数学原理,并且多有创造.其发明的“割圆术”(圆内接正多边形面积无限逼近圆面积),为圆周率的计算奠定了基础,同时刘徽还算出圆周率的近似值——“3927/1250(3.1416)”.他设计的“牟合方盖”的几何模型为后人寻求球体积公式打下重要基础.在研究多面体体积过程中,刘徽运用极限方法证明了“阳马术”.另外,《海岛算经》也是刘徽编撰的一部数学论著.南北朝是中国古代数学的蓬勃发展时期,计有《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学著作问世.祖冲之、祖暅父子的工作在这一时期最具代表性.他们着重进行数学思维和数学推理,在前人刘徽《九章算术注》的基础上前进了一步.根据史料记载,其著作《缀术》(已失传)取得如下成就:①圆周率精确到小数点后第六位,得到3.1415926<π<3.1415927,并求得π的约率为22/7,密率为355/113,其中密率是分子分母在1000以内的最佳值;欧洲直到16世纪德国人鄂图和荷兰人安托尼兹才得出同样结果.②祖暅在刘徽工作的基础上推导出球体体积公式,并提出二立体等高处截面积相等则二体体积相等(“幂势既同则积不容异”)定理;欧洲17世纪意大利数学家卡瓦列利才提出同一定理,此外,祖氏父子在天文学上也有一定贡献.隋唐时期的主要成就在于建立中国数学教育制度,这大概主要与国子监设立算学馆及科举制度有关.在当时的算学馆《算经十书》成为专用教材对学生讲授.《算经十书》收集了《周髀算经》、《九章算术》、《海岛算经》等10部数学著作.所以当时的数学教育制度对继承古代数学经典是有积极意义的.公元600年,隋代刘焯在制订《皇极历》时,在世界上最早提出了等间距二次内插公式;唐代僧一行在其《大衍历》中将其发展为不等间距二次内插公式.从公元11世纪到14世纪的宋、元时期,是以筹算为主要内容的中国古代数学的鼎盛时期,其表现是这一时期涌现许多杰出的数学家和数学著作.中国古代数学以宋、元数学为最高境界.在世界范围内宋、元数学也几乎是与阿拉伯数学一道居于领先集团的.贾宪在《黄帝九章算法细草》中提出开任意高次幂的“增乘开方法”,同样的方法至1819年才由英国人霍纳发现;贾宪的二项式定理系数表与17世纪欧洲出现的“巴斯加三角”是类似的.遗憾的是贾宪的《黄帝九章算法细草》书稿已佚.秦九韶是南宋时期杰出的数学家.1247年,他在《数书九章》中将“增乘开方法”加以推广,论述了高次方程的数值解法,并且例举20多个取材于实践的高次方程的解法(最高为十次方程).16世纪意大利人菲尔洛才提出三次方程的解法.另外,秦九韶还对一次同余式理论进行过研究.李冶于1248年发表《测圆海镜》,该书是首部系统论述“天元术”(一元高次方程)的著作,在数学史上具有里程碑意义.尤其难得的是,在此书的序言中,李冶公开批判轻视科学实践活动,将数学贬为“贱技”、“玩物”等长期存在的士风谬论.公元1261年,南宋杨辉在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和.公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法.公元1280年,元代王恂、郭守敬等制订《授时历》时,列出了三次差的内插公式.郭守敬还运用几何方法求出相当于现在球面三角的两个公式.公元1303年,元代朱世杰著《四元玉鉴》,他把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,欧洲到公元1775年法国人别朱才提出同样的解法.朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到公元1670年英国人格里高利和公元1676一1678年间牛顿才提出内插法的一般公式.14世纪中、后叶明王朝建立以后,统治者奉行以八股文为特征的科举制度,在国家科举考试中大幅度消减数学内容,于是自此中国古代数学便开始呈现全面衰退之势,到了近代已远远落后于西方国家的数学水平.在中国古代数学几千年的发展历程中,我们不难看出中国古代数学思想与西方数学思想的诸多不同点,也就是其独具特色的一面.接下来让我们来分析一下中国古代数学的思想特点.3 中国古代数学思想特点(1). (实用性)《九章算术》收集的每个问题都是与生产实践有联系的应用题,以解决问题为目的.从《九章算术》开始,中国古典数学著作的内容,几乎都与当时社会生活的实际需要有着密切的联系.这不仅表现在中国的算学经典基本上都遵从问题集解的体例编纂而成,而且它所涉及的内容反映了当时社会政治、经济、军事、文化等方面的某些实际情况和需要,以致史学家们常常把古代数学典籍作为研究中国古代社会经济生活、典章制度(特别是度量衡制度),以及工程技术(例如土木建筑、地图测绘)等方面的珍贵史料.而明代中期以后兴起的珠算著作,所论则更是直接应用于商业等方面的计算技术.中国古代数学典籍具有浓厚的应用数学色彩,在中国古代数学发展的漫长历史中,应用始终是数学的主题,而且中国古代数学的应用领域十分广泛,著名的十大算经清楚地表明了这一点,同时也表明“实用性”又是中国古代数学合理性的衡量标准.这与古代希腊数学追求纯粹“理性”形成强烈的对照.其实,中国古代数学一开始就同天文历法结下了不解之缘.中算史上许多具有世界意义的杰出成就就是来自历法推算的.例如,举世闻名的“大衍求一术”(一次同余式组解法)产于历法上元积年的推算,由于推算日、月、五星行度的需要中算家创立了“招差术”(高次内插法);而由于调整历法数据的要求,历算家发展了分数近似法.所以,实用性是中国传统数学的特点之一. (2).(算法程序化)中国传统数学的实用性,决定了他以解决实际问题和提高计算技术为其主要目标.不管是解决问题的方式还是具体的算法,中国数学都具有程序性的特点.中国古代的计算工具是算筹,筹算是以算筹为计算工具来记数,列式和进行各种演算的方法.有人曾经将中国传统数学与今天的计算技术对比,认为算筹相应于电子计算机可以看作“硬件”,那么中国古代的“算术”可以比做电子计算机计算的程序设计,是一种软件的思想.这种看法是很有道理的.中国的筹算不用运算符号,无须保留运算的中间过程,只要求通过筹式的逐步变换而最终获得问题的解答.因此,中国古代数学著作中的“术”,都是用一套一套的“程序语言”所描写的程序化算法.各种不同的筹法都有其基本的变换法则和固定的演算程序.中算家善于运用演算的对称性、循环性等特点,将演算程序设计得十分简捷而巧妙.如果说古希腊的数学家以发现数学的定理为目标,那么中算家则以创造精致的算法为已任.这种设计等式、算法之风气在中算史上长盛不衰,清代李锐所设计的“调日法术”和“求强弱术”等都可以说是我国古代传统的遗风. 古代数学大体可以分为两种不同的类型:一种是长于逻辑推理,一种是发展计算方法.这也大致代表了西方数学和东方数学的不同特色.虽然以算为主的某些特点也为东方的古代印度数学和中世纪的阿拉伯数学所具有,但是,中国传统数学在这方面更具有典型性.中算对于算具的依赖性和形成一整套程序化的特点尤为突出.例如,印度和阿拉伯在历史上虽然也使用过土盘等算具,但都是辅助性的,主要还是使用笔算,与中国长期使用的算筹和珠算的情形大不相同,自然也没有形成像中国这样一贯的与“硬件”相对应的整套“软件”.(3).(模型化)“数学模型”是针对或参照某种事物系统的特征或数量关系,采用形式话数学语言,概括的近似地表达出来的一种数学结构.古代的数学模型当然没有这样严格,但如果不要求“形式化的数学语言”,对“数学结构”也作简单化的解释,则仍然可以应用这个定义.按此定义,数学模型与现实世界的事物有着不可分割的关系,与之有关的现实事物叫做现实原形,是为解释原型的问题才建立应用数学模型的.《九章算术》中大多数问题都具有一般性解法,是一类问题的模型,同类问题可以按同种方法解出.其实,以问题为中心、以算法为基础,主要依靠归纳思维建立数学模型,强调基本法则及其推广,是中国传统数学思想的精髓之一.中国传统数学的实用性,要求数学研究的结果能对各种实际问题进行分类,对每类问题给出统一的解法;以归纳为主的思维方式和以问题为中心的研究方式,倾向于建立基本问题的结构与解题模式,一般问题则被化归、分解为基本问题解决.由于中国传统数学未能建立起一套抽象的数学符号系统,对一般原理、法则的叙述一方面是借助文辞,一方面是通过具体问题的解题过程加以演示,使具体问题成为相应的数学模型.这种模型虽然和现代的数学模型有一定的区别,但二者在本质上是一样的.(4).(寓理于算)由于中国传统数学注重解决实际问题,而且因中国人综合、归纳思维的决定,所以中国传统数学不关心数学理论的形式化,但这并不意味中国传统仅停留在经验层次上而无理论建树.其实中国数学的算法中蕴涵着建立这些算法的理论基础,中国数学家习惯把数学概念与方法建立在少数几个不证自明、形象直观的数学原理之上,如代数中的“率”的理论,平面几何中的“出入相补”原理,立体几何中的“阳马术”、曲面体理论中的“截面原理”(或称刘祖原理,即卡瓦列利原理)等等.中国古代数学的特点虽然在一定的程度上促进了其自身的发展,但正是因为这其中的某些特点,中国古代数学走向了低谷.4 中国古代数学由兴转衰的原因分析(1).独尊儒术,蔑视逻辑.汉武帝时,“罢黜百家,独尊儒术”使得当时注重形式逻辑的墨子思想未能得到继承和发展.儒家思想讲究简约,而忽视了逻辑思维的过程.这一点从中国古代的典籍中能找到最准确的说明.《周髀算经》中虽然给出了勾股定理,但却没给出证明.《九章算术》同样只在给出题目的同时,给出一个结果和计算的程式,对其中的逻辑思维却没有去说明.中国古代数学这种只注重计算形式(即古代数学家所谓的“术”)与过程,不注重逻辑思维的做法,在很长一段时间里禁锢了中国古代数学发展.这种情况的出现当然也有其原因,中国古代传统数学主要是在算筹的基础上发展起来的,后来发展到以算盘为工具的计算时代,但是这些工具的使用在另一方面为中国人提供了一种程式化的求解方法,从而忽视了其中的逻辑思维过程.此外,中国传统数学讲究“寓理于算”.即使高度发达的宋元数学也是如此.数学书是由一系列的数学问题组成的.你也可以称它们为“习题解集”.数学理论以‘术”的形式出现.早期的“术”只有一个过程,后人就纷纷为它们作注,而这些注释也很简约.实际上就是举例“说明”,至于说明了什么,条件变一下怎么办,就要读者自已去总结了,从来不会给你一套系统的理论.这是一种相对原始的做法.但随着数学的发展,这种做法的局限性就表现出来了,它极不利于知识的总结.如果只有很少一点数学知识,那么,问题还不严重,但随着数学知识的增长,每个知识点都用一个题目来包装,而不把它们总结出来就难以从整体上去把握这些知识.这无论对学习数学还是研究,发展数学都是不利的.(2).崇尚玄学,迷信数术,歪曲数学思想.魏晋时期,儒学虽然受到一定的冲击,但其统治地位并未受到动摇.老庄学说和儒家学说相反相成便形成了玄学.玄学原本探究的是有关人生的哲学,但后来与数学混在了一起.古人曾就常常以玄术来解释数学问题,使得数学概念和方法遭到歪曲.张衡是我国著名科学家.当时他虽然已经知道圆周率“周一径三”不准确,但由于他始终相信“周一径三”来源于“参天两地”的说法,一直没深入探究,因而未能将圆周率推算到更精确的地步,这不能不说是一大遗憾.当玄术和数术充塞数学时,数学已经明显存有落后的隐患.(3).故步自封,墨守成规,拒绝数学符号.中国古代数学是以汉语描述的,历来不重视汉字以外的数学符号,给逻辑思维带来很大的困难,使我国长期不能形成演绎推理的传统,严重影响了我国数学的发展.从明朝开始,中国就走上了闭关锁国的道路.这种行为与小农思想相适应,早在秦代就已经出现端倪,建一条长城将自己围起来,对外面的东西不闻不问.相比之下,西方在度过了中世纪的黑暗时期后,进入了文艺复兴时期.欧洲的扩张、航海技术开阔了西方人的眼界,同时也大大推动了数学的发展.在18世纪的改革和动荡中,新出现的资产阶级推翻了英、法的君主政治.封建的政治、社会和经济思想被经典的自由主义哲学所取代,这种哲学促进了19世纪的工业革命.社会生产力的提高成了西方数学发展的源源不断的动力.最终,近代的数学在西方被建立起来,而曾是数学大国之一的中国,在其中却无所作为.(4). 此外,中国长期处于封建社会,迟迟未能进入资本主义阶段,也是导致中国古代数学发展停顿的直接原因.从整体上看,数学是与所处的社会生产力相适应的.中国社会长期处于封闭的小农经济环境,生产力低下,不仅没有工业,商业也不发达.整个社会对数学没有太高的要求,自然研究数学的人也就少了. 恩格斯说,天文学和力学是推动数学发展的动力,而在当时的中国这种动力已趋近枯竭.5 我从中国古代数学的研究中得到的几点启示:通过对中国古代数学史及数学思想史的研究,我们看到了中国古代数学由兴到衰的历史过程,并分析了其由兴到衰的历史原因.由此,针对中国古代数学发展的特殊历史背景,我对今后数学发展方向作出了以下意见:(1).继承并创新中国古代传统数学思想的精华.数学应服务于生产实践,这是一个不争的事实.虽然很多理论都是在贯之以“纯数学”,但是,我们应该相信,这些理论只是数学上的一个过渡,它的引入是为了解决其他的问题而展开的.现代数学教育中经常会引入一些现实中的模型,让学生用数学方法加以解决,这就是很好的做法.一方面它让学生认识到了数学源于生活,服务于生活的理念;令一方面它有效得锻炼了学生数学建模的思想,并从真正意义上让学生学懂学活了.很多人怀疑中国古代数学知识已经过时,就在一些数学思想也与现代格格不入.其实这是不正确的.近年来,我国著名数学家吴文俊同志从中国古代数学擅长于算,习惯将算法程序化这一做法中得到了启示,从而研究开辟了机器证明数学命题的新领域.这就是很好的例子,它说明中国古代数学思想并没有过时,要想走出创新和成就的瓶颈,我们就必须认真研究中国古代数学的历史和世界数学的现状,并有效得将二者进行结合.(2).数学研究应沿着注重逻辑思维的过程以及理论体系的建立这一路线发展,虽然当今数学发展已经相当完备,但仍有大量的问题有待我们去努力解决.就比如:如何将数学的各个分支用一中简约的数学思想统一起来?这个难题有许许多多的数学工作者在为之奋斗,并取得了一的成绩,群论的建立就是其中优秀的范例.难以想像,如果对数学的理论体系没有一定的了解,并且不注重逻辑思维的过程,而又试图解决这一问题是多么困难的事.(3).数学研究要以一种科学的态度去对待.就比如马克思主义辩证思想,只要我们的数学研究秉承着这样一种思想,就不会走太多的弯路,更不会走上歧途.中国古代数学是与玄术并行发展的,这难免阻碍了数学的发展.而由于中国文化的特点,这种思想依然对一大批数学工作着有着较深的影响.我们的数学要发展和创新就不能不摒弃一切有碍数学发展的因素.(4).我们的每个理论研究者都应密切关注国内国外的学术动态,吸收一切有用的、正确的、外来的文化与知识,而不能做一个闭门造车的数学工作者.数学发展至今,很多分支都已经发展地相当完备了,一个研究者倘若对世界数学在本领域的现状缺乏了解的情况下开展研究工作,必定会走弯路.多元化的信息时代为我们提供了便捷的世界文化知识交流渠道.网络就是很好的例子,我们可以充分地加以应用,从而共同推动数学的发展.(5).建立健全的国家发展体制.只有在一种迫切的发展动力下,才能激发人的潜力,从而创造出成绩.当代中国经济发展迅猛,生产力不断发展壮大.这种状况对我们的每个数学工作者提供了良好的契机,只要我们的数学工作者将目光更多地投入到生产实践中去,让科学服务于生产实践,就能有所成就,有所创新.6 结束语中国传统数学思想具有显著的民族性特征.我国传统数学是沿着注重从实践经验中产生和发展数学的思维方式发展数学的,擅长于算,运算主要以算筹作为工具.但同时却又在逻辑思维上存有欠缺.这与西方许多国家发展数学的道路是不同的.中国传统数学思想有着自已的渊源和模式,有其长,也有其短.在初等数学领域之内,正是这种传统数学思想把我国数学推向世界的最高峰.许多国家与我国相比,望尘莫及.好的传统我们应当学会继承和发展.我们应当好好研究中国古代数学的独特之处,并将其加以应用,以指导当代的数学研究工作.对于落后不利于数学发展的思想我们又要学会放弃,就比如中国古代数学曾一度故步自封,这是极其不利于其自身发展的做法.我们要从中吸取教训,努力加强中西文化交流,尽可能多得吸取西方数学的精华与长处.这样我们的数学才能在真正意义上走想成熟.继承和发展中国传统数学思想,“纯粹的”民族传统是不行的,要面向世界,面向现代化.我们应该恰当调节数学和环境的关系,为数学提供源源不断的动力机制.并建立一套完善的理论体系,把应用广泛地拓展开来.另一方面我们要提高数学抽象结构,加强其内在联系,注重分析,全面把握,只有这样才是真正意义上认识了我国古代数学思想中体现出来的优与劣,我们的数学也才能拥有一片光明的前景.致谢:本论文的顺利完成主要得益于张正才教授和李圣国老师的辛勤指导和帮助.在此表示感谢!参考文献文献资料[1] /200503/ca667014.htm.[2]王树禾, 数学思想史,北京:国防工业出版社,2003.[3]王青建, 数学史简编,北京:科学出版社,2004.[4]朱家生, 数学史,北京:高等教育出版社,2004.[5]李迪,数学史研究文集,内蒙古大学出版社,1990.[6]李文林, 数学史教程, 2000.[7]李继闵, 《九章算术》导读与注释型, 1998.[8]郭书春, 中国古代数学, 1997[9]袁小明胡炳生周焕山,数学思想发展简史, 1992.[10]高隆昌胡勋玉,中国数学的智慧之光,1992.[11]项观捷,中国古代数学成就,1988.[12]李惠民,漫谈古代数学, 1986.。
中西数学史的比较
中西数学史是指中国和西方世界数学发展历史的比较。
这两个文化圈的数学发展起源于不同的地点和时期,有着不同的特点和特色。
下面是一些中西数学史的比较:
发展起源:中国的数学发展可以追溯到约公元前2000年左右的古代,而西方的数学发展起源于古希腊的古典时期,约公元前6世纪至4世纪。
因此,中国的数学发展历史要比西方更为悠久。
1.数学体系:中国古代数学以算术和代数为主,注重实用计算
和计算方法的系统化。
而西方古代数学则更重视基于几何的推理和证明,它的基础可以追溯到欧几里得的几何学和数学的公理化。
2.方法和理论:中国数学侧重于经验和实用,发展出了一系列
的算法和数学技巧,如计算术、代数求解和天文算法等。
西方数学则更注重推理和证明,强调逻辑严密性和公理化的系统。
3.数学概念:两个文化圈对数学概念的处理方式也有所不同。
中国数学重视实际问题和准确的计算结果,而西方数学更注重数学概念的抽象和普遍性。
4.传播和交流:从历史上看,中国的数学发展相对独立,在长
时间内没有太多的与外界的交流和影响。
而西方数学在古代时期就开始与其他地区(如埃及、巴比伦等)进行交流,受
到了许多其他文明的影响。
总体来说,中西数学史在其发展轨迹、方法论和数学概念上有一些明显的区别。
中国的数学注重实用性和计算技巧,西方则更注重推理和证明。
尽管两者的重点和方法略有不同,但它们都对数学的发展做出了巨大的贡献,并在今天的数学研究和教育中扮演着重要的角色。
数说中国数学内容中国数学是世界上最古老、最丰富、最有特色的数学之一。
它的发展历史可以追溯到公元前11世纪的商朝,当时中国人已经开始研究数学问题,并在商代的甲骨文中留下了许多数学计算题。
随着时间的推移,中国数学经历了不断的发展和演变,形成了独特的数学体系。
中国数学的特点之一是注重实际应用。
在古代,中国人主要将数学应用于土地测量、农业生产、水利工程等领域。
他们发展了许多实用的算法和技巧,如秦九韶算法和望舒算法,用于解决实际问题。
这些算法在当时的社会中发挥了重要的作用,并且在后来的发展中对世界数学产生了影响。
另一个突出的特点是中国数学的重视几何学。
古代中国数学家研究了许多几何问题,如三角形、圆形、多边形等的性质和计算方法。
他们提出了许多几何定理和公式,如勾股定理和正弦定理,这些定理至今仍被广泛应用于解决几何问题。
中国数学还在代数学和数论方面有很多贡献。
古代中国的数学家发现了无理数,并提出了一些关于无理数的重要定理。
他们在数论方面也进行了深入研究,并发展了一些解决数论问题的方法和技巧。
其中最有名的是中国剩余定理,它被广泛应用于密码学和计算机科学中。
当前,中国数学事业正迅速发展。
中国的数学教育在世界范围内享有盛誉,并且在国际数学竞赛中取得了许多优异的成绩。
中国的数学研究也在不断取得突破,许多中国数学家在世界数学界的地位越来越重要。
总的来说,中国数学以其古老而丰富的历史、实际应用的特点、几何学和代数学的突出地位,以及当前的快速发展,成为世界上备受瞩目的数学之一。
中国数学不仅对数学领域有重要影响,也对其他领域如物理学、工程学、计算机科学等产生了深远的影响。
中国古代数学完整体系
在古代,中国的计算方法主要是采用竖式计算和算盘计算,这些方法都非常精确和高效。
同时,古代的计数法也非常有特色,如十二地支、二十八宿等。
勾股定理是中国古代数学的重要成果之一,它是古代勾股学派的代表作之一,也是世界数学史上的重要贡献之一。
代数方面,中国的古代数学家们早在西方数学家发明代数符号之前就已经使用了代数表达式,如《九章算术》中的“方程术”。
几何方面,中国的古代数学家们也有很多独特的成果,如《几何原本》、《算经》等。
同时,古代中国的数学家们还研究了各种曲线、曲面等几何问题。
数学分析方面,中国的古代数学家也有很多研究成果,如《高等算法》中的积分计算、《数书九章》中的微积分思想等。
无限级数方面,中国古代数学家们也有研究,如康藏《数学九章》中的无穷级数求和方法等。
总之,中国古代数学完整体系不仅包括了各种具体的数学知识和成果,更包括了古代中国数学家们的创新精神和思维方式,对后世数学的发展产生了重要影响。
- 1 -。
中国传统数学的特点1.实用性和应用性:中国传统数学是以实际问题为出发点和归宿的,强调实用性和应用性。
中国古代的数学家主要关注土地测量、农业生产、商业交易等与生产生活密切相关的实际问题,研究如何解决这些问题以提高生产力,提升社会发展水平。
比如《九章算术》中涉及土地测量的问题,以及《海岛经验法度》中对航海测量的方法,都是以解决实际问题为目标的。
2.独特的思想方法:中国传统数学强调直观思维和几何直观。
古代数学家善于运用图形和具象的方式进行研究和解决问题,秉承着“正物象数”的理念。
他们将数学模型和现实世界相结合,通过观察分析物体形态、运动规律,将问题抽象化为几何图形,并运用形状、大小、方向等几何性质进行推理和计算。
这种直观思维和几何运算方式,为中国古代数学独特的发展方向提供了基础。
3.轻视无理数:相对于欧洲数学中无理数的重要性,中国传统数学对无理数的研究相对较少,尤以开方为主的无理数不受关注。
传统中国数学更注重有限性、具体性和实用性问题,因此对无理数的研究较少。
在古代数学发展的早期,中国数学家主要针对实际问题进行求解,需要的观念和方法都可以通过有理数的运算来表达和解决,无理数并不是必须的。
4.算术和代数并重:在中国传统数学中,算术和代数同时得到了重视。
算术是中国古代数学的核心,中国古代的数学家通过记数、计算、计算机构等方法进行数学思维和计算。
代数则是数学思维和方法的运用。
从《九章算术》到《术数》再到《算法统宗》,代数的内容逐渐丰富,方法逐渐成熟。
中国古代数学家通过对未知数的运用,研究了一系列的等式、方程和代数运算,为后世代数学科的发展奠定了基础。
5.赋分教育的特点:古代中国数学的发展与社会文化的需求有关,其中赋分教育起到了重要的推动作用。
古代中国有一种教育体制,叫做赋分教育。
这是一种以举国之力来选拔优秀人才的教育模式,而数学是其中非常重视的一门科目。
除了其他科目之外,赋分考试的重点是算术和代数,数学成绩高的学生可以得到高分,获得官员或者其他优厚待遇。
我国古代数学具有的特点是:实用性;算法化;模型化;数形结合、直觉把握;寓理于算.
中国数学的特点如下:
1.中国数学最基本的特点是具有鲜明的社会性。
通观中国古典数学著作的内容,几乎都与当时社会生活的实际需要有着密切的联系。
从《九章算术》开始,中国算学经典基本上都遵从问题集解的体例编纂而成,其内容反映了当时社会政治、经济、军事、文化等方面的某些实际需要,具有浓厚的应用数学的色彩;
2.中国数学教育与研究始终置于政府的控制之下,以适应统治阶级的需要;
3.中国数学家的数学论著深受历史上各种社会思潮、哲学流派以至宗教神学的影响,具有形形色色的社会痕迹。
4.中国数学是以几何方法和代数方法的相互渗透表现为形数结合的,是用算筹来计算的.并采用了十进位制。
同时,用一整套”程序语言”来揭示计算方法,而演算程序简捷而巧妙。
5.中国数学理论表现为运算过程之中,即“寓理于算”。
中国数学家善于从错综复杂的数学现象中抽象出深刻的数学概念,提炼出一般的数学原理,作为研究众多数学问题的基础。
关于数学的中国知识点总结数学作为一门学科,对于人类的进步和社会发展起着至关重要的作用。
中国作为数学的发源地之一,拥有丰富而独特的数学知识体系。
本文将为你总结一些关于数学的中国知识点,帮助你更好地了解中国数学的发展和特点。
一、古代数学古代中国的数学研究始于商朝,经过了多个朝代的发展,形成了独具特色的数学体系。
这一时期的数学成果主要体现在算术和几何方面。
1.算术知识点:古代中国人在算术方面取得了很多重要的成果。
其中,古代中国人发明了十进制计数系统,使得数学运算更加简便。
另外,中国古代还发明了中国剩余定理和中国幻方等重要数学理论和方法。
2.几何知识点:古代中国对几何学的研究也有较高的成就。
著名的《九章算术》中包含了许多几何方面的内容,如直角三角形的勾股定理等。
二、现代数学随着科学技术的不断进步和数学研究的深入,中国的数学领域也取得了很多令人瞩目的成就。
现代数学主要包括代数、几何、概率统计等方面的研究。
1.代数知识点:代数学是数学的重要分支之一。
中国数学家陈景润提出了著名的陈氏定理,该定理在代数学领域有着重要的应用。
此外,中国还有很多其他的代数学家,如华罗庚、刘维尔等,为代数学的发展做出了巨大贡献。
2.几何知识点:中国的几何学研究也有着世界影响力。
中国著名数学家华罗庚提出了“华罗庚猜想”,该猜想在数学界引起了广泛的关注和讨论。
此外,中国数学家还在拓扑学、微分几何等领域做出了重要贡献。
3.概率统计知识点:概率统计是现代数学中的重要分支之一,对于科学研究和社会发展有着重要的应用。
中国数学家任天堂等人在概率统计领域有着卓越的贡献,提出了很多重要的理论和方法。
三、数学教育数学教育在中国具有重要地位,中国的数学教育体制和教学方法独具特色。
1.教育体制:中国的数学教育体制非常完善,从小学到大学都有严格的数学教学计划和考试评价体系。
中国的数学课程内容丰富,注重培养学生的逻辑思维和问题解决能力。
2.教学方法:中国的数学教学方法注重培养学生的自主学习和创造性思维。
中国古代数学思想特点
(1). (实用性)《九章算术》收集的每个问题都是与生产实践有联系的应用题,以解决问题为目的.从《九章算术》开始,中国古典数学著作的内容,几乎都与当时社会生活的实际需要有着密切的联系.这不仅表现在中国的算学经典基本上都遵从问题集解的体例编纂而成,而且它所涉及的内容反映了当时社会政治、经济、军事、文化等方面的某些实际情况和需要,以致史学家们常常把古代数学典籍作为研究中国古代社会经济生活、典章制度(特别是度量衡制度),以及工程技术(例如土木建筑、地图测绘)等方面的珍贵史料.而明代中期以后兴起的珠算著作,所论则更是直接应用于商业等方面的计算技术.中国古代数学典籍具有浓厚的应用数学色彩,在中国古代数学发展的漫长历史中,应用始终是数学的主题,而且中国古代数学的应用领域十分广泛,著名的十大算经清楚地表明了这一点,同时也表明“实用性”又是中国古代数学合理性的衡量标准.这与古代希腊数学追求纯粹“理性”形成强烈的对照.其实,中国古代数学一开始就同天文历法结下了不解之缘.中算史上许多具有世界意义的杰出成就就是来自历法推算的.例如,举世闻名的“大衍求一术”(一次同余式组解法)产于历法上元积年的推算,由于推算日、月、五星行度的需要中算家创立了“招差术”(高次内插法);而由于调整历法数据的要求,历算家发展了分数近似法.所以,实用性是中国传统数学的特点之一.
(2).(算法程序化)中国传统数学的实用性,决定了他以解决实际问题和提高计算技术为其主要目标.不管是解决问题的方式还是具体的算法,中国数学都具有程序性的特点.中国古代的计算工具是算筹,筹算是以算筹为计算工具来记数,列式和进行各种演算的方法.有人曾经将中国传统数学与今天的计算技术对比,认为算筹相应于电子计算机可以看作“硬件”,那么中国古代的“算术”可以比做电子计算机计算的程序设计,是一种软件的思想.这种看法是很有道理的.中国的筹算不用运算符号,无须保留运算的中间过程,只要求
通过筹式的逐步变换而最终获得问题的解答.因此,中国古代数学著作中的“术”,都是用一套一套的“程序语言”所描写的程序化算法.各种不同的筹法都有其基本的变换法则和固定的演算程序.中算家善于运用演算的对称性、循环性等特点,将演算程序设计得十分简捷而巧妙.如果说古希腊的数学家以发现数学的定理为目标,那么中算家则以创造精致的算法为已任.这种设计等式、算法之风气在中算史上长盛不衰,清代李锐所设计的“调日法术”和“求强弱术”等都可以说是我国古代传统的遗风. 古代数学大体可以分为两种不同的类型:一种是长于逻辑推理,一种是发展计算方法.这也大致代表了西方数学和东方数学的不同特色.虽然以算为主的某些特点也为东方的古代印度数学和中世纪的阿拉伯数学所具有,但是,中国传统数学在这方面更具有典型性.中算对于算具的依赖性和形成一整套程序化的特点尤为突出.例如,印度和阿拉伯在历史上虽然也使用过土盘等算具,但都是辅助性的,主要还是使用笔算,与中国长期使用的算筹和珠算的情形大不相同,自然也没有形成像中国这样一贯的与“硬件”相对应的整套“软件”.
(3).(模型化)“数学模型”是针对或参照某种事物系统的特征或数量关系,采用形式话数学语言,概括的近似地表达出来的一种数学结构.古代的数学模型当然没有这样严格,但如果不要求“形式化的数学语言”,对“数学结构”也作简单化的解释,则仍然可以应用这个定义.按此定义,数学模型与现实世界的事物有着不可分割的关系,与之有关的现实事物叫做现实原形,是为解释原型的问题才建立应用数学模型的.《九章算术》中大多数问题都具有一般性解法,是一类问题的模型,同类问题可以按同种方法解出.其实,以问题为中心、以算法为基础,主要依靠归纳思维建立数学模型,强调基本法则及其推广,是中国传统数学思想的精髓之一.中国传统数学的实用性,要求数学研究的结果能对各种实际问题进行分类,对每类问题给出统一的解法;以归纳为主的思维方式和以问题为中心的研究方式,倾向于建立基本问题的结构与解题模式,一般问题则被化归、分解为基本问题解决.由
于中国传统数学未能建立起一套抽象的数学符号系统,对一般原理、法则的叙述一方面是借助文辞,一方面是通过具体问题的解题过程加以演示,使具体问题成为相应的数学模型.这种模型虽然和现代的数学模型有一定的区别,但二者在本质上是一样的.
(4).(寓理于算)由于中国传统数学注重解决实际问题,而且因中国人综合、归纳思维的决定,所以中国传统数学不关心数学理论的形式化,但这并不意味中国传统仅停留在经验层次上而无理论建树.其实中国数学的算法中蕴涵着建立这些算法的理论基础,中国数学家习惯把数学概念与方法建立在少数几个不证自明、形象直观的数学原理之上,如代数中的“率”的理论,平面几何中的“出入相补”原理,立体几何中的“阳马术”、曲面体理论中的“截面原理”(或称刘祖原理,即卡瓦列利原理)等等.
中国古代数学的特点虽然在一定的程度上促进了其自身的发展,但正是因为这其中的某些特点,中国古代数学走向了低谷.
扩展知识:
中国古代数学由兴转衰的原因分析
(1).独尊儒术,蔑视逻辑.汉武帝时,“罢黜百家,独尊儒术”使得当时注重形式逻辑的墨子思想未能得到继承和发展.儒家思想讲究简约,而忽视了逻辑思维的过程.这一点从中国古代的典籍中能找到最准确的说明.《周髀算经》中虽然给出了勾股定理,但却没给出证明.《九章算术》同样只在给出题目的同时,给出一个结果和计算的程式,对其中的逻辑思维却没有去说明.中国古代数学这种只注重计算形式(即古代数学家所谓的“术”)与过程,不注重逻辑思维的做法,在很长一段时间里禁锢了中国古代数学发展.这种情况的出现当然也有其原因,中国古代传统数学主要是在算筹的基础上发展起来的,后来发展到以算盘为工具的计算时代,但是这些工具的使用在另一方面为中国人提供了一种程式化的求解方法,从而忽视了
其中的逻辑思维过程.此外,中国传统数学讲究“寓理于算”.即使高度发达的宋元数学也是如此.数学书是由一系列的数学问题组成的.你也可以称它们为“习题解集”.数学理论以‘术”的形式出现.早期的“术”只有一个过程,后人就纷纷为它们作注,而这些注释也很简约.实际上就是举例“说明”,至于说明了什么,条件变一下怎么办,就要读者自已去总结了,从来不会给你一套系统的理论.这是一种相对原始的做法.但随着数学的发展,这种做法的局限性就表现出来了,它极不利于知识的总结.如果只有很少一点数学知识,那么,问题还不严重,但随着数学知识的增长,每个知识点都用一个题目来包装,而不把它们总结出来就难以从整体上去把握这些知识.这无论对学习数学还是研究,发展数学都是不利的. (2).崇尚玄学,迷信数术,歪曲数学思想.魏晋时期,儒学虽然受到一定的冲击,但其统治地位并未受到动摇.老庄学说和儒家学说相反相成便形成了玄学.玄学原本探究的是有关人生的哲学,但后来与数学混在了一起.古人曾就常常以玄术来解释数学问题,使得数学概念和方法遭到歪曲.张衡是我国著名科学家.当时他虽然已经知道圆周率“周一径三”不准确,但由于他始终相信“周一径三”来源于“参天两地”的说法,一直没深入探究,因而未能将圆周率推算到更精确的地步,这不能不说是一大遗憾.当玄术和数术充塞数学时,数学已经明显存有落后的隐患.
(3).故步自封,墨守成规,拒绝数学符号.中国古代数学是以汉语描述的,历来不重视汉字以外的数学符号,给逻辑思维带来很大的困难,使我国长期不能形成演绎推理的传统,严重影响了我国数学的发展.从明朝开始,中国就走上了闭关锁国的道路.这种行为与小农思想相适应,早在秦代就已经出现端倪,建一条长城将自己围起来,对外面的东西不闻不问.相比之下,西方在度过了中世纪的黑暗时期后,进入了文艺复兴时期.欧洲的扩张、航海技术开阔了西方人的眼界,同时也大大推动了数学的发展.在18世纪的改革和动荡中,新出现的资产阶级推翻了英、法的君主政治.封建的政治、社会和经济思想被经典的自由主义哲学所
取代,这种哲学促进了19世纪的工业革命.社会生产力的提高成了西方数学发展的源源不断的动力.最终,近代的数学在西方被建立起来,而曾是数学大国之一的中国,在其中却无所作为.
(4). 此外,中国长期处于封建社会,迟迟未能进入资本主义阶段,也是导致中国古代数学发展停顿的直接原因.从整体上看,数学是与所处的社会生产力相适应的.中国社会长期处于封闭的小农经济环境,生产力低下,不仅没有工业,商业也不发达.整个社会对数学没有太高的要求,自然研究数学的人也就少了. 恩格斯说,天文学和力学是推动数学发展的动力,而在当时的中国这种动力已趋近枯竭.。