量子力学1.1
- 格式:pdf
- 大小:1.18 MB
- 文档页数:55
《结构化学基础》讲稿第一章孟祥军第一章 量子力学基础知识 (第一讲)1.1 微观粒子的运动特征☆ 经典物理学遇到了难题:19世纪末,物理学理论(经典物理学)已相当完善: ◆ Newton 力学 ◆ Maxwell 电磁场理论 ◆ Gibbs 热力学 ◆ Boltzmann 统计物理学上述理论可解释当时常见物理现象,但也发现了解释不了的新现象。
1.1.1 黑体辐射与能量量子化黑体:能全部吸收外来电磁波的物体。
黑色物体或开一小孔的空心金属球近似于黑体。
黑体辐射:加热时,黑体能辐射出各种波长电磁波的现象。
★经典理论与实验事实间的矛盾:经典电磁理论假定:黑体辐射是由黑体中带电粒子的振动发出的。
按经典热力学和统计力学理论,计算所得的黑体辐射能量随波长变化的分布曲线,与实验所得曲线明显不符。
按经典理论只能得出能量随波长单调变化的曲线:Rayleigh-Jeans 把分子物理学中能量按自由度均分原则用到电磁辐射上,按其公式计算所得结果在长波处比较接近实验曲线。
Wien 假定辐射波长的分布与Maxwell 分子速度分布类似,计算结果在短波处与实验较接近。
经典理论无论如何也得不出这种有极大值的曲线。
• 1900年,Planck (普朗克)假定:黑体中原子或分子辐射能量时作简谐振动,只能发射或吸收频率为ν, 能量为 ε=h ν 的整数倍的电磁能,即振动频率为 ν 的振子,发射的能量只能是 0h ν,1h ν,2h ν,……,nh ν(n 为整数)。
• h 称为Planck 常数,h =6.626×10-34J •S•按 Planck 假定,算出的辐射能 E ν 与实验观测到的黑体辐射能非常吻合:●能量量子化:黑体只能辐射频率为 ν ,数值为 h ν 的整数倍的不连续的能量。
能量波长黑体辐射能量分布曲线 ()1/8133--=kt h c h eE ννπν1.1.2 光电效应和光子学说光电效应:光照射在金属表面,使金属发射出电子的现象。
量⼦⼒学第⼀章习题答案第⼀章1.1 由⿊体辐射公式导出维恩位移定律:能量密度极⼤值所对应的波长λm 与温度T 成反⽐,即λm T = b (常量);并近似计算b 的数值,准确到两位有效数字。
解:⿊体辐射的普朗克公式为:)1(833-=kT h e c h νννπρ∵ v=c/λ∴ dv/dλ= -c/λ2⼜∵ρv dv= -ρλdλ∴ρλ=-ρv dv/dλ=8πhc/[λ5(ehc/λkT-1)] 令x=hc/λkT ,则ρλ=8πhc(kT/hc)5x 5/(e x -1)求ρλ极⼤值,即令dρλ(x)/dx=0,得:5(e x -1)=xe x可得: x≈4.965∴ b=λm T=hc/kx≈6.626 *10-34*3*108/(4.965*1.381*10-23)≈2.9*10-3(m K )1.2√. 在0 K 附近,钠的价电⼦能量约为3电⼦伏,求其德布罗意波长。
解: h = 6.626×10-34 J ·s , m e = 9.1×10-31 Kg,, 1 eV = 1.6×10-19 J故其德布罗意波长为:07.0727A λ=== 或λ= h/2mE = 6.626×10-34/(2×9.1×10-31×3×1.6×10-19)1/2 ≈ 7.08 ?1.3 √.氦原⼦的动能是E=32KT (K B 为波尔兹曼常数),求T=1 K 时,氦原⼦的德布罗意波长。
解:h = 6.626×10-34 J ·s , 氦原⼦的质量约为=-26-2711.993104=6.641012kg , 波尔兹曼常数K B =1.381×10-23 J/K故其德布罗意波长为:λ= 6.626×10-34/ (2×-276.6410?×1.5×1.381×10-23×1)1/2≈01.2706A或λ= ⽽KT E 23=601.270610A λ-==?1.4利⽤玻尔-索末菲量⼦化条件,求:a )⼀维谐振⼦的能量:b )在均匀磁场作圆周运动的电⼦轨道的可能半径。
量子力学五大基本假设1. 波粒二象性假设1.1 光的波动性和粒子性在经典力学中,物体通常被视为具有明确定义的位置和动量,而光被认为只具有波动性质。
然而,量子力学的第一个基本假设是波粒二象性假设,它指出任何一种微观粒子都可以同时表现出波动性和粒子性。
这意味着光既可以被视为一个粒子,即光子,也可以被视为一个电磁波。
1.2 德布罗意假设根据德布罗意假设,所有物质都具有波动性,这包括微观粒子如电子和中子,以及宏观物体如人类和行星。
德布罗意假设指出,物质波的波长与相应粒子的动量成反比,这与光的波长与光子的能量成反比的关系类似。
2. 不确定性原理2.1 测量的不可避免扰动不确定性原理是量子力学的核心概念之一,它指出在进行某个物理量的测量时,无法同时准确确定该物理量的位置和动量。
换句话说,测量的不可避免扰动导致了我们无法同时知道一个粒子的精确位置和精确动量。
2.2 测量不确定性关系根据不确定性原理,位置和动量的不确定度之积不能小于或等于普朗克常数的一半。
这意味着我们越准确地测量一个粒子的位置,就越无法确定其动量,反之亦然。
不确定性原理限制了我们对微观世界的认识,它揭示了自然界存在的本质随机性。
3. 波函数和量子态3.1 波函数描述粒子的状态在量子力学中,波函数是描述微观粒子状态的数学函数。
波函数的模的平方给出了找到粒子处于某个状态的概率分布。
波函数的演化由薛定谔方程描述,它可以预测粒子在时间上的演化。
3.2 量子态和叠加原理量子态是描述整个量子力学系统的状态。
一个量子态可以由多个基态的线性组合表示,这被称为叠加。
根据叠加原理,一个粒子可以处于多个不同状态的叠加态中,直到被测量出一个确定的状态。
4. 简并假设4.1 能级简并简并假设指出,某些物理系统中存在多个不同状态具有相同能量的情况,这被称为能级简并。
例如,原子核的不同核态可能具有相同的能量。
这种简并性在量子力学中具有重要的意义,影响了粒子的行为和相互作用。
量子力学基本对易关系量子力学基本对易关系量子力学是描述微观世界的一种物理学理论,它与经典物理学有很大的不同,其中最重要的一个方面就是基本对易关系。
本文将会详细介绍量子力学中的基本对易关系。
一、量子力学基础1.1 量子力学概述量子力学是描述微观粒子运动和相互作用的物理学理论,它与经典物理学有着很大的不同。
在经典物理中,粒子被视为具有确定位置和速度的点状物体,在任何时刻都可以准确地测量它们的位置和速度。
但在量子力学中,粒子被视为波粒二象性体现出来的波函数。
1.2 波函数波函数是用来描述微观粒子运动状态和相互作用的数学函数。
在经典物理中,我们可以通过测量一个粒子的位置和速度来确定其状态。
但在量子力学中,我们只能通过测量某些物理量(例如能量、动量、自旋等)来确定其状态。
二、基本对易关系2.1 基本概念在量子力学中,我们需要用算符来描述物理系统中各个可观测量的取值。
算符是一种数学对象,它可以作用于波函数上,得到一个新的波函数。
基本对易关系指的是两个算符之间的对易关系。
2.2 基本对易关系的定义在量子力学中,我们定义两个算符A和B之间的对易子为[A,B]=AB-BA。
如果[A,B]=0,则称A和B是可对易的。
否则,它们是不可对易的。
2.3 基本对易关系的例子最常见的基本对易关系就是位置算符x和动量算符p之间的关系。
它们之间的基本对易关系为:[x,p]=xp-px=iℏ其中,ℏ为普朗克常数。
三、应用举例3.1 不确定性原理基本对易关系还可以用来推导出不确定性原理。
根据不确定性原理,我们无法同时准确地测量一个粒子的位置和动量。
这是因为在测量位置时,我们会干扰粒子的动量;而在测量动量时,我们会干扰粒子的位置。
3.2 能级分裂基本对易关系还可以用来解释能级分裂现象。
当一个系统中存在多个可观测量时,这些可观测量之间可能存在相互作用。
这种相互作用会导致能级分裂现象,即原本相同的能级被分成多个不同的能级。
四、总结量子力学中的基本对易关系是描述微观粒子运动和相互作用的重要概念。
1量子力学课后习题详解第一章量子理论基础1.1由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λT=b (常量);并近似计算b 的数值,准确到二位有效数字。
解根据普朗克的黑体辐射公式dv ec hvd kThv vv 11833−⋅=πρ,(1)以及c v =λ,(2)λρρd dv v v −=,(3)有,118)()(5−⋅=⋅=⎟⎠⎞⎜⎝⎛−=−=kT hcv v e hc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:201151186'=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−⋅+−−⋅=−kThc kThce kT hc ehc λλλλλπρ⇒115=−⋅+−−kThc ekThc λλ⇒kThc ekThc λλ=−−)1(5如果令x=kThcλ,则上述方程为xe x =−−)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知Km T m ⋅×=−3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e µ<<动),那么ep E µ22=如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0×,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λ3nmm mE c hc E h e e 71.01071.031051.021024.1229662=×=××××===−−µµ在这里,利用了meV hc ⋅×=−61024.1以及eVc e 621051.0×=µ最后,对Ec hc e 22µλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫ ⎝⎛-⋅+--⋅=-kThc kThc e kT hc ehcλλλλλπρ ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
第一章 绪论1.1.由黑体辐射公式导出维恩位移定律:C m b bTm3109.2 ,×´==-l 。
证明:由普朗克黑体辐射公式:由普朗克黑体辐射公式:n n p nr n nd ec hd kTh 11833-=, 及ln c=、l ln d c d 2-=得1185-=kThcehc l l l p r ,令kT hc x l =,再由0=l r l d d ,得l .所满足的超越方程为所满足的超越方程为15-=x x e xe用图解法求得97.4=x ,即得97.4=kT hc m l ,将数据代入求得C m 109.2 ,03×´==-b b T ml 1.2.在0K 附近,钠的价电子能量约为3eV ,求de Broglie 波长. 解:010A 7.09m 1009.72=´»==-mEh p h l # 1.3. 氦原子的动能为kT E 23=,求K T 1=时氦原子的de Broglie 波长。
波长。
解:010A 63.12m 1063.1232=´»===-mkT h mE h p h l其中kg 1066.1003.427-´´=m ,123K J 1038.1--×´=k # 1.4利用玻尔—索末菲量子化条件,求:利用玻尔—索末菲量子化条件,求: (1)一维谐振子的能量。
)一维谐振子的能量。
(2)在均匀磁场中作圆周运动的电子的轨道半径。
)在均匀磁场中作圆周运动的电子的轨道半径。
已知外磁场T 10=B ,玻尔磁子123T J 10923.0--×´=B m ,求动能的量子化间隔E D ,并与K 4=T 及K 100=T 的热运动能量相比较。
的热运动能量相比较。
解:(1)方法1:谐振子的能量222212q p E mw m +=可以化为()12222222=÷÷øöççèæ+mw m E q Ep的平面运动,轨道为椭圆,两半轴分别为22,2mw m Eb E a ==,相空间面积为,相空间面积为,2,1,0,2=====òn nh EE ab pdq nw pp 所以,能量 ,2,1,0,==n nh E n方法2:一维谐振子的运动方程为02=+¢¢q q w ,其解为,其解为()j w +=t A q sin速度为速度为 ()j w w +=¢t A q c o s ,动量为()j w mw m +=¢=t A q p cos ,则相积分为,则相积分为 ()()nh T A dt t A dt t A pdq T T ==++=+=òòò2)cos 1(2cos 220220222mw j w mw j w mw , ,2,1,0=n nmw nh T nh A E ===222, ,2,1,0=n (2)设磁场垂直于电子运动方向,受洛仑兹力作用作匀速圆周运动。
量子力学知识:量子态的制备与控制量子力学是研究微观世界的物理学理论,描述了微观粒子的行为,包括粒子的位置,速度,能量等。
在量子力学中,一个量子粒子可以同时处于多个状态,即量子态,这一特性成为全息性发展现代信息技术的关键。
而制备和控制量子态是探索量子世界和开发量子技术的核心工作。
一、量子态的制备1.1线性叠加原理量子态的制备需要依赖线性叠加原理,即一个粒子在不同状态下的波函数可以被相加。
例如,一个带电粒子可以处于不同的空间位置,因此它的波函数可以表示为不同位置下的叠加。
1.2干涉干涉是制备量子态的一种重要方法。
在双缝干涉实验中,一个光子会通过两个狭缝,并在后面的屏幕上出现干涉条纹。
这表明一个粒子可以同时处于多个位置上,而这些位置的权重是由波函数的幅度确定的。
1.3光学制备在量子光学中,可以通过调整光的相位和振幅来制备量子态。
例如,考虑一个偏振的光子,它只能处于特定的偏振状态。
通过选择不同的偏振,可以制备不同的量子态。
二、量子态的控制2.1束缚态束缚态是一种可以在空间范围内被限制的量子状态。
例如,一个量子经过适当的制备后可以被限制在一个有边界的盒子中。
通过调整盒子的形状和大小,可以控制量子态的性质。
2.2冷却在量子技术中,冷却是非常重要的一种控制方法。
通过将粒子冷却至低温,可以控制它的速度和能量,使其处于稳定的量子态。
例如,冷却后的原子可以形成玻色-爱因斯坦凝聚体,这是一种量子态,具有独特的物理性质。
2.3重叠重叠是控制量子态另一种重要方法。
通过限定两个粒子在同一空间,它们的波函数会重叠,形成一种新的量子态。
例如,两个原子在某个时刻靠得很近,它们的波函数会重叠,并形成一种复合粒子,它的物理性质是两个原子单独时所没有的。
三、量子态的应用3.1量子计算量子计算是利用量子态的叠加和纠缠来进行计算。
例如,可以通过量子纠缠制备叠加态,从而实现量子并行算法,大大提高计算效率。
另外,量子计算还可以通过测量量子态,来解决一些复杂的计算问题。