数学一轮复习:含绝对值的不等式的解法
- 格式:doc
- 大小:130.00 KB
- 文档页数:3
选修4—5不等式选讲必备知识预案自诊知识梳理1.绝对值三角不等式(1)定理1:若a,b是实数,则|a+b|≤,当且仅当时,等号成立;(2)性质:|a|-|b|≤|a±b|≤|a|+|b|;(3)定理2:若a,b,c是实数,则|a-c|≤,当且仅当时,等号成立.2.绝对值不等式的解法(1)含绝对值的不等式|x|<a与|x|>a(a>0)的解法:①|x|<a⇔-a<x<a;②|x|>a⇔x>a或x<-a.(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法:①|ax+b|≤c⇔;②|ax+b|≥c⇔.(3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法:①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图像求解,体现了函数与方程及数形结合的思想.3.基本不等式定理1:设a,b∈R,则a2+b2≥,当且仅当a=b时,等号成立.定理2:若a,b为正数,则a+b2≥√ab,当且仅当a=b时,等号成立.定理3:若a,b,c为正数,则a+b+c3≥√abc3,当且仅当a=b=c时,等号成立.定理4:若a1,a2,…,a n为n个正数,则a1+a2+…+a nn ≥√a1a2…a nn,当且仅当a1=a2=…=a n时,等号成立.4.柯西不等式(1)若a,b,c,d都是实数,则(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc时,等号成立.(2)设a1,a2,a3,…,a n,b1,b2,b3,…,b n是实数,则(a12+a22+…+a n2)(b12+b22+…+b n2)≥(a1b1+a2b2+…+a n b n)2,当且仅当b i=0(i=1,2,…,n)或存在一个数k,使得a i=kb i(i=1,2,…,n)时,等号成立.(3)柯西不等式的向量形式:设α,β是两个向量,则|α||β|≥|α·β|,当且仅当β是零向量或存在实数k,使α=kβ时,等号成立.5.不等式证明的方法证明不等式常用的方法有比较法、综合法、分析法、放缩法以及利用绝对值三角不等式、柯西不等式法等.考点自诊1.判断下列结论是否正确,正确的画“√”,错误的画“×”.(1)对|a-b|≤|a|+|b|,当且仅当ab≤0时,等号成立.()(2)|a+b|+|a-b|≥|2a|.()(3)|x-a|+|x-b|的几何意义是表示数轴上的点x到点a,b的距离之和.()(4)用反证法证明命题“a,b,c全为0”时假设为“a,b,c全不为0”.()(5)若m=a+2b,n=a+b2+1,则n≥m.() 2.若|a-c|<|b|,则下列不等式正确的是()A.a<b+cB.a>c-bC.|a|>|b|-|c|D.|a|<|b|+|c|3.若不等式|x+1x|>|a-2|+1对于一切非零实数x均成立,则实数a的取值范围是() A.(2,3) B.(1,2)C.(1,3)D.(1,4)4.设a,b,m,n∈R,且a2+b2=5,ma+nb=5,则√m2+n2的最小值为.5.若存在实数x使|x-a|+|x-1|≤3成立,则实数a的取值范围是.第1课时绝对值不等式关键能力学案突破考点绝对值不等式的解法【例1】(2020全国1,理23)已知函数f(x)=|3x+1|-2|x-1|.(1)画出y=f(x)的图像;(2)求不等式f(x)>f(x+1)的解集.解题心得解含有两个以上绝对值符号的不等式的方法解法1:利用绝对值不等式的几何意义求解,体现了数形结合的思想;解法2:利用“零点分段法”求解,即令各个绝对值式子等于0,求出各自零点,把零点在数轴上从小到大排列,然后按零点分数轴形成的各区间去绝对值,进而将绝对值不等式转化为常规不等式,体现了分类讨论的思想;解法3:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.对点训练1(2019全国2,理23)已知f(x)=|x-a|x+|x-2|(x-a).(1)当a=1时,求不等式f(x)<0的解集;(2)若x∈(-∞,1)时,f(x)<0,求a的取值范围.考点求参数范围(多考向探究)考向1分离参数法求参数范围【例2】(2017全国3,理23)已知函数f(x)=|x+1|-|x-2|.(1)求不等式f(x)≥1的解集;(2)若不等式f(x)≥x2-x+m的解集非空,求m的取值范围.解题心得在不等式有解或成立的情况下,求参数的取值范围,可以采取分离参数,通过求对应函数最值的方法获得.对点训练2已知f(x)=|x+1|,g(x)=2|x|+a,(1)当a=-1时,求不等式f(x)≥g(x)的解集;(2)若存在x0∈R使得f(x0)≥g(x0)成立,求a的取值范围.考向2利用函数最值求参数范围【例3】(2020辽宁大连一中6月模拟,23)已知函数f(x)=x|x-a|,a∈R.(1)当f(1)+f(-1)>1时,求a的取值范围;+|y-a|恒成立,求a的取值范围.(2)若a>0,对任意x,y∈(-∞,a],都有不等式f(x)≤y+54解题心得1.对于求参数范围问题,可将已知条件进行等价转化,得到含有参数的不等式恒成立,此时通过求函数的最值得到关于参数的不等式,解不等式得参数范围.2.解答此类问题应熟记以下转化:f(x)>a恒成立⇔f(x)min>a;f(x)<a恒成立⇔f(x)max<a;f(x)>a有解⇔f(x)max>a;f(x)<a有解⇔f(x)min<a;f(x)>a无解⇔f(x)max≤a;f(x)<a无解⇔f(x)min≥a.对点训练3(2020山西太原三模,23)已知函数f(x)=|x+1|+|x-2a|,a∈R.(1)若a=1,解不等式f(x)<4;(2)对任意的实数m,若总存在实数x,使得m2-2m+4=f(x),求实数a的取值范围.考向3恒等转化法求参数范围【例4】(2020全国2,理23)已知函数f(x)=|x-a2|+|x-2a+1|.(1)当a=2时,求不等式f(x)≥4的解集;(2)若f(x)≥4,求a的取值范围.解题心得在不等式成立的前提下求参数范围,通常对不等式进行等价变形,求出不等式的解,然后根据已知条件确定参数范围.对点训练4(2018全国1,理23)已知f(x)=|x+1|-|ax-1|.(1)当a=1时,求不等式f(x)>1的解集;(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.考点求函数或代数式的最值(多考向探究)考向1利用基本不等式求最值【例5】(2020河北石家庄二模,文23)函数f(x)=|2x-1|+|x+2|.(1)求函数f(x)的最小值;(2)若f(x)的最小值为M,a+2b=2M(a>0,b>0),求证:1a+1+12b+1≥47.解题心得在求某一代数式的最值时,根据已知条件利用基本不等式a 2+b 2≥2ab ,a+b2≥√ab (a ,b 为正数),a+b+c3≥√abc 3(a ,b ,c 为正数)对代数式进行适当的放缩,从而得出其最值.对点训练5(2020河南开封三模)关于x 的不等式|x-2|<m (m ∈N +)的解集为A ,且32∈A ,12∉A. (1)求m 的值;(2)设a ,b ,c 为正实数,且a+b+c=3m ,求√a +√b +√c 的最大值.考向2 利用绝对值三角不等式求最值【例6】已知函数f (x )=2|x+a|+|x -1a|(a ≠0).(1)当a=1时,解不等式f (x )<4;(2)求函数g (x )=f (x )+f (-x )的最小值.解题心得利用绝对值三角不等式求函数或代数式的最值时,往往需要对函数或代数式中的几个绝对值里面的代数式等价变形,使相加或相减后对消变量,得到常数.对点训练6已知函数f (x )=|2x+1|-|x-1|. (1)求f (x )+|x-1|+|2x-3|的最小值;(2)若不等式|m-1|≥f (x )+|x-1|+|2x-3|有解,求实数m 的取值范围.考向3利用放缩法求最值【例7】(2019全国3,理23)设x,y,z∈R,且x+y+z=1.(1)求(x-1)2+(y+1)2+(z+1)2的最小值;(2)若(x-2)2+(y-1)2+(z-a)2≥13成立,证明:a≤-3或a≥-1.解题心得利用放缩法求代数式的最值,一般利用基本不等式,绝对值三角不等式及数学结论进行放缩,在放缩的过程中,结合已知条件消去变量得到常量,从而得到代数式的最值.对点训练7已知实数m,n满足2m-n=3.(1)若|m|+|n+3|≥9,求实数m的取值范围;(2)求|53m-13n|+|13m-23n|的最小值.1.绝对值不等式主要利用“零点分段法”求解,有时也利用函数图像通过观察得出不等式的解集.2.含绝对值不等式的恒成立问题的求解方法(1)分离参数法:运用“f(x)≤a⇔f(x)max≤a,f(x)≥a⇔f(x)min≥a”可解决恒成立中的参数范围问题.(2)数形结合法:在研究不等式f(x)≤g(x)恒成立问题时,若能作出两个函数的图像,通过图像的位置关系可直观解决问题.3.求函数或代数式的最值主要应用基本不等式、绝对值三角不等式以及通过放缩求解.在解决有关绝对值不等式的问题时,充分利用绝对值不等式的几何意义解决问题能有效避免分类讨论不全面的问题.若用零点分段法求解,要掌握分类讨论的标准,做到不重不漏.选修4—5 不等式选讲必备知识·预案自诊知识梳理1.(1)|a|+|b| ab ≥0 (3)|a-b|+|b-c| (a-b )(b-c )≥02.(2)①-c ≤ax+b ≤c ②ax+b ≥c 或ax+b ≤-c3.2ab考点自诊1.(1)√ (2)√ (3)√ (4)× (5)√2.D |a|-|c|≤|a-c|<|b|,即|a|<|b|+|c|,故选D .3.C 因为|x +1x |=|x|+|1x |≥2,要使对于一切非零实数x ,|x +1x|>|a-2|+1恒成立,则|a-2|+1<2,即1<a<3.4.√5 由柯西不等式可知(a 2+b 2)(m 2+n 2)≥(ma+nb )2,即5(m 2+n 2)≥25,当且仅当an=bm 时,等号成立,所以√m 2+n 2≥√5.5.[-2,4] ∵|x-a|+|x-1|≥|(x-a )-(x-1)|=|a-1|,要使|x-a|+|x-1|≤3有解,可使|a-1|≤3,∴-3≤a-1≤3,∴-2≤a ≤4.第1课时 绝对值不等式 关键能力·学案突破 例1解(1)由题设知f (x )={-x -3,x ≤-13,5x -1,-13<x ≤1,x +3,x >1.y=f (x )的图像如图所示.(2)函数y=f (x )的图像向左平移1个单位长度后得到函数y=f (x+1)的图像.y=f (x )的图像与y=f (x+1)的图像的交点坐标为-76,-116.由图像可知当且仅当x<-76时,y=f (x )的图像在y=f (x+1)的图像上方. 故不等式f (x )>f (x+1)的解集为(-∞,-76). 对点训练1解(1)当a=1时,f (x )=|x-1|x+|x-2|·(x-1).当x<1时,f (x )=-2(x-1)2<0; 当x ≥1时,f (x )≥0.所以,不等式f (x )<0的解集为(-∞,1). (2)因为f (a )=0,所以a ≥1. 当a ≥1,x ∈(-∞,1)时,f (x )=(a-x )x+(2-x )(x-a )=2(a-x )(x-1)<0. 所以,a 的取值范围是[1,+∞). 例2解(1)f (x )={-3,x <-1,2x -1,-1≤x ≤2,3,x >2.当x<-1时,f (x )≥1无解;当-1≤x ≤2时,由f (x )≥1得,2x-1≥1,解得1≤x ≤2; 当x>2时,由f (x )≥1解得x>2. 所以f (x )≥1的解集为{x|x ≥1}.(2)由f (x )≥x 2-x+m 得m ≤|x+1|-|x-2|-x 2+x. 而|x+1|-|x-2|-x 2+x ≤|x|+1+|x|-2-x 2+|x|=-(|x |-32)2+54≤54,且当x=32时,|x+1|-|x-2|-x 2+x=54. 故m 的取值范围为(-∞,54].对点训练2解(1)当a=-1时原不等式可化为|x+1|-2|x|≥-1,设φ(x )=|x+1|-2|x|={x -1,x ≤-1,3x +1,-1<x <0,-x +1,x ≥0,则{x ≤-1,x -1≥-1,或{-1<x <0,3x +1≥-1,或{x ≥0,-x +1≥-1. 即-23≤x ≤2.所以原不等式的解集为-23,2.(2)若存在x 0∈R 使得f (x 0)≥g (x 0)成立,等价于|x+1|≥2|x|+a 有解, 由(1)即φ(x )≥a 有解,即a ≤φ(x )max ,由(1)可知,φ(x )在(-∞,0)单调递增,在[0,+∞)单调递减, 所以φ(x )max =φ(0)=1,所以a ≤1.故a 的取值范围为(-∞,1].例3解(1)f (1)+f (-1)=|1-a|-|1+a|>1,若a ≤-1,则1-a+1+a>1,得2>1,即当a ≤-1时,不等式恒成立;若-1<a<1,则1-a-(1+a )>1,得a<-12,即-1<a<-12; 若a ≥1,则-(1-a )-(1+a )>1,得-2>1,此时不等式无解. 综上所述,a 的取值范围是-∞,-12.(2)由题意知,要使不等式恒成立,只需f (x )max ≤y+54+|y-a|min .当x ∈(-∞,a ]时,f (x )=-x 2+ax ,f (x )max =f a 2=a 24. 因为y+54+|y-a|≥a+54, 所以当y ∈-54,a 时,y+54+|y-a|min =a+54=a+54.于是a 24≤a+54,解得-1≤a ≤5.结合a>0,所以a 的取值范围是(0,5].对点训练3解(1)当a=1时,f (x )<4,即|x+1|+|x-2|<4,化为{x <-1,2x >-3或{-1≤x ≤2,3<4或{x >2,2x -1<4,解得-32<x<-1或-1≤x ≤2或2<x<52,综上,-32<x<52,即不等式f (x )<4的解集为-32,52.(2)根据题意,得m 2-2m+4的取值范围是f (x )值域的子集.m 2-2m+4=(m-1)2+3≥3,又f (x )=|x+1|+|x-2a|≥|2a+1|, 所以f (x )的值域为[|2a+1|,+∞).故|2a+1|≤3,解得-2≤a ≤1,即实数a 的取值范围为[-2,1].例4解(1)当a=2时,f (x )={7-2x ,x ≤3,1,3<x ≤4,2x -7,x >4.因此,不等式f (x )≥4的解集为{x |x ≤32或x ≥112}. (2)因为f (x )=|x-a 2|+|x-2a+1|≥|a 2-2a+1|=(a-1)2,故当(a-1)2≥4,即|a-1|≥2时,f (x )≥4. 所以当a ≥3或a ≤-1时,f (x )≥4.当-1<a<3时,f (a 2)=|a 2-2a+1|=(a-1)2<4. 所以a 的取值范围是(-∞,-1]∪[3,+∞).对点训练4解(1)当a=1时,f (x )=|x+1|-|x-1|,即f (x )={-2,x ≤-1,2x ,-1<x <1,2,x ≥1.故不等式f (x )>1的解集为{x |x >12}.(2)当x ∈(0,1)时|x+1|-|ax-1|>x 成立等价于当x ∈(0,1)时|ax-1|<1成立. 若a ≤0,则当x ∈(0,1)时|ax-1|≥1;若a>0,|ax-1|<1的解集为0<x<2a ,所以2a ≥1,故0<a ≤2. 综上,a 的取值范围为(0,2]. 例5(1)解f (x )=|2x-1|+|x+2|={-3x -1,x ≤-2,-x +3,-2<x <12,3x +1,x ≥12,当x ≤-2时,f (x )≥5;当-2<x<12时,52<f (x )<5; 当x ≥12时,f (x )≥52. 所以f (x )的最小值为52. (2)证明由(1)知M=52,即a+2b=5.又因为a>0,b>0,所以1a+1+12b+1=17[(a+1)+(2b+1)]1a+1+12b+1=172+2b+1a+1+a+12b+1 ≥172+2√2b+1a+1·a+12b+1 =47,当且仅当a=2b ,即a=52,b=54时,等号成立.所以1a+1+12b+1≥47. 对点训练5解(1)由已知得{|32-2|<m ,|12-2|≥m ,解得12<m ≤32.因为m ∈N *,所以m=1.(2)因为a+b+c=3,所以√a +√b +√c =√1·a +√1·b +√1·c ≤1+a 2+1+b 2+1+c2=3+a+b+c2=3, 当且仅当a=b=c=1时,等号成立.所以√a +√b +√c 的最大值为3.例6解(1)∵a=1,∴原不等式为2|x+1|+|x-1|<4,∴{x <-1,-2x -2-x +1<4,或 {-1≤x ≤1,2x +2-x +1<4,或{x >1,2x +2+x -1<4,∴-53<x<-1或-1≤x<1或∅. ∴原不等式的解集为(-53,1).(2)由题意得g (x )=f (x )+f (-x )=2(|x+a|+|x-a|)+(|x +1a |+|x -1a |)≥2|2a|+2|a |≥4√2.当且仅当2|a|=1|a |,即a=±√22,且-√22≤x ≤√22时,g (x )取最小值4√2. 对点训练6解(1)f (x )+|x-1|+|2x-3|=|2x+1|-|x-1|+|x-1|+|2x-3|=|2x+1|+|2x-3|≥|2x+1-(2x-3)|=4,当-12≤x ≤32时等号成立,所以f (x )+|x-1|+|2x-3|的最小值为4.(2)不等式|m-1|≥f (x )+|x-1|+|2x-3|有解,∴|m-1|≥[f (x )+|x-1|+|2x-3|]min .∴|m-1|≥4,∴m-1≤-4或m-1≥4,即m ≤-3或m ≥5,∴实数m 的取值范围是(-∞,-3]∪[5,+∞).例7(1)解由于[(x-1)+(y+1)+(z+1)]2=(x-1)2+(y+1)2+(z+1)2+2[(x-1)(y+1)+(y+1)(z+1)+(z+1)(x-1)]≤3[(x-1)2+(y+1)2+(z+1)2],故由已知得(x-1)2+(y+1)2+(z+1)2≥43,当且仅当x=53,y=-13,z=-13时等号成立.所以(x-1)2+(y+1)2+(z+1)2的最小值为43.(2)证明由于[(x-2)+(y-1)+(z-a )]2=(x-2)2+(y-1)2+(z-a )2+2[(x-2)(y-1)+(y-1)(z-a )+(z-a )(x-2)]≤3[(x-2)2+(y-1)2+(z-a )2],故由已知得(x-2)2+(y-1)2+(z-a )2≥(2+a )23,当且仅当x=4-a 3,y=1-a 3,z=2a -23时等号成立. 因此(x-2)2+(y-1)2+(z-a )2的最小值为(2+a )23.由题设知(2+a )23≥13,解得a ≤-3或a ≥-1.对点训练7解因为2m-n=3,所以2m=n+3.(1)|m|+|n+3|=|m|+|2m|=3|m|≥9,所以|m|≥3,所以m ≤-3或m ≥3.故m 的取值范围为(-∞,-3]∪[3,+∞).(2)53m-13n +13m-23n =53m-13(2m-3)+13m-23(2m-3)=|m+1|+|m-2|≥3,当且仅当-1≤m ≤2(或-5≤n ≤1)时等号成立, 所以53m-13n +13m-23n 的最小值是3.。
高考数学一轮复习考点知识专题讲解绝对值不等式考点要求1.理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:|a+b|≤|a|+|b|(a,b∈R);|a-c|≤|a-b|+|b-c|(a,b,c∈R).2.会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c;|ax+b|≥c;|x-a|+|x-b|≥c .知识梳理1.绝对值不等式的解法(1)含绝对值的不等式|x|<a与|x|>a的解集不等式a>0a=0a<0|x|<a (-a,a)∅∅|x|>a(-∞,-a)∪(a,+∞)(-∞,0)∪(0,+∞)R(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法①|ax+b|≤c⇔-c≤ax+b≤c.②|ax+b|≥c⇔ax+b≥c或ax+b≤-c.(3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法①利用绝对值不等式的几何意义求解,体现了数形结合的思想. ②利用“零点分段法”求解,体现了分类讨论的思想.③通过构造函数,利用函数的图象求解,体现了函数与方程的思想. 2.含有绝对值的不等式的性质(1)如果a ,b 是实数,则||a |-|b ||≤|a ±b |≤|a |+|b |.(2)如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)若|x |>c 的解集为R ,则c ≤0.(×) (2)不等式|x -1|+|x +2|<2的解集为∅.(√)(3)对|a +b |≥|a |-|b |当且仅当a >b >0时等号成立.(×) (4)对|a -b |≤|a |+|b |当且仅当ab ≤0时等号成立.(√) 教材改编题1.不等式3≤|5-2x |<9的解集为() A .[-2,1)∪[4,7) B.(-2,1]∪(4,7] C .(-2,-1]∪[4,7) D.(-2,1]∪[4,7) 答案D解析由题意得⎩⎨⎧ |2x -5|<9,|2x -5|≥3,即⎩⎨⎧-9<2x -5<9,2x -5≥3或2x -5≤-3,解得⎩⎨⎧-2<x <7,x ≥4或x ≤1,∴不等式的解集为(-2,1]∪[4,7).2.不等式|x-1|-|x-5|<2的解集为______.答案(-∞,4)解析①当x≤1时,原不等式可化为1-x-(5-x)<2,∴-4<2,不等式恒成立,∴x≤1;②当1<x<5时,原不等式可化为x-1-(5-x)<2,∴x<4,∴1<x<4;③当x≥5时,原不等式可化为x-1-(x-5)<2,该不等式不成立.综上,原不等式的解集为(-∞,4).3.设a,b∈R,|a-b|>2,则关于实数x的不等式|x-a|+|x-b|>2的解集是________.答案R解析∵|x-a|+|x-b|≥|(x-a)-(x-b)|=|b-a|=|a-b|.又∵|a-b|>2,∴|x-a|+|x-b|>2恒成立,即该不等式的解集为R.题型一绝对值不等式的解法例1(2021·全国乙卷)已知函数f(x)=|x-a|+|x+3|.(1)当a=1时,求不等式f(x)≥6的解集;(2)若f(x)>-a,求a的取值范围.解(1)当a=1时,f(x)=|x-1|+|x+3|,即求|x-1|+|x+3|≥6的解集,当x ≥1时,2x +2≥6,得x ≥2;当-3<x <1时,4≥6,此时没有x 满足条件; 当x ≤-3时,-2x -2≥6,得x ≤-4. 综上,不等式f (x )≥6的解集为 {x |x ≤-4或x ≥2}.(2)f (x )=|x -a |+|x +3|≥|(x -a )-(x +3)|=|a +3|, 当且仅当(x -a )(x +3)≤0时,等号成立. 所以f (x )min =|a +3|>-a , 当a <-3时,-a -3>-a ,无解; 当a ≥-3时,a +3>-a ,解得a >-32,综上所述,a 的取值范围是⎝ ⎛⎭⎪⎫-32,+∞.教师备选已知f (x )=|x +1|+|x -1|. (1)求不等式f (x )<4的解集;(2)若不等式f (x )-|a +1|<0有解,求a 的取值范围.解(1)f (x )=|x +1|+|x -1|=⎩⎨⎧-2x ,x ≤-1,2,-1<x ≤1,2x ,x >1,∵f (x )<4, ∴⎩⎨⎧-2x <4,x ≤-1或⎩⎨⎧2<4,-1<x ≤1或⎩⎨⎧2x <4,x >1,∴-2<x ≤-1或-1<x ≤1或1<x <2,故不等式的解集为(-2,2). (2)∵f (x )=|x +1|+|x -1| ≥|(x +1)-(x -1)|=2,∴f (x )min =2,当且仅当(x +1)(x -1)≤0时取等号, ∵f (x )-|a +1|<0有解, ∴|a +1|>f (x )min =2, ∴|a +1|>2,∴a +1<-2或a +1>2,即a <-3或a >1, 故a 的取值范围是(-∞,-3)∪(1,+∞). 思维升华 解绝对值不等式的基本方法(1)利用绝对值的定义,通过分类讨论转化为解不含绝对值符号的普通不等式. (2)当不等式两端均为正数时,可通过两边平方的方法,转化为不含绝对值符号的普通不等式.(3)利用绝对值的几何意义,数形结合求解.跟踪训练1(2021·全国甲卷)已知函数f (x )=|x -2|,g (x )=|2x +3|-|2x -1|. (1)画出y =f (x )和y =g (x )的图象; (2)若f (x +a )≥g (x ),求a 的取值范围. 解(1)f (x )=⎩⎨⎧x -2,x ≥2,2-x ,x <2,g (x )=⎩⎪⎨⎪⎧-4,x <-32,4x +2,-32≤x <12,4,x ≥12,作出图象,如图所示.(2)由(1)得f (x )=⎩⎨⎧x -2,x ≥2,2-x ,x <2,函数f (x +a )的图象即为将函数f (x )的图象向左或向右平移|a |个单位长度,当a ≤0时,即为将函数f (x )的图象向右平移|a |个单位长度得到f (x +a )的图象,此时函数f (x +a )的图象始终有部分图象位于函数g (x )的图象下方,无法满足f (x +a )≥g (x ),则要满足f (x +a )≥g (x ), 需a >0,f (x +a )=|x +a -2|,当函数y =|x +a -2|的图象过点⎝⎛⎭⎪⎫12,4时,⎪⎪⎪⎪⎪⎪12+a -2=4, 解得a =112或a =-52(舍去), 根据图象可得若f (x +a )≥g (x ),则a ≥112,即a ∈⎣⎢⎡⎭⎪⎫112,+∞.题型二 利用绝对值不等式的性质求最值 例2已知函数f (x )=|2x +1|+|x -4|. (1)解不等式f (x )≤6;(2)若不等式f (x )+|x -4|<a 2-8a 有解,求实数a 的取值范围.解(1)由已知得f (x )=⎩⎪⎨⎪⎧-3x +3,x <-12,x +5,-12≤x ≤4,3x -3,x >4,当x <-12时,-3x +3≤6,即x ≥-1,∴-1≤x <-12;当-12≤x ≤4时,x +5≤6,即x ≤1,∴-12≤x ≤1;当x >4时,3x -3≤6,即x ≤3(舍去). 综上得f (x )≤6的解集为[-1,1].(2)f (x )+|x -4|=|2x +1|+|2x -8|≥9,⎝⎛⎭⎪⎫当且仅当-12≤x ≤4时取等号 ∵f (x )+|x -4|<a 2-8a 有解, ∴a 2-8a >9,(a -9)(a +1)>0,a <-1或a >9,∴实数a 的取值范围是(-∞,-1)∪(9,+∞). 教师备选已知f (x )=|x -3|,g (x )=|x -k |(其中k ≥2). (1)若k =4,求f (x )+g (x )<9的解集;(2)∀x ∈[1,2],不等式f (x )-g (x )≥k -x 恒成立,求实数k 的值. 解(1)若k =4,则f (x )+g (x )<9,即|x -3|+|x -4|<9, 即⎩⎨⎧x <3,3-x +4-x <9或⎩⎨⎧3≤x ≤4,x -3+4-x <9或⎩⎨⎧x >4,x -3+x -4<9,解得-1<x <3或3≤x ≤4或4<x <8, ∴原不等式的解集为{x |-1<x <8}. (2)∵k ≥2,且x ∈[1,2], ∴x -3<0,x -k ≤0,∴f (x )=|x -3|=3-x ,g (x )=|x -k |=k -x , 则∀x ∈[1,2],不等式f (x )-g (x )≥k -x 恒成立, 即∀x ∈[1,2],x +3≥2k 恒成立, ∴4≥2k ,即k ≤2, 又k ≥2,∴k =2.思维升华 求含绝对值函数的最值时,常用的方法有三种 (1)利用绝对值的几何意义.(2)利用绝对值的三角不等式,即|a |+|b |≥|a ±b |≥||a |-|b ||. (3)利用零点分区间法,转化为分段函数求最值. 跟踪训练2已知f (x )=|x +1|-|2x -1|. (1)求不等式f (x )>0的解集;(2)若x ∈R 时,不等式f (x )≤a +x 恒成立,求a 的取值范围. 解(1)由题意得|x +1|>|2x -1|, 所以|x +1|2>|2x -1|2,整理可得x 2-2x <0,解得0<x <2, 故原不等式的解集为{x |0<x <2}. (2)由已知可得,a ≥f (x )-x 恒成立, 设g (x )=f (x )-x ,则g (x )=⎩⎪⎨⎪⎧-2,x <-1,2x ,-1≤x ≤12,-2x +2,x >12,由g (x )的单调性可知,当x =12时,g (x )取得最大值,且最大值为1,所以a 的取值范围是[1,+∞). 题型三 绝对值不等式的综合应用 例3设函数f (x )=|2x +1|+|x -1|. (1)画出y =f (x )的图象;(2)当x ∈[0,+∞)时,f (x )≤ax +b ,求a +b 的最小值.解(1)f (x )=⎩⎪⎨⎪⎧-3x ,x <-12,x +2,-12≤x <1,3x ,x ≥1.y =f (x )的图象如图所示.(2)由(1)知,y =f (x )的图象与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当a ≥3且b ≥2时,f (x )≤ax +b 在[0,+∞)上恒成立,因此a +b 的最小值为5. 教师备选(2020·全国Ⅱ)已知函数f (x )=|x -a 2|+|x -2a +1|. (1)当a =2时,求不等式f (x )≥4的解集; (2)若f (x )≥4,求a 的取值范围. 解(1)当a =2时,f (x )=|x -4|+|x -3|=⎩⎨⎧7-2x ,x ≤3,1,3<x <4,2x -7,x ≥4.当x ≤3时,令7-2x ≥4,解得x ≤32;当3<x <4时,1≥4,无解;当x ≥4时,令2x -7≥4,解得x ≥112. 因此,不等式f (x )≥4的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x ≤32或x ≥112. (2)将题目转化为f (x )≥4恒成立,即f (x )min ≥4.因为f (x )=|x -a 2|+|x -2a +1|≥|a 2-2a +1|=(a -1)2,所以(a -1)2≥4,即|a -1|≥2.解得a ≥3或a ≤-1. 所以a 的取值范围是(-∞,-1]∪[3,+∞).思维升华 (1)解决与绝对值有关的综合问题的关键是去掉绝对值,化为分段函数来解决.(2)数形结合是解决与绝对值有关的综合问题的常用方法.跟踪训练3(2022·白山联考)已知函数f (x )=|x -2|-a |x +1|.(1)当a =1时,求不等式f (x )<x 的解集;(2)当a =2时,若关于x 的不等式f (x )>m +1恰有2个整数解,求实数m 的取值范围. 解(1)由已知不等式|x -2|-|x +1|<x ,得|x -2|<x +|x +1|,当x ≥2时,不等式为x -2<x +x +1,解得x >-3,所以x ≥2;当-1<x <2时,不等式为2-x <x +x +1,解得x >13,所以13<x <2; 当x ≤-1时,不等式为2-x <x -x -1,解得x >3,此时无解.综上,原不等式的解集为⎝ ⎛⎭⎪⎫13,+∞. (2)由题意,函数f (x )=|x -2|-2|x +1|,可得f (x )=⎩⎨⎧ x +4,x ≤-1,-3x ,-1<x <2,-x -4,x ≥2,f (x )的图象如图.f (-3)=1,f (-2)=2,f (-1)=3,f (0)=0,因为关于x 的不等式f (x )>m +1恰有2个整数解,由图可知,1≤m +1<2,所以0≤m <1,故m 的取值范围为[0,1).课时精练1.已知函数f (x )=|x -1|+|x -a |.(1)若函数f (x )的值域为[2,+∞),求实数a 的值;(2)若f (2-a )≥f (2),求实数a 的取值范围.解(1)∵|x -1|+|x -a |≥|(x -1)-(x -a )|=|a -1|,∴|a -1|=2,解得a =3或a =-1.(2)由f (2-a )≥f (2),得3|a -1|-|a -2|≥1,则⎩⎨⎧ a ≤1,3(1-a )-(2-a )≥1或⎩⎨⎧ 1<a ≤2,3(a -1)-(2-a )≥1或⎩⎨⎧ a >2,3(a -1)-(a -2)≥1,解得a ≤0或32≤a ≤2或a >2, 综上,实数a 的取值范围是(-∞,0]∪⎣⎢⎡⎭⎪⎫32,+∞. 2.已知函数f (x )=|x +1|-|x |+a .(1)若a =0,求不等式f (x )≥0的解集;(2)若方程f (x )=x 有三个不同的解,求实数a 的取值范围.解(1)当a =0时,f (x )=|x +1|-|x |=⎩⎨⎧ -1,x <-1,2x +1,-1≤x <0,1,x ≥0.所以当x <-1时,f (x )=-1<0,不符合题意;当-1≤x <0时,f (x )=2x +1≥0,解得-12≤x <0;当x ≥0时,f (x )=1>0,符合题意.综上可得f (x )≥0的解集为⎣⎢⎡⎭⎪⎫-12,+∞. (2)设u (x )=|x +1|-|x |,y =u (x )的图象和y =x 的图象如图所示.易知y =u (x )的图象向下平移1个单位长度内(不包括1个单位长度),与y =x 的图象始终有3个交点,从而-1<a <0.所以实数a 的取值范围为(-1,0).3.已知函数f (x )=|2x +a |-|x -3|(a ∈R ).(1)若a =-1,求不等式f (x )+1>0的解集;(2)已知a >0,若f (x )+3a >2对于任意x ∈R 恒成立,求a 的取值范围.解(1)因为a =-1,所以f (x )=⎩⎪⎨⎪⎧-x -2,x <12,3x -4,12≤x ≤3,x +2,x >3,所以不等式f (x )+1>0等价于 ⎩⎨⎧ x <12,-x -2+1>0或⎩⎨⎧ 12≤x ≤3,3x -4+1>0或⎩⎨⎧x >3,x +2+1>0,解得x <-1或x >1.所以不等式f (x )+1>0的解集为{x |x <-1或x >1}.(2)因为a >0,所以f (x )=⎩⎪⎨⎪⎧ -x -a -3,x <-a 2,3x +a -3,-a 2≤x ≤3,x +a +3,x >3.根据函数的单调性可知函数f (x )的最小值为f ⎝ ⎛⎭⎪⎫-a 2=-a 2-3, 因为f (x )+3a >2恒成立,所以-a 2-3+3a >2,解得a >2. 所以实数a 的取值范围是(2,+∞).4.(2022·郑州模拟)已知函数f (x )=|2x +a |+1.(1)当a =2时,解不等式f (x )+x <2;(2)若存在a ∈⎣⎢⎡⎦⎥⎤-13,1,使得不等式f (x )≥b +|2x +a 2|的解集非空,求b 的取值范围. 解(1)当a =2时,函数f (x )=|2x +2|+1,解不等式f (x )+x <2化为|2x +2|+1+x <2,即|2x +2|<1-x ,∴x -1<2x +2<1-x (x <1),解得-3<x <-13,∴不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ -3<x <-13. (2)由f (x )≥b +|2x +a 2|, 得b ≤|2x +a |-|2x +a 2|+1,设g (x )=|2x +a |-|2x +a 2|+1,则不等式的解集非空,等价于b ≤g (x )max ,由g (x )≤|(2x +a )-(2x +a 2)|+1=|a 2-a |+1,∴b ≤|a 2-a |+1.由题意知存在a ∈⎣⎢⎡⎦⎥⎤-13,1,使得上式成立, 而函数h (a )=|a 2-a |+1在a ∈⎣⎢⎡⎦⎥⎤-13,1上的最大值为h ⎝ ⎛⎭⎪⎫-13=139, ∴b ≤139, 即b 的取值范围是⎝⎛⎦⎥⎤-∞,139. 5.设f (x )=|x +1|-|2x -1|.(1)求不等式f (x )≤x +2的解集;(2)若不等式f (x )≤12|x |(|a -2|+|a +1|)对任意实数x (x ≠0)恒成立,求实数a 的取值范围.解(1)根据题意可知,原不等式为|x +1|-|2x -1|≤x +2,等价于⎩⎨⎧ x <-1,-x -1+2x -1≤x +2或⎩⎨⎧ -1≤x ≤12,x +1+2x -1≤x +2或⎩⎨⎧ x >12,x +1-2x +1≤x +2,解得x <-1或-1≤x ≤12或x >12. 综上可得不等式f (x )≤x +2的解集为R .(2)不等式f (x )≤12|x |(|a -2|+|a +1|)等价于|x +1|-|2x -1||x |≤12(|a -2|+|a +1|), 因为⎪⎪⎪⎪⎪⎪|x +1|-|2x -1||x | =⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪1+1x -⎪⎪⎪⎪⎪⎪2-1x ≤⎪⎪⎪⎪⎪⎪1+1x +2-1x =3, 当且仅当⎝⎛⎭⎪⎫1+1x ⎝ ⎛⎭⎪⎫2-1x ≤0时取等号, 因为|x +1|-|2x -1||x |≤12(|a -2|+|a +1|), 所以|a -2|+|a +1|≥6,解得a ≤-52或a ≥72, 故实数a 的取值范围为⎝ ⎛⎦⎥⎤-∞,-52∪⎣⎢⎡⎭⎪⎫72,+∞.。
含绝对值不等式解法要点归纳解含绝对值符号的不等式的基本思想是去掉绝对值符号,使不等式变为不含绝对值符号的一般不等式,而后,其解法就与一般不等式相同.因此,掌握去掉绝对值符号的方法和途径是解题关键.一、含有绝对值不等式的几种去掉绝对值符号的常用方法去掉绝对值符号的方法有很多,其中常用的方法有:1.定义法去掉绝对值符号根据实数绝对的意义,即| x | =(0)(0)x xx x≥⎧⎨-<⎩,有:| x |<c⇔(0)(0)c x c ccφ-<<>⎧⎨≤⎩;| x |>c⇔(0)0(0)(0)x c x c cx cx R c<->>⎧⎪≠=⎨⎪∈<⎩或;2.利用不等式的性质去掉绝对值符号利用不等式的性质转化为| x |<c或| x |>c (c>0)来解.不等式|ax+b|>c (c >0)可化为ax+b>c或ax+b<-c,再由此求出原不等式的解集;不等式|ax+b|<c (c>0)可化为-c<ax+b<c,再由此求出原不等式的解集,对于含绝对值的双向不等式应化为不等式组求解,也可利用结论“a≤| x |≤b⇔a≤x≤b或-b≤x≤-a求解.这是一中典型的转化与化归的数学思想方法.3.平方法去掉绝对值符号.对于两边都含有“单项”绝对值的不等式,利用| x |2= x2可在两边脱去绝对值符号求解,这样解题要比按绝对值定义,讨论脱去绝对值符号解题简捷.解题时还要注意不等式两边变量与参变量的取值范围,如果没有明确不等式两边均为非负数,需要分类讨论,只有不等式两边均为非负数,(式)时,才可以直接两边平方,去掉绝对值符号,尤其是解含参数不等式更必须注意的一点.4.零点分段法去掉绝对值符号.所谓“零点分段法”是指:设数x1,x2,x3,…,xn是分别使含有|x-x1|,|x-x2|,|x-x3|,…,|x-xn|的代数式中相应的绝对值为零,称x1,x2,x3,…,xn 为相应绝对值的零点,零点x1,x2,x3,…,xn将数轴分为n+1段,利用绝对值的意义化去绝对值符号,从而得到代数式在各段上的简化式,从而化为不含绝对值的不等式组来解.即令每一项等于零,得到的值作为讨论的分区点,然后再分区间讨论绝对值不等式,最后应求出解集的并集.“零点分段法”是解含有多个绝对值符号的不等式的常用手段,这种方法主要体现了化归、分类讨论等数学思想方法,它可以把求解条理化,思路直观.5.数形结合法去掉绝对值符号解绝对值不等式有时要利用数形结合,利用绝对值的几何意义,画出数轴,将绝对值转化为数轴上两点的距离求解.数形结合法形象、直观,可以使复杂问题简单化,此解法适用于| x-a|+| x-b |>m或| x-a|+| x-b |<m (m为正常数)类型的不等式.二、几点注意事项1.根据绝对值定义,将| x |<c或| x |>c (c>0)转化为两个不等式组,这两个不等式组的关系是“或”而不是“且”,因而原不等式的解集是这两个不等式组解的并集,而不是交集.2.| x |<c和| x |>c (c>0)的解集公式要牢记,以后可以直接作为公式使用.但要注意的是,这两个公式是在c>0时导出的,当c≤0时,需要另行讨论,不能使用该公式.3.解不等式问题与集合运算有密切联系,在应用集合有关内容处理绝对值不等式的过程中,要注意在不等式组的解集中,对不等式端点值的取舍情况.再有,因为已学习了集合表示法,所以不等式的解集要用集合形式表示,不要使用不等式的形式.4.解含有绝对值的不等式的关键是把含有绝对值的不等式转化为不含绝对值符号的不等式,然后再求解,但这种转化必须是等价转化,尤其是平方法去掉绝对值符号时,一定要注意两边非负这一条件,否则就会扩大或缩小解集的范围.5.要学会灵活运用分类讨论思想、数形结合思想、等价专化与化归思想方法处理绝对值不等式问题.三、典型例题思路点拨例1 关于x的不等式| kx-1|≤5的解集为{x |-3≤x≤2},求k的值.思路点拨:按绝对值定义直接去掉绝对值符号后,由于k的取值不确定,要以k 的不同取值分类处理.解:原不等式可化为-4≤kx ≤6,当k >0时,-k 4≤x ≤k6,依题意,有 ⎪⎪⎩⎪⎪⎨⎧=-=-.26,34k k ⇒⎪⎩⎪⎨⎧==3,34k k ,此时无解. 当k = 0时,显然不满足题意.当k <0时, k 6≤x ≤-k 4,依题意,有⎪⎪⎩⎪⎪⎨⎧-==-.36,24kk ⇒ k =-2. 例2 解不等式| x -1|<| x +a |.思路点拨:由于两边均为非负数,因此可以两边平方去掉绝对值符号. 解:由于| x -1|≥0,| x +a |>0,所以两边平方有| x -1|2<| x +a |2, 即有x 2-2x +1<x 2+2ax +a 2,整理得:(2a +2)x >1-a 2,当2a +2>0,即a >-1时,不等式的解为x >21(1-a); 当2a +2 = 0,即a =-1时,不等式无解;当2a +2<0,即a <1时,不等式的解为x <21(1-a). 例3 若不等式 | x -4|+| 3-x |<a 的解集为空集,求a 的取值范围. 思路点拨一:此不等式左边含有两个绝对值符号,如何去掉绝对值符号呢?可考虑采用“零点分段”,即令每一项等于零,得到的值作为讨论的分区点,然后再分区间讨论绝对值不等式,最后应求出解集的并集.解一:⑴当a ≤0时,不等式 | x -4|+| 3-x |<a 的解集为空集. ⑵当a >0时,先求不等式 | x -4|+| 3-x |<a 有解时a 的取值范围. 令x -4 = 0,得x = 4,令3-x = 0,得x = 3.①当x ≥4时,原不等式 | x -4|+| 3-x |<a 化为:x -4+x -3<a ,即2x -7<a ,解不等式组⎩⎨⎧<-≥.72,4a x x ⇒ 4≤x <27+a ⇒4<27+a , ∴a >1.②当3<x <4时,原不等式 | x -4|+| 3-x |<a 化为:4-x +x -3<a ,解得a >1.③当x ≤3时,原不等式 | x -4|+| 3-x |<a 化为:4-x +3-x <a ,即7-2x <a ,解不等式组⎩⎨⎧<-≤.27,3a x x ⇒ 27a -<x ≤3⇒,27a -<3, ∴a >1.综合①②③可知,当a >1时,原不等式有解,从而当0<a ≤1时,原不等式解集为空集.由⑴、⑵两种情况可知,不等式 | x -4|+| 3-x |<a 的解集为空集,a 的取值范围是a ≤1.思路点拨二:解法一是按去掉绝对值符号的方法求解,这是处理此类问题的一般方法,但运算量大.若仔细观察不等式左边的结构,联想到绝对值| a +b|≤| a |+| b|,便可把问题简化.解二:∵a >| x -4|+| 3-x |≥| x -4+3-x | = 1,∴当a >1时| x -4|+| 3-x |<a 有解,从而当0<a ≤1时,原不等式解集为空集.例4 对任意实数x ,若不等式| x +1|-| x -2 |>k 恒成立,求 k 的取值范围. 思路点拨一:要使| x +1|-| x -2 |>k 对任意x 恒成立,只要| x +1|-| x -2 |的最小值大于k .因| x +1|的几何意义为数轴上点x 到-1的距离,| x -2 |的几何意义为数轴上点x 到2的距离,| x +1|-| x -2 |的几何意义为数轴上点x 到-1与2的距离的差,其最小值可求.解法一:根据绝对值的几何意义,设数x ,-1,2在 数轴上对应的点分别为P 、A 、B ,原不等式即求| PA|-| PB|>k 成立,因为|AB| = 3,即| x +1|-| x -2 |≥-3,故当k <-3时,原不等式恒成立.思路点拨二:如果把不等式的左边用零点分段的方法改写成分段函数,通过画出其图象,从图象观察k 的取值范围. 解法二:令y = | x +1|-| x -2 |,则 y =⎪⎩⎪⎨⎧≥<<---≤-.2.321,121,3x x x x 要使| x +1|-| x -2 |>k 恒成立,从图象可以看出,只要k <-3即可.故k <-3满足题意思.。
第3讲绝对值不等式1.绝对值不等式(1)定理如果a,b是实数,那么|a+b|≤□01|a|+|b|,当且仅当□02ab≥0时,等号成立.(2)如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|.当且仅当□03(a-b)(b-c)≥0时,等号成立,即b落在a,c之间.(3)由绝对值不等式定理还可以推得以下几个不等式①|a1+a2+…+a n|≤|a1|+|a2|+…+|a n|.②||a|-|b||≤|a±b|≤|a|+|b|.2.绝对值不等式的解法(1)形如|ax+b|≥|cx+d|的不等式,可以利用两边平方的形式转化为二次不等式求解.(2)①绝对值不等式|x|>a与|x|<a的解集.②|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法.|ax+b|≤c⇔□03-c≤ax+b≤c(c>0),|ax+b|≥c⇔□04ax+b≤-c或ax+b≥c(c>0).1.概念辨析(1)不等式|x-1|+|x+2|<2的解集为∅.( )(2)若|x|>c的解集为R,则c≤0.( )(3)|ax+b|≤c(c≥0)的解集,等价于-c≤ax+b≤c.( )(4)对|a-b|≤|a|+|b|当且仅当ab≤0时等号成立.( )答案 (1)√ (2)× (3)√ (4)√ 2.小题热身(1)设a ,b 为满足ab <0的实数,那么( ) A .|a +b |>|a -b | B .|a +b |<|a -b | C .|a -b |<||a |-|b || D .|a -b |<|a |+|b | 答案 B解析 ∵ab <0,∴|a -b |=|a |+|b |>|a +b |.(2)若不等式|kx -4|≤2的解集为{x |1≤x ≤3},则实数k =________. 答案 2解析 由|kx -4|≤2⇔2≤kx ≤6.∵不等式的解集为{x |1≤x ≤3},∴k =2. (3)函数y =|x -3|+|x +3|的最小值为________. 答案 6解析 因为|x -3|+|x +3|≥|(x -3)-(x +3)|=6,当-3≤x ≤3时,|x -3|+|x +3|=6,所以函数y =|x -3|+|x +3|的最小值为6.(4)不等式|x -1|-|x -5|<2的解集是________. 答案 (-∞,4)解析 |x -1|-|x -5|表示数轴上对应的点x 到1和5的距离之差.而数轴上满足|x -1|-|x -5|=2的点的数是4,结合数轴可知,满足|x -1|-|x -5|<2的解集是(-∞,4).题型 一 解绝对值不等式设函数f (x )=|2x +1|-|x -4|. (1)解不等式f (x )>2; (2)求函数y =f (x )的最小值.解 (1)解法一:令2x +1=0,x -4=0分别得x =-12,x =4.原不等式可化为:⎩⎪⎨⎪⎧x <-12,-x -5>2或⎩⎪⎨⎪⎧-12≤x <4,3x -3>2或⎩⎪⎨⎪⎧x ≥4,x +5>2.∴原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-7或x >53. 解法二:f (x )=|2x +1|-|x -4|=⎩⎪⎨⎪⎧-x -5,x <-12,3x -3,-12≤x <4,x +5,x ≥4.画出f (x )的图象,如图所示.求得y =2与f (x )图象的交点为(-7,2),⎝ ⎛⎭⎪⎫53,2. 由图象知f (x )>2的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-7或x >53. (2)由(1)的解法二知,f (x )min =-92.条件探究 把举例说明中函数改为“f (x )=|x +1|-|2x -3|”,解不等式|f (x )|>1.解 f (x )=⎩⎪⎨⎪⎧x -4,x ≤-1,3x -2,-1<x ≤32,-x +4,x >32,y =f (x )的图象如图所示.由f (x )的表达式及图象,当f (x )=1时,可得x =1或x =3; 当f (x )=-1时,可得x =13或x =5,故f (x )>1的解集为{x |1<x <3};f (x )<-1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <13或x >5.所以|f (x )|>1的解集为{|x x <13或1<x <3或x >5.解|x -a |+|x -b |≥c 或|x -a |+|x -b |≤c 的一般步骤 (1)零点分段法①令每个含绝对值符号的代数式为零,并求出相应的根;②将这些根按从小到大排序并以这些根为端点把实数集分为若干个区间; ③由所分区间去掉绝对值符号组成若干个不等式,解这些不等式,求出解集; ④取各个不等式解集的并集求得原不等式的解集. (2)利用|x -a |+|x -b |的几何意义数轴上到点x 1=a 和x 2=b 的距离之和大于c 的全体,|x -a |+|x -b |≥|x -a -(x -b )|=|a -b |.(3)图象法:作出函数y 1=|x -a |+|x -b |和y 2=c 的图象,结合图象求解.见举例说明.提醒:易出现解集不全的错误.对于含绝对值的不等式,不论是分段去绝对值号还是利用几何意义,都要不重不漏.1.求不等式|x -1|+|x +2|≥5的解集.解 当x <-2时,不等式等价于-(x -1)-(x +2)≥5,解得x ≤-3;当-2≤x <1时,不等式等价于-(x -1)+(x +2)≥5,即3≥5,无解; 当x ≥1时,不等式等价于x -1+x +2≥5,解得x ≥2. 综上,不等式的解集为{x |x ≤-3或x ≥2}.2.若关于x 的不等式|ax -2|<3的解集为{|x -53<x <13,求a 的值.解 ∵|ax -2|<3,∴-1<ax <5. 当a >0时,-1a <x <5a ,-1a =-53,且5a =13无解; 当a =0时,x ∈R ,与已知条件不符; 当a <0时,5a <x <-1a ,5a =-53,且-1a =13,解得a =-3.题型 二 绝对值不等式性质的应用角度1 用绝对值不等式的性质求最值 1.设函数f (x )=|2x -3|.(1)求不等式f (x )>5-|x +2|的解集;(2)若g (x )=f (x +m )+f (x -m )的最小值为4,求实数m 的值. 解 (1)∵f (x )>5-|x +2|可化为|2x -3|+|x +2|>5, ∴当x ≥32时,原不等式化为(2x -3)+(x +2)>5,解得x >2,∴x >2;当-2<x <32时,原不等式化为(3-2x )+(x +2)>5,解得x <0,∴-2<x <0;当x ≤-2时,原不等式化为(3-2x )-(x +2)>5,解得x <-43,∴x ≤-2.综上,不等式f (x )>5-|x +2|的解集为(-∞,0)∪(2,+∞). (2)∵f (x )=|2x -3|,∴g (x )=f (x +m )+f (x -m )=|2x +2m -3|+|2x -2m -3|≥|(2x +2m -3)-(2x -2m -3)|=|4m |,∴依题意有4|m |=4,解得m =±1.角度2 用绝对值不等式的性质证明不等式 (多维探究)2.设a >0,|x -1|<a 3,|y -2|<a3,求证:|2x +y -4|<a .证明 因为|x -1|<a 3,|y -2|<a3, 所以|2x +y -4|=|2(x -1)+(y -2)| ≤2|x -1|+|y -2|<2×a 3+a3=a .即|2x +y -4|<a .结论探究 举例说明条件不变,求证:|x -2y +1|<a +2. 证明 |x -2y +1|=|(x -1)-2(y -1)|<|x -1|+|2(y -1)|=|x -1|+|2(y -2)+2|<|x -1|+2|y -2|+2a 3+2·a3+2=a +2.1.证明绝对值不等式的三种主要方法(1)利用绝对值的定义去掉绝对值符号,转化为普通不等式再证明. (2)利用三角不等式||a |-|b ||≤|a ±b |≤|a |+|b |进行证明. (3)转化为函数问题,利用数形结合进行证明. 2.用绝对值不等式的性质求最值的方法利用不等式|a +b |≤|a |+|b |(a ,b ∈R )和|a -b |≤|a -c |+|c -b |(a ,b ∈R ),通过确定适当的a ,b ,利用整体思想或使函数、不等式中不含变量,可以求最值.(2018·江西南昌模拟)已知函数f (x )=|2x -a |+|x -1|. (1)若不等式f (x )≤2-|x -1|有解,求实数a 的取值范围; (2)当a <2时,函数f (x )的最小值为3,求实数a 的值. 解 (1)由题意f (x )≤2-|x -1|,即为⎪⎪⎪⎪⎪⎪x -a 2+|x -1|≤1.而由绝对值的几何意义知⎪⎪⎪⎪⎪⎪x -a2+|x -1|≥⎪⎪⎪⎪⎪⎪a2-1, 由不等式f (x )≤2-|x -1|有解,∴⎪⎪⎪⎪⎪⎪a2-1≤1,即0≤a ≤4.∴实数a 的取值范围是[0,4].(2)由2x -a =0得x =a2,由x -1=0得x =1, 由a <2知a2<1,∴f (x )=⎩⎪⎨⎪⎧-3x +a +1⎝ ⎛⎭⎪⎫x <a 2,x -a +1⎝ ⎛⎭⎪⎫a 2≤x ≤1,3x -a -x函数的图象如图所示.∴f (x )min =f ⎝ ⎛⎭⎪⎫a 2=-a2+1=3,解得a =-4.题型 三 与绝对值不等式有关的参数范围问题(2018·全国卷Ⅰ)已知f (x )=|x +1|-|ax -1|. (1)当a =1时,求不等式f (x )>1的解集;(2)若x ∈(0,1)时不等式f (x )>x 成立,求a 的取值范围. 解 (1)当a =1时,f (x )=|x +1|-|x -1|, 即f (x )=⎩⎪⎨⎪⎧-2,x ≤-1,2x ,-1<x <1,2,x ≥1.故不等式f (x )>1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >12. (2)当x ∈(0,1)时|x +1|-|ax -1|>x 成立等价于当x ∈(0,1)时|ax -1|<1成立. 若a ≤0,则当x ∈(0,1)时,|ax -1|≥1,不符合题意;若a >0,|ax -1|<1的解集为0<x <2a ,所以2a≥1,故0<a ≤2.综上,a 的取值范围为(0,2].条件探究 把举例说明函数改为“f (x )=|2x -1|-|x -a |”,若x ∈(-1,0)时,f (x )>1有解,求a 的取值范围.解 当x ∈(-1,0)时,f (x )>1有解⇔|x -a |<-2x 有解⇔2x <x -a <-2x 有解⇔3x <a <-x 有解,∵3x >-3,-x <1,∴-3<a <1,即实数a 的取值范围是(-3,1).两招解不等式问题中的含参问题(1)第一招是转化.①把存在性问题转化为求最值问题;②不等式的解集为R 是指不等式的恒成立问题;③不等式的解集为∅的对立面也是不等式的恒成立问题,此类问题都可转化为最值问题,即f (x )<a 恒成立⇔a >f (x )max ,f (x )>a 恒成立⇔a <f (x )min .(2)第二招是求最值.求含绝对值的函数最值时,常用的方法有三种:①利用绝对值的几何意义;②利用绝对值三角不等式,即|a |+|b |≥|a ±b |≥||a |-|b ||;③利用零点分区间法.已知f (x )=|x -a |,a ∈R .(1)当a =1时,求不等式f (x )+|2x -5|≥6的解集;(2)若函数g (x )=f (x )-|x -3|的值域为A ,且[-1,2]⊆A ,求实数a 的取值范围. 解 (1)当a =1时,不等式为|x -1|+|2x -5|≥6. 当x ≤1时,不等式可化为-(x -1)-(2x -5)≥6, 解得x ≤0,所以x ≤0;当1<x <52时,不等式可化为(x -1)-(2x -5)≥6,解得x ≤-2,所以x ∈∅;当x ≥52时,不等式可化为(x -1)+(2x -5)≥6,解得x ≥4,所以x ≥4.综上所述,原不等式的解集为{x |x ≤0或x ≥4}. (2)因为|g (x )|=||x -a |-|x -3|| ≤|x -a -(x -3)|=|a -3|, 所以g (x )∈[-|a -3|,|a -3|],所以函数g (x )的值域A =[-|a -3|,|a -3|], 因为[-1,2]⊆A ,所以⎩⎪⎨⎪⎧-|a -3|≤-1,|a -3|≥2,解得a ≤1或a ≥5.所以实数a 的取值范围是(-∞,1]∪[5,+∞).。
例1 不等式|8-3x|>0的解集是 [ ]A B RC {x|x }D {83}...≠.∅83分析∵->,∴-≠,即≠.|83x|083x 0x 83答 选C .例2 绝对值大于2且不大于5的最小整数是[ ]A .3B .2C .-2D .-5分析 列出不等式.解 根据题意得2<|x|≤5.从而-5≤x <-2或2<x ≤5,其中最小整数为-5,答 选D .例3 不等式4<|1-3x|≤7的解集为________.分析 利用所学知识对不等式实施同解变形.解 原不等式可化为4<|3x -1|≤7,即4<3x -1≤7或-7≤-<-解之得<≤或-≤<-,即所求不等式解集为-≤<-或<≤.3x 14x 2x 1{x|2x 1x }53835383例4 已知集合A ={x|2<|6-2x|<5,x ∈N},求A .分析 转化为解绝对值不等式.解 ∵2<|6-2x|<5可化为2<|2x -6|<5即-<-<,->或-<-,52x 652x 622x 62⎧⎨⎩即<<,>或<,12x 112x 82x 4⎧⎨⎩解之得<<或<<.4x x 211212因为x ∈N ,所以A ={0,1,5}.说明:注意元素的限制条件.例5 实数a ,b 满足ab <0,那么[ ]A .|a -b|<|a|+|b|B .|a +b|>|a -b|C .|a +b|<|a -b|D .|a -b|<||a|+|b||分析 根据符号法则及绝对值的意义.解 ∵a 、b 异号,∴ |a +b|<|a -b|.答 选C .例6 设不等式|x -a|<b 的解集为{x|-1<x <2},则a ,b 的值为[ ]A .a =1,b =3B .a =-1,b =3C .a =-1,b =-3D a b .=,=1232 分析 解不等式后比较区间的端点.解 由题意知,b >0,原不等式的解集为{x|a -b <x <a +b},由于解集又为{x|-1<x <2}所以比较可得.a b 1a b 2a b -=-+=,解之得=,=.⎧⎨⎩1232答 选D .说明:本题实际上是利用端点的位置关系构造新不等式组.例7 解关于x 的不等式|2x -1|<2m -1(m ∈R)分析 分类讨论.解若-≤即≤,则-<-恒不成立,此时原不等 2m 10m |2x 1|2m 112式的解集为;∅若->即>,则--<-<-,所以-<2m 10m (2m 1)2x 12m 11m 12x <m .综上所述得:当≤时原不等式解集为;当>时,原不等式的解集为m m 1212∅{x|1-m <x <m}.说明:分类讨论时要预先确定分类的标准.例解不等式-+≥.8 3212||||x x分析 一般地说,可以移项后变形求解,但注意到分母是正数,所以能直接去分母. 解 注意到分母|x|+2>0,所以原不等式转化为2(3-|x|)≥|x|+2,整理得|x|x {x|x }≤,从而可以解得-≤≤,解集为-≤≤.4343434343说明:分式不等式常常可以先判定一下分子或者分母的符号,使过程简便.例9 解不等式|6-|2x+1||>1.分析以通过变形化简,把该不等式化归为|ax+b|<c或|ax+b|>c型的不等式来解.解事实上原不等式可化为6-|2x+1|>1①或 6-|2x+1|<-1②由①得|2x+1|<5,解之得-3<x<2;由②得|2x+1|>7,解之得x>3或x<-4.从而得到原不等式的解集为{x|x<-4或-3<x<2或x>3}.说明:本题需要多次使用绝对值不等式的解题理论.例10 已知关于x的不等式|x+2|+|x-3|<a的解集是非空集合,则实数a的取值范围是________.分析可以根据对|x+2|+|x-3|的意义的不同理解,获得多种方法.解法一当x≤-2时,不等式化为-x-2-x+3<a即-2x+1<a有解,而-2x+1≥5,∴a>5.当-2<x≤3时,不等式化为x+2-x+3<a即a>5.当x>3是,不等式化为x+2+x-3<a即2x-1<a有解,而2x-1>5,∴a>5.综上所述:a>5时不等式有解,从而解集非空.解法二 |x+2|+|x-3|表示数轴上的点到表示-2和3的两点的距离之和,显然最小值为3-(-2)=5.故可求a的取值范围为a>5.解法三利用|m|+|n|>|m±n|得|x+2|+|x-3|≥|(x+2)-(x-3)|=5.所以a>5时不等式有解.说明:通过多种解法锻炼思维的发散性.例11 解不等式|x+1|>2-x.分析一对2-x的取值分类讨论解之.解法一原不等式等价于:①-≥+>-或+<-2x0x12x x1x2⎧⎨⎩或②-<∈2x0 x R⎧⎨⎩由①得≤>或<-x2x1212⎧⎨⎪⎩⎪即≤>,所以<≤;x2x x21212⎧⎨⎪⎩⎪由②得x>2.综合①②得>.所以不等式的解集为>.x {x|x }1212分析二 利用绝对值的定义对|x +1|进行分类讨论解之.解法二 因为 |x 1| x 1x 1x 1x 1+=+,≥---,<-⎧⎨⎩ 原不等式等价于:①≥>或②<>x x x x x x ++-⎧⎨⎩+---⎧⎨⎩10121012由①得≥>即>;x x -⎧⎨⎪⎩⎪11212x由②得<-->即∈.x 112 x ⎧⎨⎩∅所以不等式的解集为>.{x|x }12例12 解不等式|x -5|-|2x +3|<1.分析 设法去掉绝对值是主要解题策略,可以根据绝对值的意义分区间讨论,事实上,由于=时,-=,=-时+=.x 5|x 5|0x |2x 3|032所以我们可以通过-,将轴分成三段分别讨论.325x解当≤-时,-<,+≤所以不等式转化为x x 502x 3032-(x -5)+(2x +3)<1,得x <-7,所以x <-7;当-<≤时,同理不等式化为32x 5-(x -5)-(2x +3)<1,解之得>,所以<≤;x x 51313当x >5时,原不等式可化为x -5-(2x +3)<1,解之得x >-9,所以x >5.综上所述得原不等式的解集为>或<-.{x|x x 7}13说明:在含有绝对值的不等式中,“去绝对值”是基本策略.例13 解不等式|2x -1|>|2x -3|.分析 本题也可采取前一题的方法:采取用零点分区间讨论去掉绝对值,但这样比较复杂.如果采取两边平方,即根据>>解|a||b|a b 22 之,则更显得流畅,简捷.解 原不等式同解于(2x -1)2>(2x -3)2,即4x2-4x +1>4x2-12x +9,即8x >8,得x >1.所以原不等式的解集为{x|x >1}.说明:本题中,如果把2x 当作数轴上的动坐标,则|2x -1|>|2x -3|表示2x 到1的距离大于2x 到3的距离,则2x 应当在2的右边,从而2x >2即x >1.。
含绝对值的不等式的解法
一.课题:含绝对值的不等式的解法 二.教学目标:掌握一些简单的含绝对值的不等式的解法.
三.教学重点:解含绝对值不等式的基本思想是去掉绝对值符号,将其等价转化为一元一次(二次)不等式(组),难点是含绝对值不等式与其它内容的综合问题及求解过程中,集合间的交、并等各种运算.
四.教学过程:
(一)主要知识:
1.绝对值的几何意义:||x 是指数轴上点x 到原点的距离;12||x x -是指数轴上12,x x 两点间的距离
2.当0c >时,||ax b c ax b c +>⇔+>或ax b c +<-,
||ax b c c ax b c +<⇔-<+<;
当0c <时,||ax b c x R +>⇔∈,||ax b c x φ+<⇔∈.
(二)主要方法:
1.解含绝对值的不等式的基本思想是去掉绝对值符号,将其等价转化为一元一次(二次)不等式(组)进行求解;
2.去掉绝对值的主要方法有:
(1)公式法:|| (0)x a a a x a <>⇔-<<,|| (0)x a a x a >>⇔>或x a <-.
(2)定义法:零点分段法;
(3)平方法:不等式两边都是非负时,两边同时平方.
(三)例题分析:
例1.解下列不等式:
(1)4|23|7x <-≤;(2)|2||1|x x -<+;(3)|21||2|4x x ++->.
解:(1)原不等式可化为4237x <-≤或7234x -≤-<-,∴原不等式解集为
17[2,)(,5]22
-- . (2)原不等式可化为22(2)(1)x x -<+,即12x >,∴原不等式解集为1[,)2
+∞. (3)当12
x ≤-时,原不等式可化为2124x x --+->,∴1x <-,此时1x <-; 当122
x -<<时,原不等式可化为2124x x ++->,∴1x >,此时12x <<; 当2x ≥时,原不等式可化为2124x x ++->,∴53
x >,此时2x ≥.
综上可得:原不等式的解集为(,1)(1,)-∞-+∞ .
例2.(1)对任意实数x ,|1||2|x x a ++->恒成立,则a 的取值范围是(,3)-∞;
(2)对任意实数x ,|1||3|x x a --+<恒成立,则a 的取值范围是(4,)+∞. 解:(1)可由绝对值的几何意义或|1||2|y x x =++-的图象或者绝对值不等式的性质|1||2||1||2||12|3x x x x x x ++-=++-≥++-=得|1||2|3x x ++-≥,∴3a <;
(2)与(1)同理可得|1||3|4x x --+≤,∴4a >.
例3.(《高考A 计划》考点3“智能训练第13题”)设0,0a b >>,解关于x 的不等式:|2|ax bx -≥.
解:原不等式可化为2a x b x -≥或2ax bx -≤-,即()2
a b x -≥①或2()2a b x x a b
+≤⇒≤
+②, 当0a b >>时,由①得2x a b ≥-,∴此时,原不等式解为:2x a b ≥-或2x a b
≤+; 当0a b =>时,由①得x φ∈,∴此时,原不等式解为:2x a b
≤+; 当0a b <<时,由①得2x a b ≤-,∴此时,原不等式解为:2x a b
≤+. 综上可得,当0a b >>时,原不等式解集为22(,][,)a b a b
-∞+∞+- , 当0a b <≤时,原不等式解集为2(,]a b -∞+. 例4.已知{||23|}A x x a =-<,{|||10}B x x =≤,且A B ⊂≠,求实数a 的取值范围. 解:当0a ≤时,A φ=,此时满足题意;
当0a >时,33|23|22
a a x a x -+-<⇒<<,∵A B ⊂≠, ∴3102173102
a a a -⎧≥-⎪⎪⇒≤⎨+⎪≤⎪⎩, 综上可得,a 的取值范围为(,17]-∞.
例5.(《高考A 计划》考点3“智能训练第15题”)在一条公路上,每隔100km 有个仓库(如下图),共有5个仓库.一号仓库存有10t 货物,二号仓库存20t ,五号仓库存40t ,其余两个仓库是空的.现在想把所有的货物放在一个仓库里,如果每吨货物运输1km 需要0.5元运输费,那么最少要多少运费才行?
解:以一号仓库为原点建立坐标轴,
则五个点坐标分别为12345:0,:100,:200,:300,:400A A A A A , 设货物集中于点:B x ,则所花的运费5||10|100|20|200|y x x x =+-+-, 当0100x ≤≤时,259000y x =-+,此时,当100x =时,min 6500y =; 当100400x <<时,57000y x =-+,此时,50006500y <<; 当400x ≥时,359000y x =-,此时,当400x =时,min 5000y =. 综上可得,当400x =时,min 5000y =,即将货物都运到五号仓库时,花费最少,为5000元.
(四)巩固练习:
1.||11x x x x >++的解集是(1,0)-;|23|3x x ->的解集是3(,)5-∞; 2.不等式||1||||
a b a b +≥-成立的充要条件是||||a b >; 3.若关于x 的不等式|4||3|x x a -++<的解集不是空集,则a ∈(7,)+∞;
4.不等式22|2log |2|log |x x x x -<+成立,则x ∈(1,)+∞。