高数第八章第2节
- 格式:ppt
- 大小:979.00 KB
- 文档页数:29
高等数学a1上教材第八章第八章:多元函数微分学第一节:二元函数的极限和连续性在高等数学A1上教材的第八章中,我们将学习多元函数微分学的基础知识。
本章的第一节将介绍二元函数的极限和连续性。
1. 二元函数的极限在前几章中,我们已经学习了一元函数的极限,而二元函数的极限则更加复杂一些。
对于二元函数f(x,y),当自变量的取值趋近于某个点(x0,y0)时,如果函数值f(x,y)也趋近于一个确定的值L,我们就说函数在点(x0,y0)处有极限,并记作lim_{(x,y)→(x0,y0)}f(x,y)=L。
2. 二元函数的连续性当一个二元函数在其定义域上的每一点处都有极限,并且极限与函数值相等时,我们称该二元函数在定义域上连续。
在这种情况下,我们可以简单地说,对于函数f(x,y),当(x,y)→(x0,y0)时,f(x,y)→f(x0,y0)。
第二节:二元函数的偏导数与全微分在第八章的第二节中,我们将继续探讨二元函数的偏导数与全微分。
1. 二元函数的偏导数对于一个二元函数f(x,y),我们可以对其分别关于x和y求偏导数。
偏导数衡量了函数在某一点上沿着某个方向的变化率。
偏导数分为偏导数和哥伦布第二积分。
2. 二元函数的全微分全微分指的是二元函数在某一点附近的线性逼近。
通过全微分,我们可以用一个线性函数来近似描述二元函数的变化。
全微分也可以通过偏导数来计算。
第三节:多元函数的极值与条件极值第八章的第三节将详细介绍多元函数的极值和条件极值。
1. 多元函数的极值对于一个多元函数f(x1,x2,...,xn),如果存在一个点(x1,x2,...,xn),使得在其附近的任意点(x1+Δx1,x2+Δx2,...,xn+Δxn)上,函数值均小于等于f(x1,x2,...,xn),则称该点为函数f的极小值点。
同理,如果在其附近的任意点上,函数值均大于等于f(x1,x2,...,xn),则称该点为函数f的极大值点。
2. 多元函数的条件极值有时,我们需要在一定条件下寻找多元函数的极值点。
第八章习题解答(2) 节8.4部分习题解答1、设22v uv u z ++= y x v y x u -=+=,,求x z ∂∂,yz ∂∂ 解:v u u z +=∂∂2 v u vz 2+=∂∂ 1=∂∂x u ,1=∂∂x v ;1=∂∂y u ,1-=∂∂yv 所以x z ∂∂⋅∂∂=u z +∂∂x u ⋅∂∂v z =∂∂xvx v u v u v u 6)(3)2()2(=+=+++y z ∂∂⋅∂∂=u z +∂∂y u ⋅∂∂v z =∂∂yv y v u v u v u 2)2()2(=-=+-+ 2、设v u z ln 2= y x v yxu 23,-==,求x z ∂∂,y z ∂∂解:v u u zln 2=∂∂ vu v z 2=∂∂ y x u 1=∂∂,3=∂∂x v ;2yx y u -=∂∂,2-=∂∂y v所以 x z ∂∂⋅∂∂=u z +∂∂x u ⋅∂∂v z =∂∂x v )23(3)23l n (23ln 21222y x y x y x y x v u v u y -+-=+y z ∂∂⋅∂∂=u z +∂∂y u ⋅∂∂v z =∂∂y v )23(2)23l n (22ln 2223222y x y x y x y x v u v u y x ----=-- 3、设v e z uln = 22222,2y x v y x u -=-=,求x z ∂∂,yz∂∂ 解:v e u z uln =∂∂ ve v z u =∂∂ x x u 4=∂∂,x x v 2=∂∂;y y u 2-=∂∂,y yv 4-=∂∂ 所以x z ∂∂⋅∂∂=u z +∂∂x u ⋅∂∂v z =∂∂xv]21)2ln(2[22ln 42222222yx y x xe v e x v xe y x u u-+-=+-y z ∂∂⋅∂∂=u z +∂∂y u ⋅∂∂v z =∂∂yv ]22)2ln(2[24ln 2222222yx y x ye v e y v ye y x u u-+--=--- 4、设y x e z 2-= 3,sin t y t x ==,求 dtdz解:y x e x z 2-=∂∂ y x e yz 22--=∂∂,t dt dx cos =,23t dt dy =, 所以dt dz ⋅∂∂=x z +dt dx ⋅∂∂y z =dtdy223c o s t te y x +-)2(2y x e --=)6(c o s 22s i n 3t t e t t -- 5、设)arcsin(y x z -= 34,3t y t x ==,求 dtdz 解:2)(11y x x z --=∂∂ 2)(11y x y z ---=∂∂,t dt dx 3=,212t dt dy =, 所以 dt dz ⋅∂∂=x z +dt dx ⋅∂∂y z =dtdy=---22)(1123y x t 232)43(1123t t t ---6、设)23tan(22y x t z -+= t y tx ==,1,求dtdz 解:2sec 4x x z =∂∂)23(22y x t -+ 2s e c 2y yz -=∂∂)23(22y x t -+, 2sec 3=dt dz )23(22y x t -+;21t dt dx -=,tdt dy 21=, 1=dt dt 所以t dz ∂⋅∂∂=x z +dt dx ⋅∂∂y z =∂∂+t z dt dy 2s e c )23(22y x t -+]3212)1(14[2+--tt t t 2sec =)22(2t t +)42(3t -⋅ 7、设1)(2+-=a z y e u ax xz x a y cos ,sin ==,求 dx du解:=∂∂x u 1)(2+-a z y ae ax ,=∂∂y u12+a ae ax ,-=∂∂z u 12+a ae ax x dx dy cos =;x dxdzsin -=,所以 dx du ⋅∂∂=x u ⋅∂∂+y u =⋅∂∂+dx dzz u dx dy ]s i n c o s )c o s s i n ([12x x a x x a a a e ax ++-+ x e ax sin =8、设222z y xe u ++= x y z sin 2=,求x u ∂∂,yu∂∂ 解:x x u 2=∂∂222z y x e ++⋅ y yu2=∂∂222z y x e ++⋅,z z u 2=∂∂222z y x e ++⋅ x y x z cos 2=∂∂,x y yz sin 2=∂∂; 所以:x u ∂∂=∂∂⋅∂∂+∂∂⋅+∂∂=xzz u y u x u 0]cos 22[2222x zy x e z y x +++ =+=++]cos sin 22[22sin 2422x xy y x e xy y x]2sin 2[4sin 2422x y x e xy y x+=++y u ∂∂=∂∂⋅∂∂+∂∂+⋅∂∂=yz z u y u x u 0]sin 222[222x y z y e z y x ⋅+++ =⋅+=++]sin 2sin 22[2sin 2422x y x y y e xy y x]sin 21[222sin 2422x y ye xy y x+++9、设)cos(22y x y x z +++= v y v u x arcsin ,=+=,求vu zu z ∂∂∂∂∂2, 解:)sin(2y x x x z +-=∂∂,)sin(2y x y yz +-=∂∂ 1=∂∂u x ,1=∂∂v x ,0=∂∂u y211vv y -=∂∂所以)a r c s i n s i n ()(2)s i n (2v v u v u y x x uz++-+=+-=∂∂)111)(arcsin cos(222vv v u v u z -+++-=∂∂∂ 10、设,arctan y xz =v u y v u x -=+=,验证:22vu v u v z u z +-=∂∂+∂∂ 证明:22yx yx z +=∂∂,22y x x y z +-=∂∂,1=∂∂u x ,1=∂∂v x ,11=∂∂u y ,1-=∂∂v y所以)(122x y y x u z -+=∂∂22v u v +-=,)(122x y yx v z ++=∂∂22v u u += 故有 左边=+-=∂∂+∂∂=22vu vu v z u z 右边 11、设f 具有连续的一阶偏导数,求下列函数的一阶偏导数 (1)、)34,23(y x y x f z -+=解:设y x v y x u 34,23-=+=,于是有3=∂∂x u ,2=∂∂y u ,4=∂∂x v ,3-=∂∂yv2143f f x z +=∂∂ =∂∂yz2133f f - (2)、),(22xy e y x f z -= 解:设xy e v y x u =-=,22,于是有x x u 2=∂∂,y y u 2-=∂∂,xy ye x v =∂∂,xu xe yv=∂∂ =∂∂x z 212f ye xf xy + 212f xe yf yzxy +-=∂∂ (3)、)32,ln (y x x y f z +=解:设y x v x y u 32,ln +==,于是有x y x u =∂∂,x y u ln =∂∂,2=∂∂x v ,3=∂∂yv212f f x y x z +=∂∂ 213ln f xf yz+=∂∂ (4)、),(yxx y f z = 解:设y x v x y u ==,,于是有2x y x u -=∂∂,x y u 1=∂∂,y x v 1=∂∂,2yx y v -=∂∂ 2121f y f xy x z +-=∂∂2211f y x f x y z -=∂∂ (5)、),,(y x y x x f z -+=解:设y x v y x u -=+=,,于是有1=∂∂x u ,1=∂∂x v ,1=∂∂y u ,1-=∂∂yv321f f f x z ++=∂∂ 32f f yz -=∂∂ (6)、),,(x y z xy x f u =解:设xyz t xy s ==,,于是有y x s =∂∂,yz x t =∂∂,x y s =∂∂,zx yt=∂∂ 0=∂∂z x ,0=∂∂z s xy zt=∂∂ 321yzf yf f x u ++=∂∂ 32z x f xf yu+=∂∂ 3xyf z u =∂∂ 12、设)(u f 具有连续的导数,)(xyxf xy z += 验证:z xy yz y x z x+=∂∂+∂∂ 验证:)])(()([2xy x y f x x y f y x x z x-'++=∂∂)()(x y f y x y xf xy '-+= ='+=∂∂)])(([xyx y f x x y y z y)(x y f y xy '+左边==+=+=∂∂+∂∂z xy xyxf xy y z y x z x)(2右边 13、设)(22y x f z +=,)(u f 具有二阶连续的导数,求,,222y x z x z ∂∂∂∂∂,22y z∂∂ 解:设22y x u +=有1f u z=∂∂ 1122f u z =∂∂ x x u 2=∂∂ 222=∂∂x u 0=∂∂∂y x u y y u2=∂∂ 222=∂∂yu 12xf x z =∂∂ x xf f x z 22211122+=∂∂112142f x f += 11112422xyf y xf yx z ==∂∂∂ 12yf y z=∂∂ 11212242f y f yz +=∂∂ 14、设f 具有二阶连续的导数,求,,222y x z x z ∂∂∂∂∂,22yz∂∂(1)、),(xy y x f z += 解:设xy v y x u =+=,有1f u z =∂∂ 1122f u z =∂∂ 122f v u z =∂∂∂ 2f v z =∂∂ 2222f v z =∂∂ 1=∂∂x u 022=∂∂x u 02=∂∂∂y x u 1=∂∂y u 022=∂∂y u y x v =∂∂ 022=∂∂x v 12=∂∂∂y x v x y v =∂∂ 022=∂∂yv 于是有:22222)(xv v z x u u z z v y u x z ∂∂∂∂+∂∂∂∂+∂∂+∂∂=∂∂22212112f y yf f ++=y x vv z y x u u z z v x u v y u y x z ∂∂∂∂∂+∂∂∂∂∂+∂∂+∂∂∂∂+∂∂=∂∂∂222))((2221211)(f xyf f y x f ++++= 22222)(y vv z y u u z z v x u yz ∂∂∂∂+∂∂∂∂+∂∂+∂∂=∂∂22212112f x xf f ++= (2)、),(yxxy f z =解:设yx v xy u ==, 有1f u z =∂∂ 1122f u z =∂∂ 122f v u z =∂∂∂ 2f v z=∂∂ 2222f v z =∂∂ y x u =∂∂ 022=∂∂x u 12=∂∂∂y x u x y u =∂∂ 022=∂∂yu y x v 1=∂∂ 022=∂∂x v221yy x v -=∂∂∂ 2y x y v -=∂∂ 3222y x y v =∂∂ 于是有:22222)1(x v v z x u u z z v y u y x z ∂∂∂∂+∂∂∂∂+∂∂+∂∂=∂∂2221211212f y f f y ++=yx vv z y x u u z z v y x u x v y u y y x z ∂∂∂∂∂+∂∂∂∂∂+∂∂-∂∂∂∂+∂∂=∂∂∂2222))(1(221223111f y f f y x xyf -+-+=222222)(y v v z y u u z z v y x u x y z ∂∂∂∂+∂∂∂∂+∂∂-∂∂=∂∂232242122211222f y x f y x f y x f x ++-=。
高等数学教材第八章第八章:多元函数的微分学第一节:多元函数的极限与连续性在高等数学中,多元函数是指与多个自变量相关的函数。
多元函数的微分学则是研究多元函数的导数、极限和连续性的数学分支。
多元函数的极限是指当自变量趋于某一点时,函数值的变化趋势。
与一元函数类似,我们也可以讨论多元函数在某一点处的左极限、右极限,以及无穷远处的极限。
根据多元函数极限的定义,我们可以得到一元函数极限的特例。
多元函数的连续性则是指函数在某一点的极限等于函数在该点的函数值。
如果一个多元函数在定义域的每一点都是连续的,我们称其为连续函数。
与一元函数连续性的概念类似,多元函数的连续性包括点连续性和区间连续性两种情况。
第二节:多元函数的偏导数和全微分在研究多元函数的微分学时,最重要的概念之一就是偏导数。
偏导数是多元函数对于某个自变量的导数,而将其他自变量视为常数。
通过偏导数,我们可以研究多元函数在不同自变量方向上的变化情况。
与偏导数相关的概念是全导数和全微分。
全导数是指多元函数对于所有自变量的导数,而全微分则是全导数与自变量的微小增量之积。
全微分在多元函数微分学中具有重要的应用价值。
第三节:多元函数的微分多元函数的微分是指函数在某一点处的局部线性近似。
通过微分,我们可以求得函数在某点处的切线、法线以及在该点附近的变化情况。
多元函数的微分是通过偏导数和全微分推导而来的。
通过求得多变量的微分,我们可以进一步研究函数的最值、优化问题等。
第四节:多元函数的导数多元函数的导数是指函数在某一点处的变化率。
与一元函数的导数类比,多元函数的导数也可以用于求得函数的极值、切线与法线方程等问题。
多元函数的导数是通过偏导数推导而来的。
通过求得各个自变量的偏导数,并将其组合成一个向量,我们可以得到多元函数的导数。
第五节:多元函数的高阶导数多元函数的高阶导数是对多层次的导数求导的结果。
与一元函数的高阶导数类似,多元函数的高阶导数可以用于求函数的高阶变化率,进一步研究函数的性质和行为。