八年级数学上---成比例线段练习题
- 格式:doc
- 大小:143.56 KB
- 文档页数:3
九年级数学上成比例线段练习题九年级数学上---3.1成比例线段练题概念复:1、对于四条线段a、b、c、d,若有ab=cd,则称这四条线段是成比例线段。
其中a、d是比例内项,b、c是比例外项,ad=bc是第四比例项,ab×cd=bc×ad是内项积外项积。
2、对于三条线段a、b、c,若有b是线段a、c的比例中项。
3、对于成比例线段的四条线段a、b、c、d,若有ab=cd,则有a:b=c:d;反之也成立。
4、比例线段的合比性质是:若a:b=c:d,b:c=e:f,则a:d=e:f。
5、比例线段的等比性质是:若a:b=b:c=c:d,则a:d=a²:b²=b²:c²=c²:d²。
练1:1.如图,格点图中有2个三角形,若相邻两个格点的横向距离和纵向距离都为1,则AB=1,BC=2,DE=3,EF=6,计算AB:BC=1:2,DE:EF=1:2,那么这四条线段叫做成比例线段,简称比例线段。
2.已知四条线段a、b、c、d的长度,试判断它们是否成比例?①a=16 cm,b=8 cm,c=5 cm,d=10 cm;不成比例。
②a=8 cm,b=5 cm,c=6 cm,d=10 cm;成比例。
3、已知a、b、c、d是成比例线段,且a=3 cm,b=2 cm,c=6 cm,则线段d=4 cm。
4、已知5,在比例尺为1∶8000的某学校地图上,矩形运动场的图上尺寸是1 cm×2 cm,矩形运动场的实际尺寸是40 m×80 m。
选择题:1.下列各组中的四条线段成比例的是(。
)A.a=2,b=3,c=2,d=3B.a=4,b=6,c=5,d=10.C.a=2,b=5,c=23,d=15D.a=2,b=3,c=4,d=12.答案:B。
2.若ac=bd,则下列各式一定成立的是(。
)A。
a/c=b/dB。
a²/c²=b²/d²C。
平行线分线段成比例平行线分线段成比例定理及其推论1. 平行线分线段成比例定理如下图,如果1l ∥2l ∥3l ,则BC EF AC DF =,AB DE AC DF =,AB ACDE DF=. l 3l 2l 1FE D CB A2. 平行线分线段成比例定理的推论:如图,在三角形中,如果DE BC ∥,则AD AE DEAB AC BC==ABCDEEDC B A3. 平行的判定定理:如上图,如果有BCDEAC AE AB AD ==,那么DE ∥ BC 。
专题一、平行线分线段成比例定理及其推论基本应用【例1】 如图,DE BC ∥,且DB AE =,若510AB AC ==,,求AE 的长。
EDCBA【例2】 如图,已知////AB EF CD ,若AB a =,CD b =,EF c =,求证:111c a b=+.FE DCBA【巩固】如图,AB BD ⊥,CD BD ⊥,垂足分别为B 、D ,AC 和BD 相交于点E ,EF BD ⊥,垂足为F .证明:111AB CD EF+=. FEDCBA【巩固】如图,找出ABD S ∆、BED S ∆、BCD S ∆之间的关系,并证明你的结论.FE DCBA【例3】 如图,在梯形ABCD 中,AB CD ∥, 129AB CD ==,,过对角线交点O 作EF CD ∥交AD BC ,于E F ,,求EF 的长。
OFED CBA【巩固】(上海市数学竞赛题)如图,在梯形ABCD 中,AD BC ∥,AD a BC b E F ==,,,分别是AD BC ,的中点,AF 交BE 于P ,CE 交DF 于Q ,求PQ 的长。
QPFED CBA专题二、定理及推论与中点有关的问题 【例4】 (2007年北师大附中期末试题)(1)如图(1),在ABC ∆中,M 是AC 的中点,E 是AB 上一点,且14AE AB =, 连接EM 并延长,交BC 的延长线于D ,则BCCD=_______. (2)如图(2),已知ABC ∆中,:1:3AE EB =,:2:1BD DC =,AD 与CE 相交于F ,则EF AFFC FD+ 的值为( )A.52 B.1 C.32D.2(1)MEDC BA(2)F ED CA【例5】 (2001年河北省中考试题)如图,在ABC ∆中,D 为BC 边的中点,E 为 AC 边上的任意一点,BE 交AD 于点O . (1)当1A 2AE C =时,求AOAD的值;E AO(2)当11A 34AE C =、时,求AOAD的值; (3)试猜想1A 1AE C n =+时AOAD的值,并证明你的猜想.【例6】 (2003年湖北恩施中考题)如图,AD 是ABC ∆的中线,点E 在AD 上,F 是BE 延长线与AC 的交点.(1)如果E 是AD 的中点,求证:12AF FC =; (2)由(1)知,当E 是AD 中点时,12AF AEFC ED=⋅成立,若E 是AD 上任意一点(E 与A 、D 不重合),上述结论是否仍然成立,若成立请写出证明,若不成立,请说明理由.F E DCBA【巩固】(天津市竞赛题)如图,已知ABC ∆中,AD 是BC 边上的中线,E 是AD 上的一点,且BE AC =,延长BE 交AC 于F 。
2023-2024学年全国八年级上数学同步练习考试总分:36 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 5 小题 ,每题 3 分 ,共计15分 )1. 将下列长度的三根木棒首尾顺次连接,能组成三角形的是 A.,,B.,,C.,,D.,,2. 一个三角形任意一边上的高都是这边上的中线,则对这个三角形最准确的判断是( )A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形3. 作中边上的高,下列作法正确的是 A. B. C.()1248641265336△ABC BC AD ()D.4. 在下列各图形中,分别画出了中边上的高,其中正确的是( ) A. B. C. D.5. 已知三角形的两边长分别为和,则下列数据中能作为第三边长的是( )A.B.C.D.卷II (非选择题)二、 填空题 (本题共计 5 小题 ,每题 3 分 ,共计15分 )6.如图,在中,,,为中线,则与的周长之差________.△ABC BC AD 5934514△ABC AB =2013AC =2010AD △ABD △ACD =7. 若等腰三角形的两边长分别为和,则它的周长为__________;若等腰三角形的两边长分别是和,则它的周长为________.8. 已知等腰三角形的两条边长分别是和,则此三角形的周长为________.9. 如图,是的中位线,是的中点,的延长线交于点,则________.10.如图,在中,,,为中点,则线段的范围是________.三、 解答题 (本题共计 2 小题 ,每题 3 分 ,共计6分 )11. 已知,在中,==,平分,点是的中点,在上取点,使得=,与的延长线交于点.(1)当=时,①求的长;②求的大小.(2)当时,探究与的数量关系.12. 若等腰三角形一腰上的中线把它的周长分为或的两部分,求这个等腰三角形的底边和腰的长.373436DE △ABC M DE CM AB N :=S △DMN S 四边形ANME D △ABC AB AC 5AD ∠BAC M AC AD E DE AM EM DC F ∠BAC 90∘AE ∠F ∠BAC ≠90∘∠F ∠BAC 6cm 9cm参考答案与试题解析2023-2024学年全国八年级上数学同步练习一、 选择题 (本题共计 5 小题 ,每题 3 分 ,共计15分 )1.【答案】B【考点】三角形三边关系【解析】根据三角形三边关系定理:三角形两边之和大于第三边进行分析即可.【解答】解:、,不能组成三角形,故此选项错误;、,能组成三角形,故此选项正确;、,不能组成三角形,故此选项错误;、,不能组成三角形,故此选项错误.故选.2.【答案】D【考点】等边三角形的判定【解析】根据等腰三角形的性质易得这个三角形的三边都相等,然后根据等边三角形的判定方法可得这个三角形必为等边三角形.【解答】解:∵一个三角形任意一边上的高都是这边上的中线,即三角形任意一边上的高与中线重合,∴这个三角形的三边都相等,∴这个三角形必为等边三角形.故选.3.A 1+2<4B 6+4>8C 6+5<12D 3+3=6B DD【考点】三角形的高【解析】从三角形的一个顶点向它的对边引垂线,从顶点到垂足之间的线段是三角形的高,据此作高.【解答】解:根据高的定义:从三角形的一个顶点向它的对边引垂线,从顶点到垂足之间的线段是三角形的高,可得,正确.故选.4.【答案】D【考点】三角形的高【解析】根据三角形高的定义,逐项判定即可.【解答】解:过一个顶点作垂直于它对边所在直线的线段,叫做三角形的高线.作中边上的高过点且垂直于对边,只有选项正确.故选.5.【答案】C【考点】三角形三边关系【解析】利用两边之和大于第三边,两边之差小于第三边即可求解D D △ABC BC AD A BC D D解:设第三边长为,则,即,满足条件的只有选项.故选.二、 填空题 (本题共计 5 小题 ,每题 3 分 ,共计15分 )6.【答案】【考点】三角形的角平分线、中线和高【解析】根据三角形中线的定义可得,然后根据三角形的周长公式列式计算即可得解.【解答】解:∵为中线,∴,∴与的周长之差,∵,,∴与的周长之差.故答案为:.7.【答案】,或【考点】三角形三边关系【解析】此题暂无解析【解答】解:当等腰三角形的腰长为,底边为时,不满足三角形的三边关系.当等腰三角形的腰长为,底边为时,满足三角形的三边关系则该等腰三角形的周长.所以当等腰三角形的两边长分别为和时,它的周长为.当等腰长为,底边为时,满足三角形的三边关系,则该等腰三角形的周长.当等腰三角形的腰长为,底边为时,满足三角形的三边关系,则该等腰三角形的周长x 9−5<x <9+54<x <14C C 3BD =CD AD BD =CD △ABD △ACD =(AB +AD +BD)−(AC+AD+CD)=AB −AC AB =2013AC =2010△ABD △ACD =2013−2010=331711103773=7+7+3=17371734=3+3+4=1043.所以当等腰三角形的两边长分别为和,则它的周长为和.故答案为,和.8.【答案】【考点】等腰三角形的判定与性质三角形三边关系【解析】因为已知长度为和两边,没由明确是底边还是腰,所以有两种情况,需要分类讨论.【解答】解:当为底时,其它两边都为,,,可以构成三角形,周长为;当为腰时,其它两边为和,∵,所以不能构成三角形,故舍去,∴答案只有.故答案为:.9.【答案】【考点】平行线分线段成比例三角形中位线定理【解析】此题暂无解析【解答】此题暂无解答10.【答案】【答【考点】=4+4+3=11341011171011153636366153363+3=615151∶53<AD <6三角形三边关系【解析】延长至,使,根据三角形中线的定义可得,然后利用“边角边”证明和全等,根据全等三角形对应边相等可得,再根据三角形的任意两边之和大于第三边,任意两边之差小于第三边求出.的范围,然后求解即可.【解答】解:如图,延长至,使:是中边上的中线,.在和中,:故答案为:三、 解答题 (本题共计 2 小题 ,每题 3 分 ,共计6分 )11.【答案】当=时,①=;②连接.∵=,=,平分,∴,=.∵点是的中点,∴===,,∴==,∴=,∴==;当时,=.理由如下:∵=,平分,∴=.设=,则=.∵点是的中点,∴===,∴==,AD E DE =AD BD =CD △ABD △ECD CE =AB AE AD E DE =ADAD △ABC BC BD =CD△ABD △ECD AD =DE∠ADB =∠EDCBD =CD△ABD ≅△ECD(SAS)CE =AB =9AC =39+3=129−3=66<AE <123<AD <63<AD <6C∠BAC 90∘AE AD −DE =AB −DE =−2–√252–√252DM AB AC ∠BAC 90∘AD ∠BAC AD ⊥BC AD DC M AC DM MC AM DE DM ⊥AC ∠MDC ∠MDE 45∘∠DEM =(−)12180∘45∘67.5∘∠F −90∘67.5∘22.5∘∠BAC ≠90∘∠BAC 4∠F AB AC AD ∠BAC ∠ADC 90∘∠BAC 4x ∠DAC 2x M AC DM MC AM DE ∠ADM ∠DAC 2x DEM =(−2x)1∴=,∴===,∴=.【考点】等腰三角形的性质【解析】(1)①先根据等腰直角三角形的性质求出,根据线段中点的定义得出=,再代入=即可;②连接,根据等腰直角三角形的性质以及已知条件得出,=,===,,==,利用三角形内角和定理以及等边对等角求出=,那么==;(2)当时,先根据等腰三角形的性质得出=.设=,则=.根据直角三角形斜边中线的性质得出===,利用三角形内角和定理以及等边对等角求出==,=,那么===,从而得出=.【解答】当=时,①=;②连接.∵=,=,平分,∴,=.∵点是的中点,∴===,,∴==,∴=,∴==;当时,=.理由如下:∵=,平分,∴=.∠DEM =(−2x)12180∘−x 90∘∠F −DEM 90∘−(−x)90∘90∘x ∠BAC 4∠F AD =AB =2–√252–√2DE AM =52AE AD −DE DM AD ⊥BC AD DC DM MC AM DE DM ⊥AC ∠MDC ∠MDE 45∘∠DEM =(−)12180∘45∘67.5∘∠F −90∘67.5∘22.5∘∠BAC ≠90∘∠ADC 90∘∠BAC 4x ∠DAC 2x DM MC AM DE ∠ADM ∠DAC 2x ∠DEM =(−2x)12180∘−x 90∘∠F −DEM 90∘−(−x)90∘90∘x ∠BAC 4∠F ∠BAC 90∘AE AD −DE =AB −DE =−2–√252–√252DM AB AC ∠BAC 90∘AD ∠BAC AD ⊥BC AD DC M AC DM MC AM DE DM ⊥AC ∠MDC ∠MDE 45∘∠DEM =(−)12180∘45∘67.5∘∠F −90∘67.5∘22.5∘∠BAC ≠90∘∠BAC 4∠F AB AC AD ∠BAC ∠ADC 90∘∠BAC ∠DAC设=,则=.∵点是的中点,∴===,∴==,∴=,∴===,∴=.12.【答案】解:设等腰三角形的腰长、底边长分别为,.依题意,得 或 解得’或故这个等腰三角形的腰长为,底边长为 或腰长为,底边长为.【考点】等腰三角形的性质与判定【解析】此题暂无解析【解答】解:设等腰三角形的腰长、底边长分别为,.依题意,得 或 解得’或故这个等腰三角形的腰长为,底边长为 或腰长为,底边长为.∠BAC 4x ∠DAC 2x M AC DM MC AM DE ∠ADM ∠DAC 2x ∠DEM =(−2x)12180∘−x 90∘∠F −DEM 90∘−(−x)90∘90∘x ∠BAC 4∠F xcm ycm x +x =9,12x +y =612 x +x =6,12x +y =912{x =6y =3{x =4y =76cm 3cm 4cm 7cm xcm ycm x +x =9,12x +y =612 x +x =6,12x +y =912{x =6y =3{x =4y =76cm 3cm 4cm 7cm。
线段比的练习题题目一:已知线段AB与线段CD的比为2:3,线段DE与线段EF的比为4:5,求线段AB与线段EF的比。
解答:首先,我们需要先计算出线段AB与线段CD的实际长度,以及线段DE与线段EF的实际长度。
假设线段AB的长度为2x,线段CD的长度为3x,线段DE的长度为4y,线段EF的长度为5y。
由已知条件可得:2x/3x = 2/34y/5y = 4/5根据比例的性质,我们可以得出以下等式:2x/3x = 4y/5y通过交叉相乘法则,我们可以得出:2x * 5y = 3x * 4y化简后得到:10xy = 12xy由此可知,线段AB与线段EF的比为10:12,即5:6。
题目二:已知线段AB与线段CD的比为3:4,线段EF与线段GH的比为2:5,求线段AB与线段GH的比。
解答:与题目一类似,我们先计算线段AB与线段CD的实际长度,以及线段EF与线段GH的实际长度。
假设线段AB的长度为3x,线段CD的长度为4x,线段EF的长度为2y,线段GH的长度为5y。
由已知条件可得:3x/4x = 3/42y/5y = 2/5根据比例的性质,我们可以得出以下等式:3x/4x = 2y/5y通过交叉相乘法则,我们可以得出:3x * 5y = 4x * 2y化简后得到:15xy = 8xy由此可知,线段AB与线段GH的比为15:8。
题目三:线段AB与线段CD的比为2:7,线段EF与线段GH的比为1:5,求线段AB与线段GH的比。
解答:与前两题类似,我们先计算线段AB与线段CD的实际长度,以及线段EF与线段GH的实际长度。
假设线段AB的长度为2x,线段CD的长度为7x,线段EF的长度为y,线段GH的长度为5y。
由已知条件可得:2x/7x = 2/7y/5y = 1/5根据比例的性质,我们可以得出以下等式:2x/7x = y/5y通过交叉相乘法则,我们可以得出:2x * 5y = 7x * y化简后得到:10xy = 7xy由此可知,线段AB与线段GH的比为10:7。
七年级数学上成比例线段练习题
题目1
已知线段AB = 3cm,CD = 4cm,且AB与CD成比例,求线段AB的比例系数。
解题思路1
由题可知,线段AB与CD成比例,设比例系数为k,则有AB = k * CD,代入AB和CD的长度,得到3 = k * 4,解得k = 0.75,所以线段AB的比例系数为0.75。
题目2
在平面直角坐标系中,已知A(-3,4)、B(x,2),若线段AB与x 轴正半轴成比例,求x的值。
解题思路2
由题可知,线段AB与x轴正半轴成比例,所以线段AB的比例系数等于x轴正半轴上的点到点B的距离与点A到点B的距离之比。
设线段AB的比例系数为k,则有AB = kx,AE = kx,DE = 2 - kx,由勾股定理可得:$AB^2$ = $AE^2$ + $DE^2$,即
($kx$)$^2$ = ($kx$)$^2$ + (2 - $kx$)$^2$,简化得到3$kx^2$ - 4kx + 4 = 0,解得x = 2/3或2,由于点B在第二象限,所以x = 2/3。
题目3
已知线段AB = 6cm,DE = 15cm,且线段AB与DE成比例,求线段DE的长度。
解题思路3
由题可知,线段AB与DE成比例,设比例系数为k,则有AB = k * DE,代入AB和DE的长度,得到6 = k * 15,解得k = 0.4,所以线段DE的长度为15 * 0.4 = 6cm。
初二数学比例的练习题1. 标题:设置比例练习题2. 题目1:某地区的森林覆盖率为60%,如果将其提高到70%,需要种植多少棵树?解析:森林覆盖率的提高可以看作是树木的增加,因此可以建立比例关系。
设现有森林的面积为x,根据题目已知条件,森林覆盖率为60%,则森林的面积应为0.6x。
将森林覆盖率提高到70%,则森林的面积应为0.7x。
由比例关系可得:0.6x / x = 0.7 / ?解得 ? = (0.7 * x) / 0.63. 题目2:某班级男生人数与女生人数的比例为3:5,男生人数为24人,求班级总人数。
解析:男生人数和女生人数的比例为3:5,也可以表示为男生人数与班级总人数的比例为3:(3+5)。
设班级总人数为x,根据题目已知条件,男生人数为24人,则男生人数与班级总人数的比例为3:x。
由比例关系可得:3 / x = 24 / ?解得 ? = (24 * x) / 34. 题目3:某商店进行促销活动,原价为150元的商品以8折出售,求促销价。
解析:促销活动中,商品的售价与原价的比例为8:10,也可以表示为促销价与原价的比例为8:10。
设促销价为x,根据题目已知条件,原价为150元,则促销价与原价的比例为8:150。
由比例关系可得:8 / 150 = 10 / ?解得 ? = (10 * 150) / 85. 题目4:甲、乙、丙三个人合作完成一项工作,甲单独完成需要10天,乙单独完成需要15天,丙单独完成需要20天,他们一起完成该项工作需要多少天?解析:甲、乙、丙三个人合作完成工作,可以看作是工作的效率的叠加。
设完成工作所需天数为x,根据题目已知条件,甲单独完成工作的效率为1/10(即每天完成1/10),乙为1/15,丙为1/20。
他们一起完成工作的效率为:1/10 + 1/15 + 1/20 = (6 + 4 + 3) / 60 =13 / 60由比例关系可得:1/10 + 1/15 + 1/20 = 1 / x解得 x = 60/13通过以上四个练习题,我们深入理解了初二数学中关于比例的应用。
专题27.2 比例的性质及成比例线段(基础篇)(专项练习)一、单选题1.地图上乐山到峨眉的图上距离为3.8厘米,比例尺是1:1000000,那么乐山到峨眉的实际距离是( )A .3800米B .38000米C .380000米D .3800000米2.已知线段b 是线段a 和线段c 的比例中项,若3a =,4c =,则b 的值是( )A .3.5B .6C .D .3.某地图上1cm 2面积表示实际面积900m 2,则该地图的比例尺是( ) A .1:30B .1:3000C .1:900D .1:900000004.已知线段d 是线段a 、b 、c 的第四比例项,其中a =2cm ,b =4cm ,c =5cm ,则d 等于( )A .1cmB .10cmC .52cmD .85cm5.下面的四个数中能组成比例的是( )A .14、34、0.6和0.3B .20、14、4和5C .3、4、12和13D .6、10、9和156.如果4a =5b (ab ≠0),那么下列比例式变形正确的是( ) A .54a b = B .45a b = C .45a b = D .45b a = 7.已知a cb d=,则下列各式成立的是( ) A .a d c b = B .b a c d=C .a ca d c b=++ D .a b ac d c+=+ 8.下列四组线段中,是成比例线段的是( ) A .0.5,3,2,10 B .3,4,6,2 C .5,6,15,18D .1.5,4,1.2,59.如果:12:8a b =,且b 是a ,c 的比例中项,那么:b c 等于( )A .4:3B .3:2C .2:3D .3:410.如图,P 是线段AB 的黄金分割点,且P A >PB ,S 1表示P A 为一边的正方形的面积,S 2表示长为AB 、宽为PB 的矩形面积,则S 1、S 2的大小关系是( )A .S 1>S 2B .S 1=S 2C .S 1<S 2D .无法确定二、填空题11.已知线段a =2厘米,c =8厘米,则线段a 和c 的比例中项b 是_______厘米. 12.已知点B 在线段AC 上,2AB BC =,那么:AC AB 的比值是_________. 13.若32a b =,则235a b a b +-=_____.14.若234a b c ==,则63a bb c +=-___________.15.已知线段8a =,2b =,线段c 是线段a ,b 的比例中项,则c =_______. 16.已知52a b =,则():a b b +的值为_________.17.在设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感按此比例,如果雕像的高为3m ,那么它的下部应设计为多高?设它的下部设计高度为x m ,根据题意,可列方程为__________.18.两地的实际距离是1200千米,在地图上量得这两地的距离为2厘米,则这幅地图的比例尺是1∶___.19.已知三条线段a 、b 、c ,其中1a cm =,4b cm =,c 是a 、b 的比例中项,则c =_____cm .20.如图1)一次又一次对开,按图2叠放,可以发现,这些叠放起来的矩形的右上顶点与左下顶点在同一直线上. 若以图2最大矩形的左下顶点为原点,以宽和长所在直线分别为x 轴和y 轴,则这组矩形的右上顶点所在直线的函数表达式为______.三、解答题21.(1)已知线段a =2,b =9,求线段a ,b 的比例中项. (2)已知x :y =4:3,求y xy-的值.22.已知x :y :z =3:5:7,求234532x y zx y z-++-的值.23.线段a 、b 、c ,且234a b c ==. (1)求a bb+的值. (2)如线段a 、b 、c 满足27a b c ++=,求a b c -+的值.24.已知线段a 、b 、c 满足a :b :c =3:2:6,且a +2b +c =26. (1)求a 、b 、c 的值;(2)若线段x是线段a、b的比例中项,求x的值.参考答案1.B【分析】设乐山到峨眉的实际距离为x cm ,利用比例尺的定义得到3.8:x =1:1000000,然后利用比例的性质求出x ,再化单位化为米即可.解:设乐山到峨眉的实际距离为x 厘米,根据题意得3.8:x =1:1000000, 解得x =3800000,所以乐山到峨眉的实际距离是3800000厘米,即38000米. 故选:B .【点拨】本题考查了比例线段,正确理解比例尺的定义是解决问题的关键. 2.C 【分析】根据题意列出比例式,计算即可求得答案 解:23412b ac ==⨯=∴b =故选C【点拨】本题考查了成比例线段,比例中项的概念,理解比例的性质是解题的关键.比例式为 ::a b b c =,则内项 b 称为外项 a 和c 的比例中项.3.B 【分析】先设该地图的比例尺是1:x ,根据面积比是比例尺的平方比,列出方程,求得x 的值即可.解:设该地图的比例尺是1:x ,根据题意得:1:x 2=1:9000000,解得x 1=3000,x 2=−3000(舍去). 则该地图的比例尺是1:3000; 故选:B .【点拨】此题考查了线段的比,根据面积比是比例尺的平方比,列出方程是解题的关键. 4.B 【分析】根据第四比例项的概念,得a :b =c :d ,再根据比例的基本性质,求得第四比例项.解:∶线段d 是线段a 、b 、c 的第四比例项,∶a :b =c :d ∶bc d a=∶a =2cm ,b =4cm ,c =5cm , ∶45102bc da cm ∶线段a ,b ,c 的第四比例项d 是10cm . 故选:B .【点拨】本题考查的是比例的基本性质,熟悉第四比例项的概念,写比例式的时候一定要注意顺序.再根据比例的基本性质进行求解是关键.5.D 【分析】根据比例的性质依次判断四个选项即可.解:A 、因为14:0.3≠0.6:34,所以A 选项不符合题意;B 、因为4:5≠14:20,所以B 选项不符合题意;C 、因为13:12≠3:4,所以C 选项不符合题意;D 、因为6:9=10:15,所以D 选项符合题意. 故选:D .【点拨】本题考查比例的性质,熟练掌握该知识点是解题关键. 6.A 【分析】根据等式的性质:两边都除以同一个不为零的数(或整式),结果不变,可得答案. 解:两边都除以20,得54a b=,故A 正确; B 、两边都除以20,得54a b=,故B 错误; C 、两边都除以4b ,得54a b =,故C 错误; D 、两边都除以5a ,得45ba=,故D 错误. 故选:A .【点拨】本题考查了比例的性质,利用两边都除以同一个不为零的数(或整式),结果不变是解题关键.7.D 【分析】根据比例的性质解答并判断. 解:∶a cb d=, ∶a b c d b d ++=,b ad c=, ∶a b bc d d+=+, ∶a b ac d c+=+, 故选:D .【点拨】此题考查了比例的性质,熟记比例的性质是解题的关键. 8.C 【分析】根据各个选项中的数据可以判断哪个选项中的四条线段不成比例,本题得以解决. 解:∶052310≠.,故选项A 中的线段不成比例,不符合题意; ∶3642≠,故选项B 中的线段不成比例,不符合题意; ∶515=618,故选项C 中的线段成比例,符合题意; ∶151245≠..,故选项D 中的线段不成比例,不符合题意, 故选:C【点拨】本题考查比例线段,解题的关键是明确题意,找出所求问题需要的条件. 9.B 【分析】由b 是a 、c 的比例中项,根据比例中项的定义,即可求得=b ac b,又由a :b =12:8,即可求得答案.解:∶b 是a 、c 的比例中项,∶b 2=ac ,b ac b∴=∶a:b=12:8,∶12382ab==,:3:2b c∴=,故选:B.【点拨】此题主要考查了比例线段,正确把握比例中项的定义是解题关键.10.B【分析】根据黄金分割的定义得到P A2=PB•AB,再利用正方形和矩形的面积公式有S1=P A2,S2=PB•AB,即可得到S1=S2.解:∶P是线段AB的黄金分割点,且P A>PB,∶P A2=PB•AB,又∶S1表示P A为一边的正方形的面积,S2表示长是AB,宽是PB的矩形的面积,∶S1=P A2,S2=PB•AB,∶S1=S2.故选B.【点拨】本题考查了黄金分割的定义:一个点把一条线段分成较长线段和较短线段,并且较长线段是较短线段和整个线段的比例中项,那么就说这个点把这条线段黄金分割,这个点叫这条线段的黄金分割点.11.4【分析】根据线段比例中项的概念,可得a:b=b:c,可得b2=ac=16,故b的值可求.解:∶线段b是a、c的比例中项,∶b2=ac=2×8=16,解得b=±4,又∶线段是正数,∶b=4.故答案为4.【点拨】本题考查了比例中项的概念,注意:求两个数的比例中项的时候,应开平方.求两条线段的比例中项的时候,负数应舍去.12.32【分析】根据题意作出图形,进而即可求解. 解:如图,∶2AB BC = 设,BC a =则2AB a =23AC AB BC a a a ∴=+=+=∶:3:2AC AB = 故答案为:3:2【点拨】本题考查了比例线段,数形结合是解题的关键. 13.1213【分析】根据32a b =,设3,2a k b k ==,代入代数式求值即可. 解:∶32a b =,设3,2a k b k ==,∶235a b a b +-661215213k k k k +==-, 故答案为:1213【点拨】本题考查了比例的性质,掌握比例的性质是解题的关键. 14.3 【分析】 设234a b ck ===,则2a k =,3b k =,4c k =,然后代入所求的代数式即可求解. 解:设234a b ck ===,则2a k =,3b k =,4c k =, ∶662315333345a b k k kb c k k k+⨯+===-⨯-, 故答案为:3【点拨】本题考查了比例的性质,根据题意设k 法是比较好的解题方法. 15.4【分析】利用比例中项的定义得到c 2=ab =16,然后求出16的算术平方根即可. 解:∶线段c 是线段a ,b 的比例中项,∶c 2=ab ,而线段a =8,b =2, ∶c 2=8×2=16, 而c >0, ∶c =4. 故答案为:4.【点拨】本题考查了成比例线段,掌握比例中项的定义是解决问题的关键. 16.75【分析】首先得到a =25b ,然后代入代数式求值.解:∶5a =2b ,∶a =25b ,∶277555b b ba b b b b ++===, 故答案为:75.【点拨】本题考查比例的性质和分式的化简求值,解题的关键是掌握分子和分母都除以同一个不为0的数.17.33x xx -=或()233x x =- 【分析】设雕像的下部高为x m ,则上部长为(2-x )m ,然后根据题意列出方程即可. 解:设雕像的下部高为x m ,则上部长为(3-x )m ,由题意得:33x xx -=, 即()233x x =-,故答案为:33x xx -=或()233x x =-.【点拨】本题考查了线段的比,解题的关键在于读懂题目信息并列出方程. 18.60000000【分析】根据比例尺=图上距离:实际距离列式计算即可.解:1200千米=120000000厘米,2:120000000=1:60000000.故答案为:60000000.【点拨】本题考查了比例线段,掌握比例尺的定义是解题的关键,注意单位的换算问题.19.2【分析】由c 是a 、b 的比例中项,根据比例中项的定义,列出比例式即可得出线段c 的长,注意线段的长度不能为负.解:根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段长度的乘积.∶c 是a 、b 的比例中项,∶2144c ab ==⨯=,解得:2c =±(线段的长度是正数,负值舍去),则2c cm =.故答案为:2【点拨】本题考查了比例线段;理解比例中项的概念,这里注意线段的长度不能是负数.20.y =【分析】设直线为y =kx +b .解:设直线为y =kx +b ,∶直线经过原点,∶b =0.由矩形的性质可知:矩形的右上顶点的坐标为该矩形的宽和长,∶长∶宽,∶y ∶x ∶1,∶y x ,故答案为y =;【点拨】本题考查了一次函数解析式,矩形的性质,比例的性质;掌握一次函数的性质是解题关键.21.(1)2)1 3 -【分析】(1)设线段x是线段a,b的比例中项,根据比例中项的定义列出等式,利用两内项之积等于两外项之积即可得出答案.(2)设x=4k,y=3k,代入计算,于是得到结论.解:(1)设线段x是线段a,b的比例中项,∶a=3,b=6,x2=3×6=18,x=±∶线段a,b的比例中项是(2)设x=4k,y=3k,∶y xy-=343k kk-=13-.【点拨】本题考查了比例的性质,熟练掌握比例的性质是解题的关键.22.19 16【分析】根据x:y:z=3:5:7设x=3k、y=5k、z=7k,然后代入234532x y zx y z-++-化简求解即可.解:∶x:y:z=3:5:7,∶设x=3k、y=5k、z=7k,∶234 532 x y z x y z-++-=233547 533527k k kk k k ⨯-⨯+⨯⨯+⨯-⨯=19 16【点拨】此题考查了比例的性质,解题的关键是根据比例的性质转化成含同一字母的式子.23.(1)53;(2)9【分析】(1) 根据比例的性质得出23a b =, 即可得出a b b +的值; (2) 首先设234a b c ===k, 则a=2k, b=3k, c=4k,利用a+b+c=27求出的值即可得出答案. 解:(1)23a b =,∴23a b = ∴53a b b +=; (2)设234a b c ===k, 则a=2k, b=3k, c=4k , 由a+b+c=27,由2k+3k+4k=27,得:k=3,∴a=6,b=9,c=12故a b c -+ =6-9+12=9, 故答案:53;9. 【点拨】这是一道考查代数式求值的题目, 属于中等难度的题目, 只要同学们认真分析就可以求出答案.24.(1)a =6,b =4,c =12;(2)x 的值为【分析】(1)设比值为k ,然后用k 表示出a 、b 、c ,再代入等式求解得到k ,然后求解即可; (2)根据比例中项的定义列式求解即可.解:(1)∶a :b :c =3:2:6,∶设a =3k ,b =2k ,c =6k ,又∶a +2b +c =26,∶3k +2×2k +6k =26,解得k =2,∶a =6,b =4,c =12;(2)∶x 是a 、b 的比例中项,∶x 2=ab ,∶x 2=4×6,x =∶x =x =-(舍去),即x 的值为【点拨】本题考查比例与比例中项问题,掌握比例性质以及比例中项定义,如果a 、b 、c三个量成连比例即a:b=b:c,b叫做a和c的比例中项.。
数学八年级18.平行线分线段成比例平行线分线段成比例定理是证明比例线段的常用依据之一,是研究比例线段及相似形的最基本、最重要的理论。
运用平行线分线段成比例定理解题的关键是寻找题中的平行线,若无平行线,需作平行线,而作平行线要考虑好哪一点作平行线,一般地是由比的两条线段启发而得,此外,还要熟悉并善于从复杂的图形中分解出如下的基本图形:例1.如图,在梯形ABCD 中,AD//BC ,AD=a ,BC=b ,E 、F 分别是AD 、BC 的中点,且AF 交BE 于P ,CE 交DF 于Q ,则PQ 的长为____________.解题思路 建立含PQ 的比例式,为此,应首先判断PQ 与AD(或BC )的位置关系,关键是从复杂的图形中分解出基本图形,并能在多个成比例线段中建立联系。
例2.如图,在△ABC 中,D 、E 是BC 的三等分点,M 是AC 的中点,BM 交AD 、AE 于G 、H ,则BG :GH :HM 等于( )A .3:2:1B .4:2:1C .5:4:3D :5:3:2解题思路 因题设条件没有平行线,故须过M 作BC 的平行线,构造基本图形。
例3.如图,□ABCD 中,P 为对角线BD 上一点,过点P 作一直线分别交BA 、BC 的延长线于Q 、R ,交CD 、AD 于S 、T ,求证:PQ ·PT=PR ·PS.解题思路 要证PQ ·PT=PR ·PS ,需证PQ PR PS PT,由于 PQ 、PT 、PR 、PS 在同一直线上,故不能直接应用定理,需观察分解图形。
例4.如图,梯形ABCD 中,AD//BC ,AB=DC(1)如果P 、E 、F 分别是BC 、AC 、BD 的中点,求证:AB=PE +PF ;(2)如果P 是BC 上的任意一点(中点除外),PE//AB ,PF//DC ,那么AB=PE +PF 这个结论还成立吗?如果成立,请证明;如果不成立,说明理由。
成比例线段练习题
概念复习:1、对于四条线段a 、b 、c 、d ,若有 ,则称这四条线段是 。
其中 是比例内项, 比例外项, 是第四比例项,内项积 外项积。
2、对于三条线段a 、b 、c ,若有 ,则称线段b 是线段a 、c 的比例中项。
3、对于成比例线段的四条线段a 、b 、c 、d ,若有ab=cd ,则有 ;反之也成立。
4、比例线段的合比性质是:若 ,则 。
5、比例线段的等比性质是:若 ,且 ,则 。
练习1: 1.如图,格点图中有2个三角形, 若相邻两个格点的横向距离和纵向距离都为1, 则AB= ,BC= ,DE= ,EF= ,计算DE AB = ,EF
BC = ,我们会得到AB 与DE 这两条线段的比值与BC 与EF 这两条线段的比值 (填相等或不相等), 即DE AB =EF
BC ,那么这四条线段叫做 ,简称比例线段. 2.已知四条线段a 、b 、c 、d 的长度,试判断它们是否成比例?
①a =16 cm , b =8 cm , c =5 cm ,d =10 cm;
②a =8 cm ,b =5 cm , c =6 cm , d =10 cm.
3、已知a 、b 、c 、d 是成比例线段,且a =3㎝,b =2㎝,c =6㎝,则线段d= .
4、已知
d c b a ==3,b b a -=d d c -成立吗?验证一下。
5、在比例尺为1∶8000的某学校地图上,矩形运动场的图上尺寸是1 cm ×2 cm ,矩形运动场的实际尺寸是 。
1.下列各组中的四条线段成比例的是( ) A.a=2,b=3,c=2,d=3
B.a=4,b=6,c=5,d=10
C.a=2,b=5,c=23,d=15
D.a=2,b=3,c=4,d=1
2.若ac=bd ,则下列各式一定成立的是( ) A.d c b a = B.c c b d d a +=+ C.c d b a =22 D.d
a cd a
b =
3.若2x -5y =0,则y ∶x =_____,x y x +=______.
4.若53=-b b a ,则b
a =________. 5.现有三个数1,2,2,请你再添上一个数写出一个比例式 .
6.在比例尺为1︰2000的地图上测得AB 两地间的图上距离为5cm ,则AB 两地间的实际距离为 ___ m .
7. 某校一年级有64人,分成甲、乙、丙三队,其人数比为4:5:7.若由外校转入1人加入 乙队,则后来乙与丙的人数比为( )A. 3:4 B. 4:5 C. 5:6 D. 6:7
8.已知a ∶b ∶c=4∶3∶2,且a+3b -3c=14. ①求a,b,c ; ②求4a -3b+c 的值.
9.在△ABC 中,D 是BC 上一点,若AB=15 cm ,AC=10 cm ,且BD ∶DC=AB ∶AC ,BD -DC=2 cm ,求BC.
10.已知a b b c c a k c a b +++=
== ,求k 是的值.
练习2:一、填空题
1.如果线段a=3,b=12,那么线段a 、b 的比例中项x=___________。
2、线段a=2cm ,b=3cm ,c=1cm , 那么a 、b 、c 的第四比例项d= 。
3.在x ∶6= (5 +x )∶2 中的x = ;2∶3 = ( 5-x )∶x 中的x = .
4.若9810z y x ==, 则 ______=+++z y z y x . 5、若322=-y y x , 则_____=y
x . 6.已知x ∶y ∶z = 3∶4∶5 , 且x +y +z =12, 那么x = ,y = ,z = .
7.若43===f e d c b a , 则______=++++f
d b
e c a . 8.已知x ∶4 =y ∶5 = z ∶6 , 则 ①x ∶y ∶z = , ② (x+y )∶(y+z )= .
9、若a ∶3 =b ∶4 =c ∶5 , 且a +b -c =6, 则a = ,b = ,c = .
10、图纸上画出的某个零件的长是32 mm ,如果比例尺是 1∶20,这个零件的实际长是 .
11、已知,线段a = 2 cm ,)32(-=c cm ,则线段a 、c 的比例中项b 是 .
12、如图,已知 AB ∶DB = AC ∶EC ,AD = 15 cm , AB = 40 cm , AC = 28 cm , 则 AE = ;
二、选择题
1.已知一矩形的长a =1.35m ,宽b =60cm ,则a ∶b 的值为( )
(A)9∶400 (B)9∶40 (C)9∶4 (D)90∶4
2.下列线段能成比例线段的是( ) (A)1cm,2cm,3cm,4cm (B)1cm,2cm,22cm,2cm
A C
D B E
(C)2cm,5cm,3cm,1cm (D)2cm,5cm,3cm,4cm
3.如果线段a =4,b =16,c =8,那么a 、b 、c 的第四比例项d 为( )
(A)8 (B)16 (C)24 (D)32
4.已知32=b a ,则b b a +的值为( )(A)23 (B)3
4 (C)3
5 (D)53 5.已知x ∶y ∶z =1∶2∶3,且2x+y -3z = -15,则x 的值为( )
(A)-2 (B)2 (C)3 (D)-3
6.在比例尺为1∶38000的南京交通游览图上,玄武湖隧道长约为7cm ,它的实际长度约为( )
(A)0.226km (B)2.66km (C)26.6km (D)266km
7. 某班同学要测量学校升国旗的旗杆高度,在同一时刻,量得某一同学的身高是1.5米,影长 是1米,旗杆的影长是8米,则旗杆的高度是( )
(A)12米 (B)11米 (C)10米 (D)9米
8、若D 、E 分别是ΔABC 的边AB 、AC 上的点,且AD AB =AE AC
,那么下列各式中正确的是( ) (A)AD DB =DE BC (B)AB AD =AE AC (C)DB EC =AB AC (D)AD DB =AE AC
9、若b
a c a c
b
c b a k 222-=-=-=,且a +b +c ≠0,则k 的值为( ) (A)-1 (B)2
1 (C)1 (D)- 1
2 三、解答题:1.已知07
53≠==z y x , 求下列各式的值:(1)y z y x +- (2)z
y x z y x +-++35432.
2.已知
0≠-=-=-z
a c y c
b x b a ,求x+y+z 的值.
3.已知a 、b 、c 为ΔABC 的三边,且a+b+c =60cm ,a ∶b ∶c =3∶4∶5,求ΔABC 的面积.。