《锐角三角函数》导学案 (第2课时)
- 格式:doc
- 大小:166.50 KB
- 文档页数:1
28.1锐角三角函数(1)导学案执笔:初审:复审:王梅授课人:课型:新授课时:1课时学生姓名:班级:小组:【教学目标】1、初步了解锐角三角函数的意义,初步理解在直角三角形中一个锐角的对边与斜边的比值就是这个锐角的正弦的定义。
.2、会根据已知直角三角形的边长求一个锐角的正弦值。
【教学重点】锐角的正弦的定义。
【教学难点】理解直角三角形中一个锐角与其对边及斜边比值的对应关系。
【导引教学】【情境导入】1、如图在Rt△ABC中,∠C=90°,∠A=30°,BC=10m,•求AB2、如图在Rt△ABC中,∠C=90°,∠A=30°,AB=20m,•求BC【自主探究】(一)、自学课本P61-63 思考下列问题:思考1:如果使出水口的高度为50m,那么需要准备多长的水管?;如果使出水口的高度为a m,那么需要准备多长的水管?;结论:直角三角形中,30°角的对边与斜边的比值是思考2:在Rt△ABC中,∠C=90°,∠A=45°,∠A对边与斜边的比值是一个定值吗?•如果是,是多少?结论:直角三角形中,45°角的对边与斜边的比值思考3:在Rt△ABC中,∠C=90°,∠B=60°,∠B对边与斜边的比值是一个定值吗?•如果是,是多少?结论:直角三角形中,60°角的对边与斜边的比值思考4: Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,∠A=∠A′=a,那么''''BC B CAB A B与有什么关系.为什么?结论:这就是说,在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,•∠A的对边与斜边的比值5、在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的________,记作________,即_________.BC A C AA(二)、自我检测1、 如图(1),在Rt △ABC 中,∠C=90°,求sinA=_____ sinB=______. 2、 如图(2),在Rt △ABC 中,∠C=90°,求sinA=_____ sinB=_____3. 在△ABC 中,∠C=90°,BC=2,sinA=23,则边AC的长是( )A .13B .3C .43D . 54.如图,已知点P 的坐标是(a ,b ),则sin α等于( )A .a bB .ba C 2222D ab a b ++(三)、知新有疑通过自学,我又知道了:__________________________________ _______________________________________________________________ 【范例精析】1、在Rt △ABC 中,∠C=900,sinA=53,求sinB 的值.2、如图,Rt △ABC 中,∠C=900,CD ⊥AB 于D 点,AC=3,BC=4,求sinA 、sin ∠BCD 的值.【达标测评】1、在Rt △ABC 中,∠C=900,AC=5cm,BC=3cm,则sinA=______,sinB=________.2、在Rt △ABC 中,∠C=900,如果各边的长度都扩大2倍,那么锐角A 的正弦值( ) A 、扩大两倍 B 、缩小两倍 C 、没有变化 D 、不能确定 3、在Rt △ABC 中,∠C=900,AB=15,sinA=31,则AC=_______,S △ABC =_______. 4、在Rt △ABC 中,∠C=900,∠A=300,BD 平分∠ABC 交AC 边于D 点,则sin ∠ABD 的值为______. 5、课本 第82页 习题28.1复习巩固第1题、第2题.(只做与正弦函数有关的部分)【小结反思】通过本节课的探究学习,我又有了新的收获和体验。
28.1 锐角三角函数 第二课时(刘佳)一、教学目标 1.核心素养:通过锐角三角函数---余弦、正切的学习,初步形成基本的几何直观、运算能力、推理能力. 2.学习目标(1)1.1.1理解余弦、正切及锐角三角函数的概念 (2)1.1.2能熟练运用锐角三角函数的概念进行有关计算 (3)1.1.3理解并掌握互余两角三角函数间的关系 (4)1.1.4理解并掌握同角三角函数间关系 3.学习重点熟练运用锐角三角函数的概念进行有关计算4.学习难点互余两角和同角的三角函数关系 二、教学设计 (一)课前设计 1.预习任务任务1 阅读教材P64-P65,思考:什么是余弦? 任务2 阅读教材P64-P65,思考:什么是正切? 2.预习自测 一、选择题1.如图,在Rt△ABC 中,CD 是斜边AB 上的中线,若CD =5,AC =6,则cos B 的值是( ) A. 34 B.35 C.43 D. 45 答案: D解析:Rt△ABC 中,CD 是斜边AB 上的中线,所以CD =AD =BD =5,所以AB =10,因为AC =6,据勾股定理可得BC =8,所以cos B =45.故选D.2.在Rt△ABC 中,5sin 13C 90A ∠==,,则tan B 的值为( ) A.1213 B.512 C.1312 D.125答案:D解析:Rt△ABC 中,设a =x 5,则x c 13=,x b 12=,所以tan B 512=.故选D.3.在Rt△ABC 中,ACB 90∠=,CD 是斜边AB 上的高,8,15BC AC ==,设BCD α∠=,则cos α的值为( ) A.87B.78C.817D.1517答案:D解析:据勾股定理可知,AB 17=,ABC 111581722CD S ∆=⨯⨯=⨯⨯,所以17120=CD ,所以cos α1517=.故选D. (二)课堂设计 1.知识回顾(1)正弦的概念:在Rt △ABC 中,∠C=90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦,即ABBCA A =∠=斜边的对边sin .(2)函数的概念:设在某变化过程中有两个变量x 、y ,如果对于x 在某一范围内的每一个确定的值,y 都有唯一确定的值与它对应,那么就称y 是x 的函数,x 叫做自变量. (3)勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方. 2.问题探究问题探究一●活动一 类比正弦,得出结论复习思考:在Rt△ABC 中,∠C=90o ,当锐角A 确定时,不管三角形的大小如何,∠A 的对边与斜边的比就随之确定.此时,其他边之间的比是否也确定了呢?如图:Rt △ABC 与Rt △A ´B ´C ´,∠C=∠C ´=90o,∠A=∠A ´=α,那么AC AB 与''''AC A B 、BCAC与''''B C AC 有什么关系?分析:由于∠C=∠C´=90o ,∠A=∠A´=α,所以Rt△ABC∽Rt△A´B ´C ´,则''''AC ABAC A B=,即''''AC AC AB A B =同理,''''BC B C AC AC=结论:在直角三角形中,当锐角A 的大小确定时,∠A 的邻边与斜边的比、∠A 的对边与邻C ´´ C BB ´A边的比也分别是确定的.我们把锐角A的邻边与斜边的比叫做∠A的余弦,记作 cosA,即cosA==b c把∠A的对边与邻边的比叫做∠A的正切.记作tanA,即tanA==a b●活动二函数思想,理论提升思考:sinA是A的函数吗?分析:对于锐角A的每一个确定的值,sinA有唯一确定的值与它对应,所以sinA是A的函数.同理,cosA、tanA也是A的函数.定义:锐角A的正弦,余弦,正切都叫做∠A的锐角三角函数.问题探究二●活动一初步运用,简单求值例1.如图,在Rt△ABC中,∠C=90°,BC=6,sinA=35,求cosA、tanB的值.【知识点:三角函数概念,勾股定理;数学思想:数形结合】详解:sinA=BCAB =35,BC=6,∴AB=5610sin3BCA=⨯=又,∴cosA=ACAB =45,tanB=ACBC=43.点拨:在直角三角形中,只要已知任意两条边、或者一边和一锐角三角函数,都可根据勾股定理求出第三边,进而求出所有锐角三角函数值.例2.如图,在△ABC中,AD⊥BC,垂足是D,BC=14,AD=12,tan∠BAD=34,求sinC的值.【知识点:三角函数概念,勾股定理;数学思想:数形结合】详解:∵AD⊥BC,∴tan∠BAD=BD AD .∵tan∠BAD=34,AD=12,∴34=BD12.∴BD=9.∴CD=BC-BD=14-9=5.∴在Rt△ADC中,AC=AD2+CD2=122+52=13.∴sin C=ADAC=1213.点拨:在求解直角三角形的问题中,三角函数是解题的突破口,由已知三角函数求得相应线段长,进而求出未知三角函数.问题探究三 互余两角的三角函数之间有什么关系?重点、难点知识★▲●活动一观察思考,归纳总结互余两角之间的三角函数有怎样的关系呢?如图,在Rt △ABC 中,∠C =90°.=A sin ()(),()()=B cos ,则B A cos ____sin ; B sin =()(),=A cos ()(),则A cos ____B sin ; A tan =()(),B tan =()(),则____tan tan =⋅B A . 归纳结论:若βα、为锐角,且090=+βα,则___sin =α,___sin =β,___tan tan =⋅βα. 问题探究四 同角的三角函数之间有什么关系?重点、难点知识★▲●活动一观察思考,归纳总结 同角三角函数间有怎样的关系呢? 如图,在Rt △ABC 中,∠C =90°.归纳结论:若0°<α<90°,则①平方关系:1cos sin 22=+αα;②弦切关系:αααcos sin tan =. 3.课堂总结【知识梳理】(1)在Rt △ABC 中,∠C=90°,我们把锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA=b c ;把锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA=ab.(2)锐角A 的正弦,余弦,正切都叫做∠A 的锐角三角函数. (3)若90A B ∠+∠=,则sin A =cos B ,sin B =cos A (4)22sin cos 1A A +=,sin tan cos AA A=【重难点突破】(1)求解三角函数基本计算,找准角的对边、邻边是关键.(2)在求解三角函数问题时,要灵活运用公式,将求一个锐角的三角函数问题转化成求另外一个角的三角函数或这个角的其他三角函数. 4.随堂检测 一、选择题1.在直角三角形中,各边的长度都扩大5倍,则锐角A 的三角函数值( )A.也扩大3倍B.缩小为原来的15C.都不变D.有的扩大,有的缩小 答案: C解析:∠A 、∠B 、∠C 所对应的边分别为a 、b 、c,sinB=b/a,当该直角三角形的各边长都扩大5倍后,sinB=5b/5a=b/a ,所以答案为C. 【知识点:三角函数概念】2.在ABC ∆Rt 中,︒=∠90C ,如果4=AB ,2=BC ,则B cos 等于( )A .12 B .2 C D .1 答案:A解析:在ABC ∆Rt 中,B cos 21==AB BC .故选A. 【知识点:三角函数概念,勾股定理;数学思想:数形结合】3.在△ABC 中,AB=5,BC=6,B 为锐角且sinB=35,则∠C 的正切值等于( )A .56B .32C 答案:B解析:过A 作AD ⊥BC 于D ,在Rt △ABD 中,因为B 为锐角且sinB=35,所以AD=3,据勾股定理可得:BD=4,所以DC=2,tanC 23==DC AD .故选B. 【知识点:三角函数概念,勾股定理;数学思想:数形结合】 二、填空题4.sin 259°+sin 231°的值是_______. 答案:1解析:sin 259°+sin 231°= sin 259°+cos 259°=1 【知识点:同角与互余两角的三角函数】5.在ABC ∆中,90C ∠=,2sin 5A =,则cos A =______,sin B =______,tan A =______.答案:521 、521 、21212 解析:设AB 2125===AC CB ,,则,所以cos A =521,sin B =521,tan A =21212.【知识点:三角函数概念,勾股定理】。
班级: 姓名:_________ 学号:____锐角三角函数导学案(北师大版)(2)一、学习目标:1、能利用相似的直角三角形,探索并认识锐角三角函数——正弦、余弦,理解锐角的正弦与余弦和梯子倾斜程度的关系.2、能够用sinA,cosA 表示直角三角形中直角边与斜边的比,能够用正弦、余弦进行简单的计算.二、重点:理解正弦、余弦的数学定义,感受数学与生活的联系.难点:体会正弦、余弦的数学意义,并用它来解决生活中的实际问题. 学案知识方法 策略一、预习训练1、如图1,在Rt △ABC 中,tanA= ,tanB=2、如图1,在Rt △ABC 中,若BC=4,AC=6,则tanA= ,tanB=3、如图2,在Rt △ABC 中,若tanB=32,BC=8,则AC=4、如图3,在Rt △ABC 中,若tanA=34,AC=8,则BC=5、如图,在Rt △ABC 中,tanA= ,tanB=在Rt △ACD 中,tanA= ,在Rt △CDB 中,tan ∠BCD=________ 6、梯子的倾斜程度与tanA 有关系:tanA 的值越大,梯子 二、探究新知新知一 阅读书P5--6完成下列题目:1、如右图,sinA=_____A ∠=的对边斜边cosA=______A ∠=的邻边斜边2、试一试:利用下图证明:sinA 的值越大,梯子越陡。
(其中AB =第5题图图2 A CB 图3 AC BA1B1 )3、梯子的倾斜程度与sinA有关系:sinA的值,梯子越陡。
4、梯子的倾斜程度与cosA有关系:cosA的值,梯子越陡。
新知二5、如图,在Rt△ABC中,∠C=90°,12cos13A=,AC=10,求AB等于多少?sinB呢?解:在中,ΘcosA=1213 AB=∴101213AB=∴AB=根据勾股定理,得22______________BC AB AC=-==∴sinB=_________AB==6、例题例1:如图:在Rt△ABC中,∠B=900,AC=150,sinA=0.5,求:BC的长,Bsin和Atan的值。
第七章锐角三角函数〔 1〕正切函数学习目标1、认识锐角的正切的看法。
2、会求一个锐角的正切值。
3、经历操作观察思虑求解等过程,感觉数形结合的数学思想方法。
学习要点:锐角的正切的看法学习难点:锐角的正切的看法,感觉数形结合的数学思想方法知识要点在 Rt △ABC中,∠C=90°,∠A的对边与邻边的比值是∠ A 的正切,记作一、情境创立问题 1.我们从家到学校,免不了要爬坡,有些坡好爬,有些坡爬起来很累,这是为什么?观察斜坡的倾斜程度,你有什么发现?如何刻画斜坡的倾斜程度?如上图,这两个直角三角形中,∠ C=∠ C′ =90°,且有一条直角边相等,但斜边不相等,哪个坡更陡?①本节课我们研究两直角边的比值与锐角的关系,因此同学们第一应思虑:当锐角固准时,两直角边的比值可否也固定?②给出正切看法:如图,在Rt △ABC中,,把∠ A 的对边与邻边的比叫做∠ A 的正切,记作:tan A .二、典型例题例 1.依照以以下图中所给条件分别求出以以下图中∠A、∠ B 的正切值。
B A C1133A2CC1B B5A经过上述计算,你有什么发现?互余两角的正切值.例 2.如图,在 Rt △ ABC中,∠ ACB=90°, CD是 AB 边上的高, AC=3,AB=5,求∠ ACD 、∠ BCD的正切值。
文档结论:等角的正切值.例 3.如图〔 1〕,∠ A=30°,∠ C=90°,依照三角函数定义求出30°、 45°、 60°的正切值.BA C〔1〕〔2〕〔3〕例 4.如图,∠ A=15°,∠ C=90°,求出 15°正切值.BA C随堂演练1. 〔 1〕在直角三角形中,∠ =90°, =9,a =12, 那么tan A =, tan B=。
ABC C b〔 2〕如图,△ ABC的三个极点分别在正方形网格的格点上,那么tan A 的=.〔 3〕在 Rt △ ABC中 , ∠ C=90° ,AC=12,tanA=2 ,那么 BC长为。
人教版九年级数学下册导学案28.1锐角三角函数锐角三角函数(第2课时)学习目标1.探究体验,当直角三角形的锐角固定时,它是邻边与斜边、对边与邻边都固定这一事实.2.理解余弦、正切的概念,能根据余弦、正切的概念进行相关计算.学习过程一、自主复习1.在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比都是.2.在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的,记作.二、新知探究1.问题如图,在Rt△ABC和Rt△A'B'C',中,∠C=∠C'=90°,∠A=∠A'.那么(1)ACAB 与A'C'A'B'有什么关系?(2)BCAC与B'C'A'C'呢?解析:(1)∵∠C=∠C'=90°,,∴△ABC∽△A'B'C',∴,即ACAB =A'C'A'B'.(3)∵△ABC∽△A'B'C', ∴,即BCAC =B'C'A'C'.2.结论:(1)在Rt△ABC中,∠C=90°,∠A的邻边斜边叫做∠A的,记作,即cos A=.(2)在Rt △ABC 中,∠C=90°,∠A 的对边∠A 的邻边叫做∠A 的 ,记作 ,即tan A= .(3)锐角A 的正弦、余弦、正切都叫做∠A 的 . 三、例题探析1.例题:(教材例2)如图,在Rt △ABC 中,∠C=90°,AB=10,BC=6,求sin A 、 cos A 、tan A 的值.解:由勾股定理,得AC= = = , 故sin A=∠A 的对边斜边= = ,cos A=∠A 的邻边斜边= = ,tan A=∠A 的对边∠A 的邻边= = .2.拓展:在例题的条件下,求sin B ,cos B ,tan B 的值. 解:四、知识梳理本节课你所学习的三个定义分别是什么? 答:评价作业(满分100分)1.(8分)在Rt △ABC 中,∠C=90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,则下列等式中不正确的是( )A.a=c×sin AB.b=a×tan BC.b=c×sin BD.c=b cosB2.(8分)已知Rt △ABC 中,∠C=90°,AB=5,BC=3,则tan B 的值是( ) A.35B.34C.45D.433.(8分)已知Rt △ABC 中,∠C=90°,tan A=4,BC=8,则AC 等于( ) A.6 B.323 C.10D.124.(8分)如图所示,若cos α=√10,则sin α的值为()10A.√1010B.23C.34D.3√10105.(8分)如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则cos ∠ABC的值是.6.(8分)如图所示,AB是☉O的直径,AB=15,AC=9,连接BC,则tan∠ADC=.,则tan B的7.(8分)如图所示,在Rt△ABC中,∠C=90°,AM是BC边上的中线,sin∠CAM=35值是.,AB=26.求cos B及AC的长.8.(10分)在Rt△ABC中,∠C=90°,tan A=239.(10分)如图所示,在△ABC中,AD是BC边上的高,tan B=cos∠DAC.(1)求证AC=BD;(2)若sin C=12,BC=12,求AD的长.1310.(12分)如图所示,在Rt△ABC中,∠C=90°,D是BC边上一点,AC=2,CD=1,设∠CAD=α.(1)求sin α,cos α,tan α的值;(2)若∠B=∠CAD,求BD的长.11.(12分)在Rt△ABC中,∠C=90°,请利用锐角三角函数的定义及勾股定理探索∠A的正弦、余弦之间的关系.参考答案学习过程一、自主复习1.固定的2.正弦sin A二、新知探究1.解析:(1)∠A=∠A'ACA'C'=ABA'B'(2)BCB'C'=ACA'C'2.结论:(1)余弦cos A bc(2)正切tan A ab(3)锐角三角函数三、例题探析1.解:√AB2-BC2√102-628BCAB 35ACAB45BCAC342.解:sin B=ACAB =45,cos B=BCAB=35,tan B=ACBC=43.四、知识梳理答:略评价作业1.D2.D3.A4.D5.√556.347.238.解:在Rt △ABC 中,∠C=90°,∴tan A=BCAC=23,∴设BC=2k ,AC=3k ,由勾股定理可得AB=√13k ,∴√13k=26,∴k=2√13,∴BC=2k=4√13,AC=3k=6√13,∴cos B=BCAB =4√1326=2√1313.∴AC 的长为6√13,cos B=2√1313. 9.(1)证明:∵AD 是BC 边上的高,∴AD ⊥BC ,∴∠ADB=90°,∠ADC=90°.在Rt △ABD 和Rt △ADC 中,tan B=AD BD ,cos ∠DAC=AD AC ,又∵tan B=cos ∠DAC ,∴AD BD =ADAC ,∴AC=BD.(2)解:在Rt △ADC 中,sin C=ADAC =1213,故可设AD=12k ,AC=13k ,∴CD=√AC 2-AD 2=5k ,∵BC=BD+CD ,又AC=BD ,∴BC=13k+5k=18k ,∵BC=12,∴18k=12,∴k=23,∴AD=12k=12×23=8.10.解:在Rt △ACD 中,∵AC=2,DC=1,∴AD=2+CD 2=√5.(1)sin α=CDAD =√5=√55,cosα=ACAD =√5=2√55,tan α=CD AC =12.(2)在Rt △ABC 中,tan B=ACBC ,即tan α=2BC =12,∴BC=4,∴BD=BC-CD=4-1=3. 11.解:∠A 的正弦、余弦值的平方和等于1,理由如下:∵sin A=ac ,cos A=bc ,a 2+b 2=c 2, ∴sin 2A+cos 2A=(a c )2+(b c )2=a 2+b 2c 2=1.。
九年级数学下册《锐角三角函数》第2课时教学设计一、教材分析本节课是北师大版九年级下册第一章《直角三角形的边角关系》的第一节的内容, 共两课时。
本设计是第二课时。
本节课是在学生理解了正切的基础上, 进一步通过探究发现直角三角形中直角边与斜边之间存在的关系。
从教材中可以看到, 其中渗透着数学核心素养如数学抽象、数学建模等数学思想, 是本节课的数学本质。
二、学情分析学生的知识技能基础:通过前一节课学习的有关正切的知识, 学生已获得一定的探究方法, 积累了一定的经验, 这为本节课的开展提供了必要的铺垫。
本节课将在此基础上进行类比学习, 进一步探究直角三角形中的边角关系。
学生的活动经验基础:学生在上一节课的学习过程中已经历过从实际生活中抽象出数学概念, 形成数学知识, 并建立起数学建模解决实际生活问题的模式, 而且获得了探究数学问题过程中采用合适的数学方法解决问题的经验, 同时具有了一定的合作学习的能力, 交流的能力, 这些都为本节课的学习提供了必要的铺垫。
三、教学任务本节共分2个课时, 这是第2课时, 主要内容是进一步通过探究发现直角三角形中直角边与斜边之间存在的关系, 并利用这种关系解决一些简单问题。
本节课的具体教学目标为:知识与技能:1、探索并掌握锐角三角函数的概念——正弦、余弦, 理解锐角的正弦与余弦和梯子倾斜程度的关系。
2、能够用正弦、余弦进行简单的计算, 解决一些简单的实际问题。
过程与方法:1、经历类比、猜想等过程.发展合情推理能力, 能有条理地、清晰地阐述自己的观点。
2、在课堂上落实数学核心素养数学抽象、数学建模的思想, 体会解决问题的策略的多样性, 发展实践能力和创新精神。
情感态度价值观:积极参与数学活动, 提高学生对数学学科的好奇心和求知欲, 学有用的数学, 同时体会数学学科的一些核心素养, 如数学抽象、数学建模对研究问题时的引领作用。
教学重点:掌握正弦、余弦的定义, 感受数学与生活的联系。
九年级数学上册261锐角三角函数课堂导学案(新版)冀教版能力点1求锐角三角函数值题型导引 1.当一个锐角在一个直角三角形中时,只要求出相应边的长度即可求出相应的三角函数值.2.在有些问题中,可以把求一个角的锐角三角函数值转化为与它相等的角的锐角三角函数值.3.如果这个锐角不在直角三角形中时,应作辅助线构造包含这个角的直角三角形,然后再求相应边的长度.【例1】如图,在△ABC中,D是AB的中点,CD⊥AC于点C,且tan∠BCD=,求sinA,cosA,tanA的值.分析:解答本题的突破口是将∠BCD转化为直角三角形中的角,通过作辅助线DE⊥CD,∠BCD是直角三角形CDE中的角.解:过点D作DE⊥CD于点D,交BC于点E.∵CD⊥AC,∴DE∥AC.∵D为AB的中点,∴E为BC的中点,DE=AC.设DE=x,∴AC=2DE=2x.在Rt△CDE中,∵tan∠BCD=,∴=,即CD=3x.在Rt△ACD中,∠ACD=90°,AC=2x,CD=3x,∴AD===x.∴sinA===,cosA===,tanA===.规律总结如果所求角不在直角三角形中,需将它转化到直角三角形中去,结合已知条件合理地构造直角三角形来解答.变式训练如图所示,在Rt△ABC中,∠C=90°,∠A=45°,AC=2,BD为AD边上的中线,求tan∠ABD的值.分析:求tan∠ABD必须想办法把∠ABD放到直角三角形中,而△ABD不是直角三角形,可考虑过点D作DE⊥AB于E,再求出Rt△BDE的边DE,BE的长.解:如图,过点D作DE⊥AB于E,∵∠C=90°,∠A=45°,AC=2,∴BC=2,AB=2.∵BD为AD边上的中线,∴AD=CD=1.在Rt△ADE中,sinA=,∴DE=AD·sin A=1×=.∴AE=,BE=2-=.∴tan∠ABD===.能力点2利用特殊角的三角函数值进行计算题型导引特殊角的三角函数值经常应用在计算中,它会与求代数式的值结合起来,由特殊的三角函数值,确定某些字母的取值,然后代入求值即可.【例2】先化简,再求值:÷,其中a=sin30°,b=tan45°.分析:先将括号内的部分通分,并将分式的除法转化为乘法,然后根据特殊角的三角函数值求出a,b的值,再代入进行解答.解:原式=×aa-b=×=a-b.当a=sin30°=,b=tan45°=1时,原式=a-b=-1=-.规律总结对于分式的化简求值与特殊角的三角函数值结合的问题,解题的关键是利用分解因式的方法化简分式,将已知量与未知量联系起来.变式训练先化简,再求代数式-÷的值,其中a=6tan60°-2.分析:除式的分子利用完全平方公式分解因式,同时将除法变乘法,然后用同分母分式的减法法则计算,再利用特殊角的三角函数值求出a的值代入进行计算即可.解:原式=-·(a-1)2a+2=-=.∵a=6tan30°-2=6×-2=2-2,∴原式===.。
28.1.2锐角三角函数导学设计杜庄中学王春梅28.1.2锐角三角函数导学设计【学习目标】1.掌握余弦、正切的概念;能较正确地用sin A 、cos A 、tan A 表示直角三角形中两边长的比.2.能够综合运用sin A 、cos A 、tan A 解决简单的实际问题. 【学习重点】 理解余弦、正切的概念.【学习难点】 熟练运用锐角三角函数的概念进行有关计算. 一、自学提纲1.我们是怎样定义直角三角形中一个锐角的正弦的? 2.在Rt △ABC 中,∠ACB =90°,AC =1,AB =2,那么sin∠ABC =2.3.如图28-1-52,在Rt △ABC 中,∠ACB =90°,CD ⊥AB于点D .已知AC =5,BC =2,那么sin ∠ACD =( A )图28-1-52 A .53 B .23 C .2 55 D .52 4.(1)如图28-1-53,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,且AB =5,BC =3.则sin ∠BAC =__35__;sin ∠ADC =__45__;图28-1-53 图28-1-54(2)如图28-1-54,在Rt △ABC 中,∠C =90°,当锐角A 确定时,∠A 的对边与斜边的比是__正切__,二、合作交流如图28-1-55,Rt △ABC 与Rt △A ′B ′C ′中,∠C =∠C ′=90°,∠B =∠B ′=α,图28-1-55那么BC AB 与B ′C ′A ′B ′有什么关系?AC AB 与A ′C ′A ′B ′有什么关系?BC AC 与B ′C ′A ′C ′有什么关系?例1 在Rt △ABC 中,∠C =90°,AC =6,BC =8, 求sin A, cos A ,tan B 的值.例2 如图28-1-56,在Rt △ABC 中,∠C =90°,BC =6,sin A =35,求cos A ,tan B 的值.图28-1-56四、学生展示1.在Rt △ABC 中,∠C =90°,a ,b ,c 分别是∠A 、∠B 、∠C 的对边,a =3,b =4,则cos A =__45__,tan B =__43__.(提高:如把条件中∠C =90°去掉,你会求吗?)2. 在Rt △ABC 中,∠C =90°,如果cos A =45,那么tan B 的值为( D )A .35B .54C .34D .433.如图28-1-57,P 是∠α的边OA 上的一点,且点P 的坐标为(3,4),则cos α= __35__.课后作业:1.在Rt △ABC 中,∠C =90°,a =2,b =3,则cos A =13__,sin B =13,tan B =__32__.2.已知∠α是锐角,tan α=512,则sin α=__513__.3.Rt △ABC 的面积为24 cm 2,直角边AB 为6 cm ,∠A 是锐角,则cos A =__35__.4.等腰三角形底边长10 cm ,周长为36 cm ,则一底角的正切值为__125__.5.在Rt △ABC 中,锐角A 的邻边和斜边同时扩大100倍,则tan A 的值( C )A .扩大100倍B .缩小100倍C .不变D .不能确定6.在Rt △ABC 中,∠C =90°,若tan A =34,则sin A =( C ) A .43 B .34 C .53 D .357.如图28-1-58,在△ABC 中,∠C =90°,AC =8 cm ,AB 的垂直平分线MN 交AC 于D ,连接BD .若cos ∠BDC =35,则BC 的长是( A )图28-1-58A .4 cmB .6 cmC .8 cmD .10 cm8.在正方形网格中,△ABC 的位置如图28-1-59所示,则cos B 的值为( B )A .12B .22C .32D .33图28-1-59。
28.1《锐角三角函数》第二课时 ——余弦、正切主备:任江涛 审核:九年级数学备课组 授课时间: 年 月 日 【学习目标】1: 感知当直角三角形的锐角固定时,它的邻边与斜边、对边与邻边的比值也都固定这一事实。
【学习重点】2:逐步培养学生观察、比较、分析、概括的思维能力;熟练运用锐角三角函数的概念进行有关计算。
【学习难点】 【学习过程】 一、课堂导入: 二、自主学习:(一)自学指导:认真阅读课本77---78页内容,完成下列问题 1、我们是怎样定义直角三角形中一个锐角的正弦的?2、如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D 。
已知AC= 5 ,BC=2,那么sin ∠ACD =( )AB .23CD3、如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上, 且AB =5,BC =3.则sin ∠BAC= ;sin ∠ADC= .4、•在Rt △ABC 中,∠C=90°,当锐角A 确定时, ∠A 的对边与斜边的比是 ,•现在我们要问:∠A 的邻边与斜边的比呢? ∠A 的对边与邻边的比呢?锐角A 的 都叫做角A 的锐角三角函数。
(二)自学检测:三、合作探究:探究:一般地,当∠A 取其他一定度数的锐角时,它的邻边与斜边的比是否也是一个固定值? 如图:Rt △ABC 与Rt △A`B`C`,∠C=∠C` =90o,∠B=∠B`=α,AB CDABC∠A的邻边b∠A的对边a 斜边c CBA斜边c 对边abCB四、达标训练: 1.在中,∠C =90°,a ,b ,c 分别是∠A 、∠B 、∠C 的对边,则有()A .B .C .D .2. 在中,∠C =90°,如果cos A=45那么的值为()A .35B .54C .34D .433、如图:P 是∠的边OA 上一点,且P点的坐标为(3,4), 则cos α=_____________. 五、课堂小结:在Rt △BC 中,∠C=90°,我们把∠A 的邻边与斜边的比叫做∠A 的余弦, 记作 ,即 把∠A 的对边与邻边的比叫做∠A 的正切,记作 ,即 六、堂清检测:七、自我反思:本节课我的收获: 。
28.1 锐角三角函数第2课时一、教学目标【知识与技能】1.通过类比正弦函数,理解余弦函数、正切函数的定义,进而得到锐角三角函数的概念;2.能灵活运用锐角三角函数进行相关运算.【过程与方法】通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力.【情感态度与价值观】经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力.二、课型新授课三、课时第2课时共4课时四、教学重难点【教学重点】理解余弦、正切概念,知道当直角三角形的锐角固定时,它的邻边与斜边的比值、直角边之比是固定值.【教学难点】熟练运用锐角三角函数的概念进行有关计算.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔.六、教学过程(一)导入新课(出示课件2)如图,在Rt△ABC中,∠C=90°.当∠A确定时,∠A的对边与斜边的比就确定,此时,其他边之间的比是否也确定呢?(二)探索新知知识点一余弦的定义如图,△ABC和△DEF都是直角三角形,其中∠A=∠D,∠C=∠F=90°,则AC DF成立吗?为什么?(出示课件4)AB DE学生思考后,师生共同解答:(出示课件5)∵∠A=∠D ,∠C=∠F=90°,∴∠B=∠E.从而sinB=sinE , 因此AC DF AB DE=. 教师归纳:(出示课件6)在有一个锐角相等的所有直角三角形中,这个锐角的邻边与斜边的比值是一个常数,与直角三角形的大小无关.如下图所示,在直角三角形中,我们把锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cosA=.A b c∠=的邻边斜边教师强调:从上述探究和证明过程,可以得到互余两角的三角函数之间的关系:对于任意锐角α,有cos α=sin(90°-α),或sin α=cos(90°-α).(出示课件7)出示课件8,教师对照正弦、余弦的定义,对两个概念注意事项加以强调:1.sinA 、cosA 是在直角三角形中定义的,∠A 是锐角(注意数形结合,构造直角三角形).2.sinA 、cosA 是一个比值(数值).3.sinA 、cosA 的大小只与∠A 的大小有关,而与直角三角形的边长无关.出示课件9,学生独立思考后口答,教师订正.知识点二 正切的定义如图,△ABC 和△DEF 都是直角三角形,其中∠A=∠D ,∠C=∠F=90°,则BC EF AC DF=成立吗?为什么?(出示课件10)学生自主证明,一生板演,教师巡视,并用多媒体展示. 证明:∵∠C=∠F=90°,∠A=∠D ,∴Rt △ABC ∽Rt △DEF. ∴BC AC EF DF=, 即BC EF AC DF =. 教师问:当直角三角形的一个锐角的大小确定时,其对边与邻边比值也是唯一确定的吗?(出示课件11)学生独立思考后,师生共同总结:在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,∠A 的对边与邻边的比是一个固定值.(出示课件12)如图:在Rt △ABC 中,∠C =90°,我们把锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA.即tanA=a .A A b∠=∠的对边的邻边出示课件14,教师问:如果两个角互余,那么这两个角的正切值有什么关系?学生答:互为倒数.教师问:锐角A的正切值可以等于1吗?为什么?可以大于1吗?学生答:锐角A的正切值可以等于1;当a=b时;可以大于1,当a>b时.出示课件15,学生独立思考后口答,教师订正.知识点三锐角三角函数的定义出示课件16:锐角A的正弦、余弦、和正切统称∠A的锐角三角函数.考点1 已知直角三角形两边求锐角三角函数的值.例如图,△ABC中,∠C=90°,AB=10,BC=6,求sinA,cosA,tanA的值.(出示课件17)学生思考后,师生共同解答.解:由勾股定理,得AC , 因此,63sin ==105BC A AB =, 84cos 105AC A AB ,===63tan ==.84BC A AC = 师生共同总结:已知直角三角形中的两条边求锐角三角函数值的一般思路是:当所涉及的边是已知时,直接利用定义求锐角三角函数值;当所涉及的边是未知时,可考虑运用勾股定理的知识求得边的长度,然后根据定义求锐角三角函数值.(出示课件18)出示课件19,学生独立思考后口答,教师订正.考点2 已知一边及一锐角三角函数值求函数值.例 如图,在Rt △ABC 中,∠C=90°,BC=6,3sin 5A =,求cosA,tanB 的值.学生独立思考后,师生共同解答.解:∵在Rt △ABC 中,sin BC A AB=, ∴5610sin 3BC AB A =⨯==.又8AC ===, ∴4cos 5AC A AB ==,4tan .3AC B BC == 教师强调:在直角三角形中,如果已知一边长及一个锐角的某个三角函数值,即可求出其它的所有锐角三角函数值.出示课件21,学生独立思考后一生板演,教师订正.(三) 课堂练习(出示课件22-28)练习课件22-28相应题目,约用时15分钟。
第2课时
1.知道当直角三角形的锐角固定时,它的邻边与斜边、对边与邻边的比值也都固定这一事实.
2.通过类比的方法得出余弦、正切函数的概念,增强利用类比思想分析问题的能力.
3.知道三角函数的定义,会根据余弦、正切函数的定义求解简单的直角三角形问题.
4.重点:锐角的余弦、正切的概念及其求法
.
请你阅读教材本课时“类似正弦的情况”到“tan A=的邻边的对边A A ∠∠=b
a
”,回
答下列问题.
1.画一个有一个锐角是45°(记作∠A)的直角三角形ABC. (1)计算∠A 的邻边与斜边的比值、∠A 的对边与邻边的比值.
(2)若改变△ABC 的大小,上面的计算结果是否发生变化?你得出什么结论?
2.对于任意一个直角三角形ABC,∠C=90°,∠A 的邻边与斜边的比值、对边与邻边的比值是否是固定的?请你画图,写出已知、求证,并进行证明.
【归纳总结】如图,在直角三角形ABC 中, ______________________ 叫做∠A 的余弦,记作 _______ ,即cos A=
的斜边
的邻边
A A ∠∠=______ ; _____________________ 叫
做∠A 的正切,记作 _____ ,即tan A=
的邻边
的对边
A A ∠∠=_______ .
【预习自测】在Rt △ABC 中,∠A=30°,则
cos A=_________ ,tan A=________
请你阅读教材“∠A 的正弦、余弦、正切”至例2结束,回答下列问题. 1.当锐角∠A 的大小不同时,它的正弦值是否相同?余弦呢?正切呢?
2.一个锐角的三角函数与直角三角形的大小有关吗?与哪些因素有关?
【归纳总结】对于锐角A 的每一个确定的值,sin A 有 ____________的值与它对应,所以sin A 是A 的函数,同样地,cos A 、tan A 也是A 的函数.∠A 的正弦、余弦、正切都是∠A 的 _________.
【预习自测】如果∠A 是等边三角形的一个内角,那么cos A 的值等于 ( )
A.
2
1 B.
23
C.2
2 D.1
互动探究1:在正方形网格中,∠AOB 按如图所示放置,则cos ∠AOB 的值为
( )
A.
55 B. 5
5
2 C.21
D.2
[变式训练]如图,若点E 为BC 中点,则tan ∠CAE 的值是 .
【方法归纳交流】求某个锐角的三角函数值,必须将这个锐角放在一个 ________三角形中考虑,如果是网格中的锐角,可以借助网格线形成的直角三角形.
互动探究2:在△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,且a ∶b ∶c=5∶12∶13,求最小角的三角函数值.
【方法归纳交流】已知某个锐角的一个三角函数值能够求出 _______________,若还已知直角三角形的一边,还能够求出 ____________________ .通常已知边的比值,不能直接求三角函数值,可采用 _______________ 来解决.
[变式训练]直角三角形两边的比为3∶4,则最小角的正切为 __________ .
互动探究3:如图,在等腰△ABC 中,AB=AC=5,BC=6.
(1)求sin B 、cos B 、tan B 的值.
(2)
过
B
作BE ⊥AC 于点E,假设BC=5米,其他条件不变,求腰上的高BE.。