利用待定系数法巧解一类二元最值问题
- 格式:pdf
- 大小:508.88 KB
- 文档页数:2
高中数学二元函数最值问题求解方法浅析-最新教育文档高中数学二元函数最值问题求解方法浅析我们把形如z=f(x,y)的函数称为二元函数。
其最值问题是高中数学的一大难点,近年来高考试题中屡有考察。
求解二元函数的最值,涉及到函数、不等式、线性规划、解析几何等诸多高中数学重点知识,更体现了函数思想、化归转化思想、数形结合思想和分类讨论思想等若干核心数学思想的应用。
学好二元函数问题最值的求解,是函数部分的一大重点。
求解二元函数最值,核心思想是化二元为一元――将复杂问题化归为简单模型是数学解题的关键,也是本质。
通过消元或换元,将一个二元问题简化为一元函数问题,依托于研究学生所熟识的一元函数达到求解二元函数最值的目的。
下文所叙述的消元法和换元法都是这一思想的具体运用。
同时,求解二元函数最值问题时,联系题目中条件与最值问题所对应的几何意义――利用数形结合的思想,将二元函数问题化归为二维平面内的图形变换关系,通过观察图形的几何意义来解决问题,是此类问题其求解的又一法宝。
此外,结合已知条件,利用重要不等式来解决问题是我们可以借助的又一重要工具。
均值不等式法就体现了这一思想。
下面通过几个具体的例子,着重通过一题多解的模式来分析二元最值求解的基本方法。
1. 配方法利用多项式的配方法和实数的性质以及不等式的性质来分析新式子的结构,进而研究确定二元函数的最大值或最小值,这也是求极值的一种很简便的方法。
例1:求二元函数Z=x4+y4+2 x2y2-4x2-3y2+2y+15的最小值。
分析:原式配方得:Z=(x2+y2-2)2+(y+1)2+10,当且仅当 x2+y2-2=0且y+1=0 ,即x= ±1,y=-1 时,Z的最小值是10 例2:已知X∈R ,y ∈R,求 u=x2+xy+y2-x-2y+5的最值。
分析:原式配方可得u=(x+y-12)2+34(y-1)2+4,当且仅当 x+y-12=0及y-1=0时即x=0,y=1时取最小值42. 消元法消元法是求解二元函数最值问题的最基本方法。
初中数学最值问题解题技巧初中数学最值问题是学习中数学的重要内容,也是考试中经常要求考生解决的问题,解决初中数学最值问题,需要考生熟悉相关的知识点,并具备一定的解题技巧。
一、基本概念初中数学最值问题是指在给定的条件下,求出函数的最大值或最小值。
在初中数学中,常见的函数有一元函数、二元函数、三元函数等,最值问题可以分为一元函数最值问题、二元函数最值问题、三元函数最值问题等。
二、一元函数最值问题1、求函数的极值解:首先,要确定函数的极值,需要求出函数的导数,然后求出函数的极值点。
2、求函数的最大值和最小值解:在函数的域范围内,可以通过求函数的极值点,确定函数的最大值和最小值,或者在域范围内求函数的极大值和极小值。
三、二元函数最值问题1、求函数的极值解:二元函数最值问题,首先要求函数的偏导数,然后求出函数的极值点。
2、求函数的最大值和最小值解:在函数的域范围内,可以通过求函数的极值点,确定函数的最大值和最小值,或者在域范围内求函数的极大值和极小值。
四、三元函数最值问题1、求函数的极值解:三元函数最值问题,要求出函数的偏导数,然后求出函数的极值点。
2、求函数的最大值和最小值解:在函数的域范围内,可以通过求函数的极值点,确定函数的最大值和最小值,或者在域范围内求函数的极大值和极小值。
五、解题技巧1、熟悉最值问题的基本概念,了解一元、二元、三元函数的极值求法。
2、在求解最值问题时,要注意函数的定义域,以确定函数的最大值和最小值。
3、求解最值问题,应充分利用函数的性质,比如函数的单调性、增函数、减函数等。
4、要注意函数的变化,以确定极值点,以及函数在极值点上的变化趋势。
总结以上就是初中数学最值问题的解题技巧,初中数学最值问题是学习数学的重要内容,考生在解决最值问题时,应该多积累知识点,多掌握解题技巧,从而更好的解决最值问题。
一道二元函数最值问题的多种解法
在数学中,二元函数最值问题是指在一个二元函数的定义域中找出使函数取最大值或最小值的确定性解集。
这个问题在实际应用中经常出现,有多种解法,下面介绍其中的几种:
1.图像法
可以通过画出函数的等高线图来找出最优解。
等高线图是在平面上绘制出使函数取同一数值的点的轮廓线,这些轮廓线将函数的值分为不同的区域。
最小值或最大值就在其中的极值点处。
2. 梯度法
梯度法是另一种寻找极值的方法,它利用了函数的导数。
可以通过对函数进行求导,找出所有导数为零的点,这些点就是可能的极值点。
然后逐一计算这些点的函数值,找出最大或最小值。
3. 拉格朗日乘数法
拉格朗日乘数法是一种约束条件下求极值的方法,适用于含有约束条件的函数。
该方法要求将约束条件转换为等式,然后构造一个带有拉格朗日乘数的函数,通过求导找出函数的极值点。
4. 线性规划法
线性规划法是一种求解最优化问题的方法,适用于一组线性不等式约束条件下的线性目标函数。
该方法通过构造一个线性规划模型,通过线性规划算法求解最优解。
总之,二元函数最值问题的解法很多,具体方法要根据问题的实际情况选择。
本稿件适合高三高考复习用有关函数最值问题 的十二种解题方法与策略贵州省龙里中学高级教师 洪其强(551200)一、消元法:在已知条件等式下,求某些二元函数(,)f x y 的最值时,可利用条件式消去一个参量,从而将二元函数(,)f x y 化为在给定区间上求一元函数的最值问题。
例1、已知x 、y R ∈且223260x y x +-=,求222x y +的值域。
解:由223260x y x +-=得222360y x x =-+≥,即02x ≤≤。
2222392262()22x y x x x +=-+=--+∴当32x =时,222xy +取得最大值92;当0x =时,222x y +取得最小值0。
即222x y +的值域为90,2⎡⎤⎢⎥⎣⎦二、判别式法:对于某些特殊形式的函数的最值问题,经过适当变形后,使函数()f x 出现在一个有实根的一元二次方程的系数中,然后利用一元二次方程有实根的充要条件0∆≥来求出()f x 的最值。
例2、求函数22()1xf x x x =++的最值。
解:由22()1xf x x x =++得 []2()()2()0f x x f x x f x +-+=,因为x R ∈,所以0∆≥,即[]22()24()0f x f x --≥,解得22()3f x -≤≤。
因此()f x 的最大值是23,最小值是-2。
三、配方法:对于涉及到二次函数的最值问题,常用配方法求解。
例3、求2()234x x f x +=-在区间[]1,0-内的最值。
解:配方得 2224()2343(2)33x x x f x +=-=--+[]1,0x ∈- ,所以 1212x ≤≤,从而当223x =即22log 3x =时,()f x 取得最大值43;当21x =即0x =时()f x 取得最小值1。
四、辅助角公式:如果函数经过适当变形化为()sin cos f x a x b x =+(a、b均为常数),则可用辅助角公式sin cos arctan )ba xb x x a+=+来求函数()f x 的最值。
例说运用线性规划思想解二元函数最值问题
张勇
【期刊名称】《数学学习与研究:教研版》
【年(卷),期】2012(000)009
【摘要】正线性规划是高中数学中的新增内容,也是初等与高等数学的衔接内容,是高考的重点热点.线性规划思想在高中数学各个章节中都有应用,尤其在求有关二元函数的最值问题时,以下举几例说明,供参考:一、在解析几何中的应用
【总页数】1页(P94-94)
【作者】张勇
【作者单位】江苏省盱眙中学
【正文语种】中文
【中图分类】G634.6
【相关文献】
1.运用简单线性规划思想理解求最值问题
2.运用简单线性规划思想理解求最值问题
3.运用简单线性规划思想理解求最值问题
4.巧用规划思想解决:求二元函数的最值问题
5.解析运用简单线性规划思想求最值问题
因版权原因,仅展示原文概要,查看原文内容请购买。
这三种条件下的二元代数式最值问题,你会了吗?今天算是正式结束了上课的日子,突然就感觉无聊了。
翻了翻自己的学习笔记,便又整理了下这个题。
确实,二元代数式的最值,也算是常考题型了,觉得还是有必要再熟悉下的。
01直线型条件题目特征这种给出ax+by+c=0型条件等式,消元应该是挺方便的。
但如果观察目标的结构,觉得又与圆或两点间距离或多或少有一点关系。
便有了下面的解法。
思路分析多元问题一元化处理,是解决这类问题最根本的思路了。
而条件中的二元一次方程,就可以很方便地让我们达到消元的目的。
思路分析解决二元代数式的最值问题,有一种解法常被叫作叫“万能K 法”。
其实,这种方法基本思想还是消元了,只不过利用了整体替换的思想,但把代数式变为等式以后,问题就变成了方程组有解的问题。
记得高一讲分式型函数值域时,这种解法一般叫“判别式法”。
当然,如果变量x,y给出了一定的范围,可能还是需要验证下的。
思路分析如果从目标的“平方和”特征看,我们其实就是想由条件求出一个圆的半径大小,当然最好的方式,就是考虑圆的参数方程了。
所以说,“看到平方和,要想三角换元“,应该是比较明智的。
思路分析当然,平方和的问题也可以看成两点间的距离。
其实,在代数中能够表示距离的式子是不多的,记得最常见的当是平方和和绝对值了。
思路分析相信不少同学都记得"遇到连比就设k”这句口头禅吧?涉及比值问题,通过设k的作法,其实也只是消元的一种形式,我们姑且叫作换元消元,就记得均值代换就是一种最常见的换元消元了。
当然,换成k还是t,这是无伤大雅的。
02椭圆型条件思路分析条件式为二元二次方程,因为平方项系数均为正,其图象为椭圆,这种形式的条件称为椭圆型。
显然该形式下直接消元是不现实的。
思路分析因为目标式为一次式,所以考虑一次式便于消元的特征,就可以考虑用判别式法了。
思路分析一般而言,但凡是二次项系数同号的二元二次式,总是可以通过一定的手段进行三角换元的。
这里就利用了配方后的平方和特征进行了三角换元,应该也是一种常规换元了。
目录1 引言 02 文献综述 (1)2.1国内研究现状 (1)2.2国内研究现状评价 (2)2.3提出问题 (2)3 高中数学常见最值问题及解题策略 (2)3.1无理函数的最值问题 (2)3.2三角函数的最值问题 (4)3.3 数列的最值问题 (6)3.4 平面向量的最值问题 (10)3.5 圆锥曲线的最值问题 (11)3.6具有几何意义的最值问题 (14)3.7几个特殊类型函数的最值问题 (17)3.8用特殊方法求一类函数的最值问题 (23)4. 结论 (24)4.1主要发现 (24)4.2启示 (24)4.3局限性 (24)4.4努力的方向 (25)参考文献 (25)1 引言最值问题是人们在生产和日常生活中最为普遍的一种数学问题,它的应用性和实用性非常广泛,无论是在生产实践中还是在科学研究领域我们都会遇到一些关于“最好”、“最省”、“最低”、“最优”、“最大”、“最小”等问题,这些问题一般都是转化为最值问题进行求解.此类问题的求解,不仅充分训练了学生把实际问题抽象成数学问题的思维方式,还培养了学生分析问题和解决问题的能力,同时也使学生逐步形成了应用数学的意识.在近几年的高考题中,最值问题是考试命题的一个重点,它占了高考分数的5%~23%.从题型上讲,主要以选择题、填空题和解答题三种形式出现.从难易程度上讲,主要有基础题、中档题和高档题三种题型.它在考查基础知识的同时,也逐步加强了对能力的考查,高考将注重检查学生对所学课程内容达到融会贯通的程度.因此,求解最值问题将会是高考的一个难点,学生不但要较好地掌握各个分支的知识,还要善于捕捉题目信息,有较强的思维能力,能够运用各种数学技能,灵活选择适当的解题方法,方能达到事半功倍之效.文章从高中数学试题中经常出现的无理函数、三角函数、数列、向量、圆锥曲线和解析式具有几何意义的最值问题以及三类特殊最值问题几个方面对高中数学最值问题进行相关探讨,给出求高考数学最值问题的解题策略,为学生的备考和教师的教学提供相应的指导.2 文献综述2.1国内研究现状对于中学数学中最值问题的求解,国内已经有了一定的探讨,文[1]-[5]中总结归纳了最值问题的常用求解方法;文[6]通过举例讨论了一类无理函数最值的求解策略;文[7]讨论了如何巧求一类二元函数的最值;文献[8]针对解析式具有几何意义的函数的最值巧妙求法方法进行了归纳总结;文[9]给出了三类最小值问题的统一解法及一般结果;文[10]对一类函数最小值问题的处理方法进行了探讨;文[11]对一类函数最小值问题的处理方法进行了相关的补充;文[12]介绍了几种关于应用均值定理求最值的方法;文[13]给出了2005~2009年中最新五年高考真题及其详解;文[14]~[15]介绍了函数最值的概念及其求解方法;文[16]给出了用松弛变量法巧妙地求解一类二元函数的最值问题的方法.2.2国内研究现状评价国内虽然对最值问题的求解方法已有了一定的研究,尤其是最值问题的常用求解方法归纳比较全面系统.但是在近几年的高考题中,主要考查学生学以致用的能力,只利用常用求解方法一般很难解决高考题中的最值问题.高考很多最值问题都是要综合应用相关知识的概念、性质、定理才可解决.现查阅到的参考文献中大多只讨论了最值问题的常用求解方法及归纳了几个特殊最值问题的统一解法,并没有具体探讨高考数学中基本最值问题的求解策略.2.3提出问题由于高考过程中,试题数量多、时间少、难度大,要在高考中获胜,必须要讲解题方法“精”、“巧”、“练”.而大多资料并没有从高考的角度研究高考数学中最值问题的求解,最值问题的求解方法还不够完善,高考中学生对最值问题的求解还存在一定的困难.因此,本文将通过查阅相关资料,站在高考的角度,对高中数学常见最值问题及解题策略进行总结、归纳、整理,进一步完善最值问题的求解策略,为学生的备考和教师的教学提供相应的指导.3 高中数学常见最值问题及解题策略最值问题是中学数学的一个重要内容,也是各种考试命题的一个热点.尤其在高考命题中,它是必不可缺少的热门考点,在近几年的高考试卷中,函数的最值问题占了相当大的比例.其主要以选择题、填空题和解答题的类型出现,其目的在于考查学生对基础知识的把握和灵活运用相关知识的能力.解决这类问题涉及的知识面较宽,要求学生不仅要能利用常用方法求解简单函数的最值问题,还要学生能根据知识的内在联系以及函数本身的特征适当选择最优解题方案,达到事半功倍之效.3.1无理函数的最值问题 求形如22221121c x b x a c x b x a y ++±++=的最值此类题型求解最值的方法很多,一般有平面几何法、分析法、解析几何法、复数法和求导法.但在求解过程中这些方法的使用非常灵活,存在一定难度,要求对常用最值求解工具较为熟悉,能根据解析式的特征联系相关知识,恰当、准确地选用最优解题方案进行求解.而如何实现使用最优解题方案进行求解,关键是要认真捕捉题目信息,仔细观察解析式,从而根据知识的内在联系,利用转化思想便可解决问题.例1 求()2f x =的最小值.解 令y =显然]0,5[-∈x 有意义,有222)725(x x x y -+-=)7)(25(272522x x x x --+-=,则0)7)(25(2,0722≥--≥-x x x x ,(当0=x 时等号成立)当0=x 时5min =y ,所以min ()7f x =.评析 该题根据解析式的特征合理变形后,采用分析法.利用不等式的性质进行解答.本题主要考查学生的应变能力、分析能力和观察能力(各个时候取等号的条件的一致性,否则没有最值).例2 求32610134)(22++-++-=x x x x x f )(R x ∈的最小值.解 令22221)5(3)2(+-++-=x x y ,设,3)2(1i x z +-=i x z +-=)5(2,则21z z y +=,且54321=+=+i z z ,有52121=+≥+z z z z . 当且仅当345123=-=-x x 时函数取得最小值.当417=x 时5min =y , 所以min ()8f x =.评析 采用复数法,利用复数模的性质121212z z z z z z -≤+≤+,把代数式转化为复数模的关系进行求解.求二元无理式的最值二元无理式的最值问题也是最值求解的一个难点,虽然它的解题方法不少,但是解答过程非常复杂繁琐,计算容易出错.而这种题可以运用一个定理便可轻松简捷地求解.定理1 设R x x ∈2,1,+∈R y y 2,,则21221222121)(y y x x y x y x ++≥+(当且仅当2211::y x y x =时等号成立).例3 若521≥-++y x ,求y x x f +=)(+52的最小值. 解 令11211+-++=+=y x y x z ,根据定理得 11211+-++=+=y x y x z , 当且仅当1211-=+y x ,521=-++y x 时取得最小值. 当433,421==y x 时 227min =z , 所以min ()16f x =.评析 该无理函数求解最值的方法很多,但是相比之下,利用此定理使用松弛变量法[16]更为巧妙,但需注意的是题目中的已知条件必须全部满足定理的要求,否则求解将会有误,在使用这种方法时,必须认真捕捉题目信息.3.2三角函数的最值问题在高考试卷中,求解三角函数的最值问题的题目出现的非常频繁,几乎每年都会出现,占高考分数的%8~%3.它主要考查学生对三角函数基础知识的综合运用.其难度大,很多学生对此类问题“一筹莫展”.其实,三角函数的最值问题看似非常复杂,一, 2 27 1 25 1 11 )2 1 ( 2 2 = + ≥ + + - + + ≥ y x般使用常用最值求解方法很难求解,但是要解决它并不困难,只要充分理解其概念、性质,牢记公式,能灵活运用正弦定理、余弦定理及相关的三角公式进行适当的变形化简,然后根据它的性质、定理逐步击破,便可解决问题.因此,在解决三角函数最值问题时,关键在于学生对其性质、定理的深刻理解和各个三角公式的灵活运用.例4(2008年全国卷Ⅱ) 若动直线a x =与函数x x f sin )(=和x x g cos )(=的图像分别交于M 、N 两点,则MN 的最大值为(B ).解 )4sin(2cos sin )()(π-=-=-x x x x g x f ,根据三角函数的性质可知,当z k k x ∈+=,43ππ时, 2)()(max max =-=x g x f MN .故 选B . 评析 本题主要考查学生对三角函数的性质的理解和应用.例5(2008年全国卷Ⅰ) 设ABC ∆的内角A 、B 、C 所对的边长为a 、b 、c ,且c A b B a 53cos cos =-.(Ⅰ)求B A cot tan 的值.(Ⅱ)求)tan(B A -的最小值. 解 (Ⅰ)由正弦定理知C A c a sin sin =,CB c b sin sin =, c AC B B C A A b B a ⋅⋅-⋅=-)cos sin sin cos sin sin (cos cos ,1cos tan )1cot (tan sin cos cos sin sin cos cos sin )sin(sin cos cos sin +⋅-⋅+-=⋅+-=B A c B A c BA B A B A B A c B A A B B A 由题意得c B A c B A 531cot tan )1cot (tan =+⋅-, 解得4cot tan =B A .(Ⅱ)由(Ⅰ)得B A tan 4tan =,则A 、B 都是锐角,于是0tan >B .所以43tan 41tan 3tan tan 1tan tan )tan(2≤+=+-=-B B B A B A B A , 且当21tan =B 时,上式取等号,所以 )tan(B A -的最大值为43. 评析 本题主要考查学生对三角函数性质的理解和定理的应用能力.学生灵活使用正弦定理将原解析式变形、化简,从而由题设产生新的已知条件,为求解目标函数的最值打下坚实的基础.例6(2008年四川卷) 求函数2474sin cos 4cos 4cos y x x x x =-+-的最大值与最小值.解 由2474sin cos 4cos 4cos y x x x x =-+-得2(1sin 2)6y x =-+.由于函数2(1)6z u =-+在[1,1]-中的最值为max 10z =,min 6z =.故当sin 21x =-时max 10y =,当sin 21x =时min 6y =.评析 三角函数的公式非常多,学生解决问题时必须正确选用适当的公式对解析式进行变形,才能使问题简单化,否则将越化越复杂,无法解决.因此,学生不但要熟记公式,还要有灵活运用公式的能力.3.3数列的最值问题数列的最值问题也是高考的一种题型之一,出现也较为普遍,它曾在2009年四川卷、安徽卷和2008年的江西卷、宁夏海南卷中出现.该类问题主要以选择题、解答题两种题型出现,选择题的难度不大,而对解答题的解题能力的要求却很高,不但要求学生对其基础知识非常熟悉,还要求学生有较强的计算能力、思维能力、分析能力和解决问题的能力.针对这类问题,学生必须熟记并能准确灵活地运用等差数列和等比数列的各个公式.例7(2009年安徽卷) 已知{}n a 为等差数列,135105a a a ++=,24699a a a ++=.以n s 表示{}n a 的前n 项和,则使得n s 达到最大值的n 是(B ).A .(21)B .(20)C .(19)D .(18) 解 由于数列{}n a 为等差数列,则1(1)n a a n d =+-,有1235a d +=,1333a d +=.则139a =, 2d =-.根据数列的前n 项和公式2(1)39(2)402n n n s n n n -=+⨯-=-+, 显然当20n =时n s 取得最大值.评析 本题主要考查学生对公式的应用,学生只要有较强的观察能力、思维能力,结合使用等差数列的通项公式和前n 项和公式就可以求解.例8(2009年四川卷) 设数列{}n a 的前n 项和为n s ,对任意的正整数n 都有51n n a s =+成立,记4()1n n na b n N a ++=∈-.(Ⅰ)求数列{}n b 的通项公式.(Ⅱ)记221()n n n c b b n N *-=-∈,设数列{}n c 的前n 项和为n T .求证:对任意的正整数n 都有32n T <. (Ⅲ)设数列 {}n b 的前n 项和为n R ,已知正实数λ满足:对任意的正整数n ,n R n λ≤恒成立,求λ的最小值.解 (Ⅰ)当1n =时,151n a a =+,则114a =-. 又51n n a s =+,1151n n a s ++=+,有115n n n a a a ++-=,即114n n a a +=-. 所以,数列{}n a 成等比数列,其首相114a =-,14q =-. 则14()n n a =-,所以14()5441(4)11()4n n n n b +-==+----. (Ⅱ)由(Ⅰ)知54(4)1n n b =+--, 则221221554141n n n n n c b b --=-=+++ 222516(161)(164)2516(16)31642516(16)25,16nn n nn n nn n ⨯=-+⨯=+⨯-⨯<=又13b =,2133b =. 有143c =. 当1n =时 132T <, 当2n ≥时23411125()3161616n n T <+⨯+++ 12211[1()]41616251311614162513116693,482n --=+⨯-<+⨯-=<(Ⅲ)由(Ⅰ)知 54(4)1n n b ==+--. 一方面 ,已知n R n λ≤恒成立,取n 为大于1的奇数时,设21()n k k N *=+∈,则1221n k R b b b +=+++ 12321123221111145()414141411111145[()()]414141414141,k k k n n n ++=+-+-+++-++=+-+-++-+-+++>- 有41n n R n λ≥>-即(4)1n λ->-对一切大于1的奇数 n 恒成立.所以4λ≥.否则(4)1n λ->-只对满足14n λ<-的正奇数n 成立,矛盾. 另一方面,当4λ=时对一切的正整数n 都有4n R n ≤恒成立,事实上,对任意的正整数k 都有212212558(4)1(4)1k k k k b b --+=++----52081611641516408(161)(164)8,k k k k k =+--+⨯-=--+< 当n 为偶数时,设2()n m m N =∈*,则1234232221()()()n m m m R b b b b b b b ---=+++++++8m <4n =,当n 为奇数时,设21()n m n N =-∈*,则1234232221()()()n m m m R b b b b b b b ---=+++++++8(1)m <-4n =,所以,对一切正整数n 都有4n R n ≤.综上所述,正实数λ的最小值为4.评析 本题主要考查数列、不等式等基础知识,化归思想、分类整合思想等数学思想方法,以及推理论证、分析与解决问题的能力,要求学生有较强的综合解题能力.3.4平面向量的最值问题在考查平面向量的最值问题中,一般结合三角函数进行考查,题型多以选择题、填空题和解答题的形式出现,考生需要深刻理解平面向量的概念、性质和数量积与向量积的几何意义,灵活运用向量的各种性质,有较强的运算和论证能力便可解决问题.对于这类题型,学生首先要根据题目的已知条件,利用向量的性质灵活变形,进而利用数量积或向量积便可求解.例9(2009年安徽卷) 给定两个长度为1的平面向量OA 和OB ,它们的夹角为120,如图所示,点C 在以O 为圆心的圆弧AB 上变动。