线性方程组的直接解法(16)分析
- 格式:pptx
- 大小:1.52 MB
- 文档页数:114
解线性方程组的直接方法一、高斯消元法高斯消元法是解线性方程组最常用的方法之一、它通过一系列的消元操作,将线性方程组转化为阶梯型方程组,从而求解未知数的值。
1.确定线性方程组的阶数和未知数的个数。
设线性方程组中有n个未知数。
2.将线性方程组写成增广矩阵的形式。
增广矩阵是一个n行n+1列的矩阵,其中前n列是线性方程组的系数矩阵,第n+1列是等号右边的常数。
3.通过初等行变换(交换行、数乘行、行加行)将增广矩阵化为阶梯型矩阵。
具体步骤如下:a.首先,找到第一个非零元素所在的列,将它所在的行视为第一行。
b.将第一行的第一个非零元素(主元)变成1,称为主元素。
c.将主元所在列的其他元素(次元素)变为0,使得主元所在列的其他元素只有主元素是非零的。
d.再找到第一个非零元素所在的列,将它所在的行视为第二行,并重复上述步骤,直到将增广矩阵化为阶梯型矩阵。
4.根据阶梯型矩阵求解未知数的值。
具体步骤如下:a.从最后一行开始,依次求解每个未知数。
首先,将最后一行中非零元素所在的列作为含有该未知数的方程,将该未知数的系数设为1b.将含有该未知数的方程中其他未知数的系数设为0,并对其他方程进行相应的变换,使得该未知数所在列的其他元素都为0。
c.重复上述步骤,直到求解出所有未知数的值。
高斯消元法的优点是简单易懂、容易实现,但当线性方程组的系数矩阵接近奇异矩阵时,计算精度可能会降低。
二、矩阵求逆法矩阵求逆法是解线性方程组的另一种直接方法。
它通过对系数矩阵求逆,然后与常数矩阵相乘,得到未知数的值。
1.确定线性方程组的阶数和未知数的个数。
设线性方程组中有n个未知数。
2.将线性方程组写成矩阵方程的形式,即Ax=b,其中A是一个n阶方阵,x和b分别是n维列向量。
3.求系数矩阵A的逆矩阵A^-1a. 首先,计算系数矩阵A的行列式det(A)。
b. 判断det(A)是否为0,如果det(A)=0,则该线性方程组无解或有无穷多解;如果det(A)≠0,则系数矩阵A可逆。
线性方程组的解法线性方程组是数学中常见的问题,它可以用于描述多个未知数之间的关系。
解决线性方程组的问题是求解未知数的具体取值,从而得到方程组的解。
本文将介绍几种常见的解线性方程组的方法。
一、高斯消元法高斯消元法是解决线性方程组的经典方法之一。
它通过矩阵变换的方式,将线性方程组转化为一个三角矩阵,从而简化求解过程。
以下是高斯消元法的步骤:1. 将线性方程组写成增广矩阵的形式,其中最后一列为常数项。
2. 选取一个非零元素作为主元,在当前列中将主元素所在的行作为第一行,然后通过初等行变换将其他行的主元素变为0。
3. 重复第2步,直到所有的主元素都变成1,并且每个主元素所在的列的其他元素都变为0。
4. 反向代入,从最后一行开始,依次回代求解未知数的值。
二、矩阵的逆矩阵法矩阵的逆矩阵法是利用矩阵的逆矩阵来求解线性方程组。
以下是逆矩阵法的步骤:1. 对于线性方程组Ax=b,如果矩阵A可逆,将方程组两边同时左乘A的逆矩阵AI,得到x=A^(-1)b。
2. 通过求解矩阵A的逆矩阵来得到未知数向量x的值。
3. 如果矩阵A不可逆,那么线性方程组没有唯一解,可能有无穷多解或者无解。
三、克拉默法则克拉默法则是另一种解决线性方程组的方法,它利用行列式的性质来求解未知数的值。
以下是克拉默法则的步骤:1. 对于线性方程组Ax=b,令|A|=D,其中D表示矩阵A的行列式。
2. 分别计算将矩阵A的第i列替换为常数列b所得到的行列式|A_i|。
3. 未知数向量x的第i个分量可以通过x_i = |A_i|/D来得到。
克拉默法则的优点是简单直观,但是当方程组的规模很大时,计算行列式将变得非常复杂。
四、矩阵的广义逆法矩阵的广义逆法是一种应对方程组无解或者有无穷多解的情况的方法。
对于线性方程组Ax=b,如果矩阵A不可逆,我们可以通过求解广义逆矩阵A^+来得到一个特解x_0。
1. 分别计算A^+ = (A^T·A)^(-1)·A^T和x_0 = A^+·b。
解线性方程组的直接解法一、实验目的及要求关于线性方程组的数值解法一般分为两大类:直接法与迭代法。
直接法是在没有舍入误差的情况下,通过有限步运算来求方程组解的方法。
通过本次试验的学习,应该掌握各种直接法,如:高斯列主元消去法,LU分解法和平方根法等算法的基本思想和原理,了解它们各自的优缺点及适用范围。
二、相关理论知识求解线性方程组的直接方法有以下几种:1、利用左除运算符直接求解线性方程组为bx\=即可。
AAx=,则输入b2、列主元的高斯消元法程序流程图:输入系数矩阵A,向量b,输出线性方程组的解x。
根据矩阵的秩判断是否有解,若无解停止;否则,顺序进行;对于1p:1-=n选择第p列中最大元,并且交换行;消元计算;回代求解。
(此部分可以参看课本第150页相关算法)3、利用矩阵的分解求解线性方程组(1)LU分解调用matlab中的函数lu即可,调用格式如下:[L,U]=lu(A)注意:L往往不是一个下三角,但是可以经过行的变换化为单位下三角。
(2)平方根法调用matlab 中的函数chol 即可,调用格式如下:R=chol (A )输出的是一个上三角矩阵R ,使得R R A T =。
三、研究、解答以下问题问题1、先将矩阵A 进行楚列斯基分解,然后解方程组b Ax =(即利用平方根法求解线性方程组,直接调用函数):⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------=19631699723723312312A ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=71636b 解答:程序:A=[12 -3 2 1;-3 23 -7 -3;2 -7 99 -6;1 -3 -6 19];R=chol(A)b=[6 3 -16 7]';y=inv(R')*b %y=R'\bx=inv(R)*y %x=R\y结果:R =3.4641 -0.8660 0.5774 0.28870 4.7170 -1.3780 -0.58300 0 9.8371 -0.70850 0 0 4.2514y =1.73210.9540-1.59451.3940x =0.54630.2023-0.13850.3279问题 2、先将矩阵A 进行LU 分解,然后解方程组b Ax =(直接调用函数):⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=8162517623158765211331056897031354376231A ,⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=715513252b解答:程序:A=[1/3 -2 76 3/4 5;3 1/sqrt(3) 0 -7 89;56 0 -1 3 13;21 65 -7 8 15;23 76 51 62 81];b=[2/sqrt(5);-2;3;51;5/sqrt(71)];[L,U]=lu(A)y=inv(L)*bx=inv(U)*y结果:L = 0.0060 -0.0263 1.0000 0 00.0536 0.0076 -0.0044 0.1747 1.00001.0000 0 0 0 00.3750 0.8553 -0.6540 1.0000 00.4107 1.0000 0 0 0U =56.0000 0 -1.0000 3.0000 13.00000 76.0000 51.4107 60.7679 75.66070 0 77.3589 2.3313 6.91370 0 0 -43.5728 -50.06310 0 0 0 96.5050y =3.0000-0.63880.859850.9836-11.0590x =0.13670.90040.0526-1.0384-0.1146问题3、利用列主元的高斯消去法,求解下列方程组:⎪⎪⎩⎪⎪⎨⎧=+--=--+=-+-=+-+01002010100511.030520001.0204321432143214321x x x x x x x x x x x x x x x x解答:程序:function [RA,RB,n,X]=liezhu(A,b)B=[A b];n=length(b);RA=rank(A);RB=rank(B);zhica=RB-RA;if zhica>0disp('Çë×¢Ò⣺RA~=RB£¬ËùÒÔ´Ë·½³Ì×éÎ޽⡣')returnendif RA==RBif RA==ndisp('Çë×¢Ò⣺ÒòΪRA=RB=n,ËùÒÔ´Ë·½³Ì×éÓÐΨһ½â¡£')X=zeros(n,1);C=zeros(1,n+1);for p=1:n-1[Y ,j]=max(abs(B(p:n,p)));C=B(p,:);for k=p+1:nm=B(k,p)/B(p,p);B(k,p:n+1)=B(k,p:n+1)-m*B(p,p:n+1)endendb=B(1:n,n+1);A=B(1:n,1:n);X(n)=b(n)/A(n,n);for q=n-1:-1:1X(q)=(b(q)-sum(A(q,q+1:n)*X(q+1:n)))/A(q,q);endelsedisp('Çë×¢Ò⣺ÒòΪRA=RB¡´n£¬ËùÒÔ´Ë·½³ÌÓÐÎÞÇî¶à½â¡£') endend键入A=[1 20 -1 0.0012 -5 30 -0.15 1 -100 -102 -100 -1 1];b=[0;1;0;0];[RA,RB,n,X]=liezhu(A,b)结果:请注意:因为RA=RB=n,所以此方程组有唯一解。
线性方程组的解法线性方程组线性方程组是数学中常见的一种方程形式,它由多个线性方程联立而成。
解线性方程组是在给定一组方程的条件下,求出符合这些方程的未知数的取值,从而满足方程组的所有方程。
本文将介绍线性方程组的解法和应用。
一、高斯消元法高斯消元法是解线性方程组的一种常用方法。
它通过一系列行变换将线性方程组转化为简化的行阶梯形矩阵,然后通过回代求解得到方程组的解。
具体步骤如下:1. 将线性方程组写成增广矩阵的形式,其中未知数的系数和常数项构成矩阵的左右两部分。
2. 选取一个主元(即系数不为零的元素)作为基准行,并通过行变换使得该元素为1,同时消去其他行中该列的元素。
3. 重复上述步骤,将矩阵转化为行阶梯形式,即每一行的主元都在前一行主元的右下方。
4. 进行回代,从最后一行开始,逐步求解方程组的未知数。
高斯消元法能够解决大部分线性方程组,但对于某些特殊情况,例如存在无穷解或无解的方程组,需要进行额外的判断和处理。
二、矩阵求逆法矩阵求逆法是另一种解线性方程组的方法。
它通过求解方程组的系数矩阵的逆矩阵,再与常数项的矩阵相乘,得到未知数的解向量。
具体步骤如下:1. 如果线性方程组的系数矩阵存在逆矩阵,即矩阵可逆,那么方程组有唯一解。
2. 计算系数矩阵的逆矩阵。
3. 将逆矩阵与常数项的矩阵相乘,得到未知数的解向量。
需要注意的是,矩阵求逆法只适用于方程组的系数矩阵可逆的情况,对于不可逆的方程组,则无解或者存在无穷解。
三、克拉默法则克拉默法则适用于n个未知数、n个方程的线性方程组。
它利用行列式的性质来求解未知数。
具体步骤如下:1. 构建系数矩阵和常数项的矩阵。
2. 计算系数矩阵的行列式,即主对角线上各元素的乘积减去副对角线上各元素的乘积。
3. 分别用求解一个未知数时的系数矩阵替代系数矩阵中对应列的元素,再计算新矩阵的行列式。
4. 将每个未知数的解依次计算出来。
克拉默法则的优点是理论简单,易于理解,但随着未知数和方程数的增加,计算复杂度呈指数增长,计算效率较低。