“时间序列分析”1
- 格式:ppt
- 大小:1.89 MB
- 文档页数:34
第六章时间序列分析6.2自回归模型(AR)自回归模型中最简单的是一阶自回归模型和二阶自回归模型。
为节省篇幅,这里直接给出p 阶自回归模型。
6.2.1功能求出p阶自回归方程的系数,从而得到p阶自回归方程。
6.2.2方法说明6.2.3子程序语句SUBROUTINE ARP(X,N,M,R,FAI)6.2.4哑元说明X——输入参数,一维实型数组,大小为N,存放观测序列值。
N——输入参数,整型变量,为观测序列的长度。
M——输入参数,整型变量,为自回归的阶数。
R——输出参数,一维实型数组,存放自相关系数。
FAI——输出参数,二维实型数组,存放自回归系数。
6.2.5子程序SUBROUTINE ARP(X,N,M,R,FAI)INTEGER::TAO !落后时间REAL(4),DIMENSION(N)::XREAL(4),DIMENSION(M,M)::FAIREAL(4),DIMENSION(M)::RREAL(4),DIMENSION(M)::S !协方差REAL(4)::S2,A1,A2 !S2:方差, A1,A2:中间变量S=0DO TAO=1,MDO I=1,N-TAOS(TAO)=S(TAO)+X(I)*X(I+TAO)END DOS(TAO)=S(TAO)/(N-TAO)END DOS2=0DO I=1,NS2=S2+X(I)*X(I)END DOS2=S2/NDO TAO=1,MR(TAO)=0DO I=1,N-TAOR(TAO)=R(TAO)+X(I)*X(I+TAO)/S2END DOR(TAO)=R(TAO)/(N-TAO)END DOFAI(1,1)=R(1)FAI(2,2)=(R(2)-R(1)*R(1))/(1-R(1)*R(1))FAI(1,2)=FAI(1,1)-FAI(2,2)*FAI(1,1)DO J=3,MA1=0A2=0DO K=1,J-1A1=A1+FAI(K,J-1)*R(J-K)A2=A2+FAI(K,J-1)*R(K)END DOFAI(J,J)=(R(J)-A1)/(1-A2)DO K=1,J-1FAI(K,J)=FAI(K,J-1)-FAI(J,J)*FAI(J-K,J-1)END DOEND DOEND6.2.6例以某海区的22年的逐月气温为例,计算出自回归系数,并给出自回归方程。
时间序列分析时间序列分析是一种重要的统计学方法,用于研究随时间变化的数据。
它可以帮助我们了解数据的趋势、周期性和季节性,预测未来的变化趋势,并做出相应的决策。
本文将介绍时间序列分析的基本概念、常见的方法和应用领域。
一、时间序列的基本概念时间序列是按时间先后顺序排列的一组观察数据。
它可以是连续的,例如每天的股票价格;也可以是离散的,例如每月的销售量。
时间序列的分析要求数据点之间存在一定的相关性和规律性。
二、时间序列的组成部分时间序列通常由三个主要组成部分构成:趋势、季节性和随机性。
趋势是时间序列在长期内呈现的整体变化趋势;季节性是时间序列在较短的时间内出现的重复周期性变化;随机性是时间序列中无法解释的随机波动。
三、时间序列分析的方法1. 描述性分析描述性分析是对时间序列数据进行可视化和概括的方法。
常用的方法包括绘制折线图、直方图和自相关图等,以帮助我们了解数据的分布和相关性。
2. 平稳性检验平稳性是时间序列分析的基本假设。
平稳序列的统计特性在时间上是不随时间变化的,包括均值、方差和自相关性等。
常见的平稳性检验方法有单位根检验和ADF检验。
3. 建立模型建立时间序列模型是对数据进行预测和分析的关键步骤。
常用的时间序列模型有ARIMA模型、AR模型和MA模型等。
通过对历史数据的拟合,我们可以得到模型的参数,从而进行未来值的预测。
4. 模型诊断与改进在建立模型之后,需要对其进行诊断和改进。
常见的诊断方法包括残差检验、模型稳定性检验和模型比较等。
根据诊断结果,我们可以对模型进行改进,提高预测的准确性。
四、时间序列分析的应用领域时间序列分析在许多领域都有广泛的应用,例如经济学、金融学、气象学和市场营销等。
在经济学中,时间序列分析可以用于预测经济增长趋势和通货膨胀率。
在金融学中,它可以帮助我们预测股票价格和利率走势。
在气象学中,时间序列分析可以用于预测天气变化和自然灾害。
在市场营销中,它可以帮助我们预测销售量和用户行为。
时间序列分析⼀:单变量的传统时间序列分析⼀.基本概述Y t = f(T t , S t ,C t ,I t )T t , S t ,C t ,I t 分别表⽰时间序列t时刻的趋势成分,季节成分,循环成分,误差和⽆规则成分。
趋势模型:当时间序列呈现某种上升或下降的趋势,并且⽆明显的季节波动时,可以以时间t综合代替所有影响因素。
季节模型:⼆.趋势模型1.模型形式直线趋势模型⾮线性趋势模型有增长上限的曲线趋势模型2.模型选择图形识别法阶差法3.参数估计线性最⼩⼆乘法:直线模型及各类能够线性化的趋势模型三和值法:⽆法线性化的⼏类模型,粗略估计4.模型分析与评价模型的检验:采⽤最⼩⼆乘法估计,必须按照回归分析中的要求对模型进⾏检验。
显著性检验、回归⽅程显著性检验、残差独⽴性检验、拟合优度检验。
模型分析评价对历史数据的拟合:直接判断法、误差分析法对未来趋势的表现:模型对近期趋势的反应、试预测三.季节模型1.季节性⽔平模型模型形式:Y t = Y * f i (Y为时序的平均⽔平)f i = 同⽉(或同季)平均数 / 已知年份⽉(或季)总平均数适⽤条件:该模型适⽤于⽆明显的趋势变动,主要受季节变动和不规则变动影响的时间序列。
建⽴该模型⼀般需要3-5年分⽉(或季)的数据。
2.季节性交乘趋向模型模型形式:Y t = (a + bt)* f i (a + bt是时间序列趋势变动部分,可以是线性的,也可以是⾮线性的)f i = (F i + F i+T + ... + F i+(m-1)T)/ m (F是各期实际的季节指数,由当期实际值除以趋势值得到;T是季节周期的长度,⽉度数据是12;m是季节周期的个数,即年份数)适⽤条件:该模型适⽤于既有季节变动⼜有趋势变动,且季节波动幅度随趋势增加⽽加⼤的时间序列。
利⽤该模型预测,⾄少需要5年的分⽉(或季)数据。
3.季节性迭加趋向模型模型形式:Y t = (a + bt)+ d i (a + bt是时间序列趋势变动部分,可以是线性的,也可以是⾮线性的)d i = (D i + D i+T + ... + D i+(m-1)T)/ m (D是各期实际的季节增量,由当期实际值减去趋势值得到;T是季节周期的长度,⽉度数据是12;m是季节周期的个数,即年份数)适⽤条件:该模型适⽤于既有季节变动⼜有趋势变动,且季节波动幅度基本不随趋势的增加⽽变化的时间序列。
时间序列分析课后习题答案(上机第二章 2、328330332334336338340342(1时序图如上:序列具有明显的趋势和周期性,该序列非平稳。
(2样本自相关系数:(3该样本自相关图上,自相关系数衰减为 0的速度缓慢,且有正弦波状,显示序列具有趋势和周期,非平稳。
3、 (1样本自相关系数:(2序列平稳。
(3因 Q 统计量对应的概率均大于 0.05,故接受该序列为白噪声的假设,即序列为村随机序列。
5、 (1时序图和样本自相关图:50100150200250300350(2序列具有明显的周期性,非平稳。
(3序列的 Q 统计量对应的概率均小于 0.05,该序列是非白噪声的。
6、 (1根据样本相关图可知:该序列是非平稳,非白噪声的。
(2对该序列进行差分运算:1--=t t t x x y {t y }的样本相关图:该序列平稳,非白噪声。
第三章:17、 (1结论:序列平稳,非白噪声。
(2 拟合 MA(2 model:VariableCoefficient Std. Error t-Statistic Prob. C 80.40568 4.630308 17.36508 0.0000 MA(1 0.336783 0.114610 2.938519 0.0047 R-squared0.171979 Mean dependent var 80.29524 Adjusted R-squared 0.144379 S.D. dependent var 23.71981 S.E. of regression 21.94078 Akaike info criterion 9.061019 Sum squared resid 28883.87 Schwarz criterion 9.163073 Log likelihood -282.4221 F-statistic 6.230976 Durbin-Watson stat 2.072640 Prob(F-statistic 0.003477Residual tests(3拟合 AR(2model:C 79.71956 5.442613 14.64729 0.0000 AR(10.2586240.1288102.0077940.0493R-squared0.154672 Mean dependent var 79.50492 Adjusted R-squared 0.125522 S.D. dependent var 23.35053 S.E. of regression 21.83590 Akaike info criterion 9.052918 Sum squared resid 27654.79 Schwarz criterion 9.156731 Log likelihood -273.1140 F-statistic 5.306195 Durbin-Watson stat 1.939572 Prob(F-statistic 0.007651Inverted AR Roots.62-.36Residual tests:(4 拟合 ARMA (2, 1 model :Variable Coefficient Std. Error t-Statistic Prob. C 79.17503 4.082908 19.39183 0.0000 AR(1 -0.586834 0.118000 -4.973170 0.0000 AR(2 0.376120 0.082091 4.581756 0.0000 MA(11.1139990.09712211.470120.0000R-squared0.338419 Mean dependent var 79.50492 Adjusted R-squared 0.303599 S.D. dependent var 23.35053 S.E. of regression 19.48617 Akaike info criterion 8.840611 Sum squared resid 21643.51 Schwarz criterion 8.979029 Log likelihood-265.6386 F-statistic9.719104Inverted AR Roots .39-.97 Inverted MA Roots-1.11Estimated MA process is noninvertible残差检验:(5拟合 ARMA (1, (2 model:Variable Coefficient Std. Error t-Statistic Prob. C 79.52100 4.621910 17.205230.0000 AR(1 0.270506 0.125606 2.153603 0.0354 R-squared0.157273 Mean dependent var 79.55161 Adjusted R-squared 0.128706 S.D. dependent var 23.16126 S.E. of regression 21.61946 Akaike info criterion 9.032242 Sum squared resid 27576.65 Schwarz criterion 9.135167 Log likelihood -276.9995 F-statistic 5.505386 Durbin-Watson stat 1.981887 Prob(F-statistic 0.006423Inverted AR Roots.27残差检验:(6优化根据 SC 准则,最优模型为 ARMA(2,1模型。
一.时间序列分析的相关概念♦随机过程:若对于每一个特定的t ∈T ,X(t)是一个随机变量,则称这一族无穷多个随机变量{X(t),t ∈T}是一个随机过程。
♦纯随机过程:随机过程X(t)(t=1,2,…),如果是由一个不相关的随机变量序列构成的,即对于所有s ≠t ,随机变量X t 和X s 的协方差均为零,则称其为纯随机过程。
♦♦♦♦独立增量随机过程:任意两相邻时刻上的随机变量之差是相互独立的,则称其为独立增量随机过程。
二阶矩过程:若随机过程{X(t),t ∈T},对每个t ∈T ,X(t)的均值和方差存在,则称其为二阶矩过程。
正态过程:若{X(t)}的有限维分布都是正态分布,则称{X(t)}为正态随机过程。
平稳过程(严平稳):如果对于时间t 的任意n 个值t 1,t 2,…,t n 和任意实数 ,随机过程X(t)的n 维分布函数满足关系式F n (x 1,x 2,…,x n ; t 1,t 2,…,t n ) = F n (x 1,x 2,…,x n ; t 1+ε,t 2+ε,…,t n+ε),则称X(t)为平稳过程。
即是统计特性不随时间的平移而变化的过程。
♦宽平稳:若随机过程{X(t),t ∈T}的均值和协方差存在,且满足①EX t ∈a,∀t ∈T ;②E[X t+τ-a][X t -a]=R(τ),∀t,t+τ∈T ,则称{X(t),t ∈T}为宽平稳随机过程,R(τ)为X(t)的协方差函数。
♦非平稳随机过程:不具有平稳性的过程就是非平稳过程。
即序列均值或协方差与时间有关时,就可以认为是非平稳的。
♦♦自相关:指时间序列观察资料互相之间的依存关系。
动态性(记忆性):指系统现在的行为与其历史行为的相关性。
如果某输入对系统后继n 个时刻的行为都有影响,就说该系统具有n 阶动态性。
二.刻画时间序列统计特性的各种数字特征的定义、性质等♦均值函数其中,F t (x)为随机序列X t 的分布密度函数。
时间序列分析法时间序列分析是一种广泛应用于统计学和经济学领域的方法,它专门用于处理具有时间依赖性的数据。
时间序列数据是按时间顺序排列的一组观测值,例如股票价格、气温变化、经济指标等。
时间序列分析的目标是从历史数据中提取模式、趋势和周期以及预测未来的数据走势。
时间序列分析包括了多种方法和技术,下面将介绍其中几种常用的方法:1. 均值模型均值模型是最简单的时间序列模型之一,它假设时间序列的未来值将等于过去几期的平均值。
均值模型最常用的是移动平均模型(MA)和指数平滑模型(ES)。
移动平均模型根据过去几期的观测值对未来值进行预测,而指数平滑模型则给予较大权重给近期的观测值。
2. 趋势分析趋势分析用于识别时间序列中的长期趋势。
常用的趋势分析方法包括线性趋势分析、多项式回归分析以及指数平滑趋势分析。
这些方法主要是通过拟合一个数学模型来描述时间序列的趋势,然后根据模型对未来走势进行预测。
3. 季节性分析季节性分析用于识别和预测时间序列中的季节性模式。
常用的季节性分析方法包括季节性平均法、回归分析以及季节性指数平滑法。
这些方法可以通过拟合一个季节性模型来描述时间序列的季节性变动,并进行未来的预测。
4. 自回归移动平均模型(ARMA)ARMA模型是一种将自回归模型(AR)和移动平均模型(MA)结合起来的时间序列模型。
AR模型通过过去的观测值对未来值进行预测,而MA模型则根据过去的误差对未来值进行预测。
ARMA模型可以通过估计AR和MA参数来对时间序列进行预测。
5. 自回归积分移动平均模型(ARIMA)ARIMA模型是一种将自回归模型(AR)和移动平均模型(MA)与差分运算结合起来的时间序列模型。
ARIMA模型可以通过求解差分参数来对非平稳时间序列进行预测。
差分运算可以减少时间序列的趋势和季节性,使其更具平稳性。
以上是常用的时间序列分析方法,每种方法都有其适用性和局限性。
在实际应用中,根据具体情况选择合适的方法进行分析和预测。