运筹学建模.ppt
- 格式:ppt
- 大小:197.51 KB
- 文档页数:52
1第二章、运筹学建模方法综述2定义问题和收集数据 数学建模模型求解 检验模型 准备应用模型 实施3运筹学研究小组首先要做的是研究相关系统,并使被研究的问题得到明确的说明。
包括确定合适的目标、实际的限制条件、研究领域和组织的其他领域间的相互关系、可选择的行动路线、制定决策的时间限制等。
2.1定义问题和收集数据4针对美国企业的大量调查发现,管理层趋向于采取满意利润目标和其他目标相结合的方式代替长期收益最大化。
典型地,其他目标包括维持稳定收益、增加市场份额、实现产品多样化、维持稳定价格、提高员工士气、维持企业的家族控制以及提高企业声望。
另外,存在包含与盈利动机不相吻合的社会责任的其他考虑。
2.1定义问题和收集数据5商业企业一般涉及以下五个方面所用者(股东等),追求盈利员工,期望合理工资水平上的稳定雇佣 客户,期望以合理的价格获得可靠的产品 供应商,期望声誉以及产品的合理出售价格政府以及国家,期望公正的税收和考虑国家利益6例:在为旧金山警察局所开展的运筹学研究中,建立了一个优化调度和配置巡警的计算机系统。
这个新系统每年为警察局节约1100万美元,同时增加了300万美元的交通管理收入,并且将反映时间减少了20%。
在评估该项研究的合适目标时,确定了三个基本目标:(1). 维持高水平的居民安全(2). 维持高水平的警员士气(3). 最小化运作成本7收集数据通常,研究小组会花费大量的时间收集问题的数据。
大部分数据既用于获得对问题的充分理解,又为下一阶段研究建立的数学模型提供所需的输入。
82.2 数学建模商业问题的数学模型,是描述问题实质的方程和相关数学表达式的系统。
n 个相关的可量化的决策,称为决策变量(decision variables)(x 1, x 2, …x n )绩效(如收益)的合理度量被表示成这些决策变量的数学函数(例如,P =3x 1+2x 2+…+5x n ),这个函数称为目标函数(objective function)9 任何对决策变量值的约束也能够被数学表示,通常是通过等式或不等式(例如:x 1+3x 1x 2+2x 2≤10),这些用于限制的数学表达式称为约束(constraints)。
产品生产规划某医院为病人配制营养餐要使用到两种食品A 和B ,每种食品A 含蛋白质50g ,钙400mg , 热量1000单位,价值14元;食品B 含蛋白质60g ,钙200mg ,热量800单位,价值8元.若病人每天需从食物中获取蛋白质,钙及热量分别为55g ,800mg 和3000单位,问如何选购食品才能在满足营养要求条件下使花费最小?试组建线性规划模型并求解后回答:(1)问题的最优方案及最优值分别是甚麽?最优方案是否有选择余地? (2)各种营养要求的满足情况怎样?若限制蛋白质摄入量不超过100单位,会出现甚麽问题?解:本题属于简单的线性规划模型的建立与求解问题,并要求作出一点模型分析工作.按要求,先来建立模型,根据题设,设购买两种食品分别为21,x x (kg ),则有总花费数额函数21814x x z +=,自然我们希望求出这样的21,x x 取值,使得函数z 取最小值.可以写为min 21814x x z +=. 又根据营养最低要求,应有蛋白质需求条件: ,55605021≥+x x 钙的需求条件: 40080020021≥+x x , 热量的需求条件: ,3000800100021≥+x x 非负性条件: .0≥j x将上述条件合在一起,即可获得本问题的线性规划模型如下:m i n 21814x x z+= ⎪⎪⎩⎪⎪⎨⎧..t s ,0,30008001000,800200400,556050212121≥≥+≥+≥+j x x x x x x x利用图解法易于得到其最优解为),310,31(*=X 即食品A 购买31(kg ),B 购买310(kg ),最低花费=*z 394元.由此可回答所提问题:(1)最优解与最优目标值如上所述,最优方案无选择余地,因为最优解点是在后两个约束条件直线的交点上,而不是在可行域的某条边界线段上.(2)钙和热量需求得到满足(最低量),蛋白质需求超最低标准3485个单位.以上结论是将最优解代入各个约束条件得到的.若限制蛋白质摄入量不超过100单位,则第一个约束条件应修改为,55605010021≥+≥x x在原来的求解图上加上条件,100605021≤+x x 则可见可行域不存在,故无解.2.某工厂生产两种产品A 、B 分两班生产,每周生产总时间为80小时,两种产品的预测销售量、生产率和赢利如下表(1)充分利用现有能力,避免设备闲置; (2)周加班时间限制在10小时以内;(3)两种产品周生产品量应满足预测销售,满足程度的权重之比等于它们单位利润之比;(4)尽量减少加班时间. 解: (1)建立模型设:①每班上班时间为8小时,在上班时间内只能生产一种产品; ②周末加班时间内生产哪种产品不限; ③生产A 产品用x 班,生产B 产品用y 班,周加班时生产A 产品用x 1小时,生产B 产品用y 1小时.则有⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥≤+=++≤+≤+=+且为整数0,,,101:2148:987084581011111111y x y x y x x x y y x x y y y x(2)求解现在求满足(1)中第2,3个方程可看出:8≤x ,5≥y ; 将(1)中的第1个方程代入第4个方程得:1179720128y x y -+= 现在就是在满足5≤y ,1011≤+y x 条件下,使上式两端的取值尽量接近.显然5=y ,01=x ,101=y因此 5=x制定方案为,生产A ,B 两种产品所占总时间各一半,周加班10小时全用于生产产品B .运输规划问题现要从两个仓库(发点)运送库存原棉来满足三个纺织厂(收点)的需要,数据如下表,试问在保证各纺织厂的需求都得到满足的条件下应采取哪个运输方案,才能使总运费达到最小?(运价(元/吨)如下表)解:题意即要确定从i 号仓库运到j 号工厂的原棉数量。