2014年上海市高中数学竞赛(新知杯)试卷
- 格式:pdf
- 大小:1.57 MB
- 文档页数:3
2014上海市初三数学竞赛试卷(2014年12月7日 上午9:00—11:00)解答本试卷可以使用科学计算器一、填空题(每小题10分,共80分)1.化简:3223222a a b ab b a ab b--+=-+ 2. 若y xa x z+=,z y b y x +=,x z c z y +=,则()()()b c a c a b a b c +-+-+-的值为3. 已知ABCD 是等腰梯形, ABIICD ,AB=6,CD=16,△ACE 是直角三角形,∠AEC=900,CE=BC=AD ,则AE 的长为4. 方程2014xyz xy yz zx x y z ++++++=的非负整数解(x ,y ,z )的组数为5.在三角形ABC 中,∠ABC=440,D 是边BC 上的一点,满足DC=2AB, ∠BAD=240,则∠ACB 的大小为6. 在直角坐标平面xOy 上,由不等式221x y x y ⎧≤⎪≤⎨⎪-≤⎩确定的区域的面积为7. 使得关于x 的方程2221130a x ax a ++-=有两个整数根的所有正实数a 是8. 设20142的所有正约数为d 1,d 2,…,d k ,则12111 (201420142014)k d d d +++=+++二、解答题(第9、10 题,每题15 分,第11、12 题,每题20 分,共70 分) 9. 解关于x 的方程:(1)xx x x x a x x+--=++10.如图,在凸四边形ABCD 中,已知∠ABC +∠CDA =3000,AB CD BC AD ⨯=⨯, 求证:AB CD AC BD ⨯=⨯11. 已知边长为a 的正方形ABCD 的内部有n 个圆,每个圆的面积都不大于1,且与正方形ABCD 的边平行的直线都至多与一个圆相交,求证:这n 个圆的面积之和小于a 。
12. (1)证明:可以将全体正整数分成3组A 1,A 2,A 3,使得对每一个整数15n ≥,在A 1,A 2,A 3的每一组中都能取出两个不同的数,它们的和为n(2)证明:将全体正整数任意分成4组A 1,A 2,A 3,A 4,则存在整数15n ≥,在A 1,A 2,A 3 ,A 4中一定有一组A i ,在A i 中不存在两个不同的数,它们的和为n2014上海市初三数学竞赛试卷解答(2014年12月7日上午9:00—11:00)解答本试卷可以使用科学计算器一、填空题(每小题10分,共80分)1.化简:3223222a ab ab ba ab b--+= -+2. 若y xax z+=,z yby x+=,x zcz y+=,则()()()b c a c a b a b c+-+-+-的值为3. 已知ABCD是等腰梯形,ABIICD,AB=6,CD=16,△ACE是直角三角形,∠AEC=900,CE=BC=AD,则AE的长为4. 方程2014xyz xy yz zx x y z ++++++=的非负整数解(x ,y ,z )的组数为5.在三角形ABC 中,∠ABC=440,D 是边BC 上的一点,满足DC=2AB, ∠BAD=240,则∠ACB 的大小为6. 在直角坐标平面xOy 上,由不等式221x y x y ⎧≤⎪≤⎨⎪-≤⎩确定的区域的面积为7. 使得关于x 的方程2221130a x ax a ++-=有两个整数根的所有正实数a 是8. 设20142的所有正约数为d 1,d 2,…,d k ,则12111 (201420142014)k d d d +++=+++二、解答题(第9、10 题,每题15 分,第11、12 题,每题20 分,共70 分) 9. 解关于x 的方程:(1)xx x x x a x x+--=++⨯=⨯, 10.如图,在凸四边形ABCD中,已知∠ABC+∠CDA =3000,AB CD BC AD⨯=⨯求证:AB CD AC BD11. 已知边长为a的正方形ABCD的内部有n个圆,每个圆的面积都不大于1,且与正方形ABCD的边平行的直线都至多与一个圆相交,求证:这n个圆的面积之和小于a。
新 知 杯 模 拟 试 题一、填空题(第1-5小题每题8分,第6-10题每题10分,共90分)1. 对于任意实数b a ,,定义b a *=b b a a ++)(,已知5.285.2=*a ,则实数a 的值是_________。
2. 在三角形ABC 中,,其中,,a CA a BC b AB 2122==-=b a ,是大于1的整数,则=-a b 。
3. 一个平行四边形可以被分成92个边长为1的正三角形,它的周长可能是 。
4. 已知关于x 的方程02)2()3(2234=++++++k x k x k x x 有实根,并且所有实根的乘积为-2,则所有实根的平方和为 。
5. 如图,直角三角形ABC 中1=AC ,2=BC ,P 为斜边AB 上一动点。
BC PE ⊥,CA PF ⊥,则线段EF 长的最小值为 。
6. 设b a ,是方程01682=++x x 的两个根,d c ,是方程01862=+-x x 的两个根,则()()()()d b d a c b c a --++的值为 。
7. 在平面直角坐标系中有两点()1,1-P ,()2,2Q ,函数1-=kx y 的图像与线段PQ 延长线相交(交点不包括Q ),则实数k 的取值范围是 。
8. 方程2009=xyz 的所有整数解有 组。
9. 如图,四边形ABCD 中CD BC AB ==,78=∠ABC ,162=∠BCD 。
设BC AD ,延长线交于E ,则=∠AEB _________________.EEC10. 如图,在直角梯形ABCD 中,90=∠=∠BCD ABC ,10==BC AB ,点M 在BC上,使得ADM ∆是正三角形,则ABM ∆与DCM ∆的面积和是________________。
二、(本题15分)如图,ABC ∆中,90=∠ACB ,点D 在CA 上,使得,,31==AD CD 并且,BAC BDC ∠=∠3求BC 的长。
ODCBA2012上海市高中数学竞赛(新知杯)试卷【说明】解答本试卷不得使用计算器一、填空题(本题满分60分,前4题每小题7分,后4小题每小题8分)1.如图,正六边形111111A B C D E F 的边长为1,它的6条对角线又围成一个正六边 形222222A B C D E F ,如此继续下去,则所有这些六边形的面积和是 .2.已知正整数1210,,,a a a 满足:3,1102>≤<≤ji a i j a ,则10a 的最小可能值是 . 3.若17tan tan tan 6αβγ++=,4cot cot cot 5αβγ++=-,cot cot αβγβcot cot +αγcot cot +517-=,则()tan αβγ++= .4.已知关于x 的方程()()lg 2lg 1=+kx x 仅有一个实数解,则实数k 的取值范围是 .5.如图,∆AEF 是边长为x 的正方形ABCD 的内接三角形,已知90∠=︒AEF , ,,==>AE a EF b a b ,则=x . 6.方程1233213+⋅-+=mnn m 的非负整数解(),=m n .7.一个口袋里有5个大小一样的小球,其中两个是红色的,两个是白色的,一个是黑色的,依次从中摸出5个小球,相邻两个小球的颜色均不相同的概率是 .(用数字作答) 8.数列{}n a 定义如下:()1221211,2,,1,2,22+++===-=++n n n n na a a a a n n n .若201122012>+m a ,则正整数m 的最小值为 . 二、解答题 9.(本题满分14分)如图,在平行四边形ABCD 中,AB x =,1BC =, 对角线AC 与BD 的夹角45BOC ∠=︒,记直线AB 与CD 的距离为()h x . 求()h x 的表达式,并写出x 的取值范围.10.(本题满分14分)给定实数1a >,求函数(sin )(4sin )()1sin a x x f x x++=+的最小值.11.(本题满分16分)正实数,,x y z 满足94xyz xy yz zx +++=; 求证:(1)43xy yz zx ++≥;(2)2x y z ++≥.12.(本题满分16分)给定整数(3)n ≥,记()f n 为集合{}1,2,,21n -的满足如下两个条件的子集A 的元素个数的最小值:①1,21nA A ∈-∈;②A 中的元素(除1外)均为A 中的另两个(可以相同)元素的和.(1)求(3)f 的值;(2)求证:(100)108f ≤.2012上海市高中数学竞赛(新知杯)参考答案12、923、114、(){},04-∞ 52 6、()()3,0,2,2 7、25 8、40259.解 由平行四边形对角线平方和等于四条边的平方和得2222211()(1)22OB OC AB BC x +=+=+. ① …………………(2分)在△OBC 中,由余弦定理2222cos BC OB OC OB OC BOC =+-⋅∠,所以221OB OC OC +⋅=, ②由①,②得2OB OC ⋅= ③ …………………(5分)所以:144sin 2ABCD OBC S S OB OC BOC ∆==⋅⋅∠OC =⋅212x -=,故:()AB h x ⋅212x -=, 所以 :21()2x h x x -=. …………………(10分)由③可得,210x ->,故1x >.因为222OB OC OB OC +≥⋅,结合②,③可得:221(1)22x +≥解得(结合1x >)11x <≤.综上所述,21()2x h x x-=,11x <≤. …………………(14分)10.解 (sin )(4sin )3(1)()1sin 21sin 1sin a x x a f x x a x x ++-==++++++.当71a <≤时,02≤,此时:3(1)()1sin 221sin a f x x a a x-=++++≥++,且当(]()sin 11,1x =∈-时不等式等号成立,故min ()2f x a =+. ………(6分)当73a >2>,此时“耐克”函数3(1)a y t t-=+在(内是递减,故此时min 3(1)5(1)()(1)2222a a f x f a -+==+++=.综上所述,min 72,1;3()5(1)7,.23a a f x a a ⎧+<≤⎪⎪=⎨+⎪>⎪⎩ …………………(14分) 11.证 (1)记t =33223xy yz zx xyz ++⎛⎫=≤ ⎪⎝⎭.…………………(4分)于是 324993xyz xy yz zx t t =+++≤+, 所以 ()()2323320t t t -++≥,而23320t t ++>,所以320t -≥,即23t ≥,从而43xy yz zx ++≥. …………………(10分) (2)又因为:2()3()x y z xy yz zx ++≥++,所以 2()4x y z ++≥,故 2x y z ++≥. …………………(16分) 12.解 (1)设集合{}31,2,,21A ⊆-,且A 满足(a ),(b ).则1,7A A ∈∈.由于{}()1,,72,3,,6m m =不满足(b ),故3A >.又 {}{}{}{}{}{}{}1,2,3,7,1,2,4,7,1,2,5,7,1,2,6,7,1,3,4,7,1,3,5,7,1,3,6,7, {}{}{}1,4,5,7,1,4,6,7,1,5,6,7都不满足 (b ),故4A >.而集合{}1,2,4,6,7满足(a ),(b ),所以(3)5f =. …………………(6分) (2)首先证明:(1)()2,3,4,f n f n n +≤+=. ①事实上,若{}1,2,,21n A ⊆-,满足(a ),(b ),且A 的元素个数为()f n . 令{}1122,21n n B A ++=--,由于12221n n +->-,故()2B f n =+.又111222(21),211(22)n n n n +++-=--=+-,所以,集合{}11,2,,21n B +⊆-,且B 满足(a ),(b ).从而:(1)()2f n B f n +≤=+. …………………(10分)其次证明: (2)()1,3,4,f n f n n n ≤++=. ②事实上,设{}1,2,,21n A ⊆-满足(a ),(b ),且A 的元素个数为()f n . 令{}222(21),2(21),,2(21),21nn n n n B A=----,由于 222(21)2(21)2(21)21nnn n n -<-<<-<-,所以{}21,2,,21n B ⊆-,且()1B f n n =++.而12(21)2(21)2(21),0,1,,1k nknknk n +-=-+-=-, 2212(21)(21)nnnn-=-+-,从而B 满足(a ),(b ),于是:(2)()1f n B f n n ≤=++. …………………(14分)由①,②得 (21)()3f n f n n +≤++. ③反复利用②,③可得(100)(50)501(25)25151f f f ≤++≤+++(12)12377(6)6192f f ≤+++≤+++(3)3199108f ≤+++=. …………………(16分)。
2014上海市初三数学竞赛试卷(2014年12月7日上午9:00—11:00)解答本试卷可以使用科学计算器一、填空题(每小题10分,共80分)1.化简:3223222a ab ab ba ab b--+=-+2. 若y xax z+=,z yby x+=,x zcz y+=,则()()()b c a c a b a b c+-+-+-的值为3. 已知ABCD是等腰梯形,ABIICD,AB=6,CD=16,△ACE是直角三角形,∠AEC=900,CE=BC=AD,则AE的长为4. 方程2014xyz xy yz zx x y z++++++=的非负整数解(x,y,z)的组数为5.在三角形ABC中,∠ABC=440,D是边BC上的一点,满足DC=2AB,∠BAD=240,则∠ACB 的大小为6. 在直角坐标平面xOy上,由不等式221xyx y⎧≤⎪≤⎨⎪-≤⎩确定的区域的面积为7. 使得关于x的方程2221130a x ax a++-=有两个整数根的所有正实数a是8. 设20142的所有正约数为d1,d2,…,d k,则12111...201420142014kd d d+++=+++二、解答题(第9、10 题,每题15 分,第11、12 题,每题20 分,共70 分)9. 解关于x 的方程:(1)x x x x x a x x+--=++10.如图,在凸四边形ABCD 中,已知∠ABC +∠CDA =3000,AB CD BC AD ⨯=⨯, 求证:AB CD AC BD ⨯=⨯11. 已知边长为a 的正方形ABCD 的内部有n 个圆,每个圆的面积都不大于1,且与正方形ABCD 的边平行的直线都至多与一个圆相交,求证:这n 个圆的面积之和小于a 。
12. (1)证明:可以将全体正整数分成3组A 1,A 2,A 3,使得对每一个整数15n ≥,在A 1,A 2,A 3的每一组中都能取出两个不同的数,它们的和为n(2)证明:将全体正整数任意分成4组A 1,A 2,A 3,A 4,则存在整数15n ≥,在A 1,A 2,A 3 ,A 4中一定有一组A i ,在A i 中不存在两个不同的数,它们的和为n。
2012年(新知杯)上海市初中数学竞赛试卷解答本试卷可以使用科学计算器一、填空题(每题10分,共80分)1. 已知的边上的高为,与边平行的两条直线将的面积三等分,则直线与之间的距离为_____________。
2. 同时投掷两颗骰子,表示两颗骰子朝上一面的点数之和为的概率,则的值为______________。
3. 在平面直角坐标系中,已知点(,),点在直线上,使得是等腰三角形,则点的坐标是____________________。
4. 在矩形中,。
点分别在上,使得。
是矩形内部的一点,若四边形的面积为,则四边形的面积等于_______________。
5. 使得是素数的整数共有___________个。
6. 平面上一动点到长为的线段所在直线的距离为,当取到最小值时,_____________。
7. 已知一个梯形的上底、高、下底恰好是三个连续的正整数,且这三个数使得多项式(是常数)的值也恰好是按同样顺序的三个连续正整数,则这个梯形的面积为________________。
8. 将所有除以余和除以余的正整数从小到大排成一列,设表示这数列的前项的和,则___________。
(这里表示不超过实数的最大整数。
)二、解答题(第9,10题,每题15分,第11,12题,每题20分,共70分)9. 如图,是正方形内一点,过点分别作的垂线,垂足分别为。
已知,求证:或者,或者。
10. 解方程组。
11. 给定正实数,对任意一个正整数,记,这里,表示不超过实数的最大整数。
(1)若,求的取值范围;(2)求证:。
12. 证明:在任意个互不相同的实数中,一定存在两个数,满足2011年(新知杯)上海市初中数学竞赛试卷一、 填空题(每题10分,共80分)1. 已知关于x 的两个方程: 032=+-m x x ①, 02=++m x x ②,其中0≠m 。
若方程①中有一个根是方程②的某个根的3倍,则实数m 的值是___________。