大学物理课程教学基本要求
- 格式:docx
- 大小:77.13 KB
- 文档页数:13
非物理类理工学科大学物理课程教学基本要求非物理类专业物理基础课程教学指导分委员会物理学是研究物质的基本结构、基本运动形式、相互作用的自然科学。
它的基本理论渗透在自然科学的各个领域,应用于生产技术的许多部门,是其他自然科学和工程技术的基础。
在人类追求真理、探索未知世界的过程中,物理学展现了一系列科学的世界观和方法论,深刻影响着人类对物质世界的基本认识、人类的思维方式和社会生活,是人类文明发展的基石,在人才的科学素质培养中具有重要的地位。
一、课程的地位、作用和任务以物理学基础为内容的大学物理课程,是高等学校理工科各专业学生一门重要的通识性必修基础课。
该课程所教授的基本概念、基本理论和基本方法是构成学生科学素养的重要组成部分,是一个科学工作者和工程技术人员所必备的。
大学物理课程在为学生系统地打好必要的物理基础,培养学生树立科学的世界观,增强学生分析问题和解决问题的能力,培养学生的探索精神和创新意识等方面,具有其他课程不能替代的重要作用。
通过大学物理课程的教学,应使学生对物理学的基本概念、基本理论和基本方法有比较系统的认识和正确的理解,为进一步学习打下坚实的基础。
在大学物理课程的各个教学环节中,都应在传授知识的同时,注重学生分析问题和解决问题能力的培养,注重学生探索精神和创新意识的培养,努力实现学生知识、能力、素质的协调发展。
二、教学内容基本要求(详见附表)大学物理课程的教学内容分为A、B两类。
其中:A为核心内容,共74条,建议学时数不少于126学时,各校可在此基础上根据实际教学情况对A类内容各部分的学时分配进行调整;B为扩展内容,共51条。
1. 力学(A:7条,建议学时数≥14学时;B:5条) 14+22. 振动和波(A:9条,建议学时数≥14学时;B:4条) 123. 热学(A:10条,建议学时数≥14学时;B:4条) 144. 电磁学(A:20条,建议学时数≥40学时;B:8条) 345. 光学(A:14条,建议学时数≥18学时;B:9条) 126. 狭义相对论力学基础(A:4条,建议学时数≥6学时;B:3条) 67. 量子物理基础(A:10条,建议学时数≥20学时;B:4条) 128. 分子与固体(B:5条)9. 核物理与粒子物理(B:6条)10. 天体物理与宇宙学(B:3条)11. 现代科学与高新技术的物理基础专题(自选专题)三、能力培养基本要求通过大学物理课程教学,应注意培养学生以下能力:1. 独立获取知识的能力——逐步掌握科学的学习方法,阅读并理解相当于大学物理水平的物理类教材、参考书和科技文献,不断地扩展知识面,增强独立思考的能力,更新知识结构;能够写出条理清晰的读书笔记、小结或小论文。
非物理类理工学科大学物理实验课程教学基本要求二、教学内容基本要求大学物理实验应包括普通物理实验(力学、热学、电学、光学实验)和近代物理实验,具体的教学内容基本要求如下:1.掌握测量误差的基本知识,具有正确处理实验数据的基本能力。
(1)测量误差与不确定度的基本概念,能逐步学会用不确定度对直接测量和间接测量的结果进行评估。
(2)处理实验数据的一些常用方法,包括列表法、作图法和最小二乘法等。
随着计算机及其应用技术的普及,应包括用计算机通用软件处理实验数据的基本方法。
2.掌握基本物理量的测量方法。
例如:长度、质量、时间、热量、温度、湿度、压强、压力、电流、电压、电阻、磁感应强度、光强度、折射率、电子电荷、普朗克常量、里德堡常量等常用物理量及物性参数的测量,注意加强数字化测量技术和计算技术在物理实验教学中的应用。
3.了解常用的物理实验方法,并逐步学会使用。
例如:比较法、转换法、放大法、模拟法、补偿法、平衡法和干涉、衍射法,以及在近代科学研究和工程技术中的广泛应用的其他方法。
4.掌握实验室常用仪器的性能,并能够正确使用例如:长度测量仪器、计时仪器、测温仪器、变阻器、电表、交/直流电桥、通用示波器、低频信号发生器、分光仪、光谱仪、常用电源和光源等常用仪器。
各校应根据条件,在物理实验课中逐步引进在当代科学研究与工程技术中广泛应用的现代物理技术,例如,激光技术、传感器技术、微弱信号检测技术、光电子技术、结构分析波谱技术等。
5.掌握常用的实验操作技术。
例如:零位调整、水平/铅直调整、光路的共轴调整、消视差调整、逐次逼近调整、根据给定的电路图正确接线、简单的电路故障检查与排除,以及在近代科学研究与工程技术中广泛应用的仪器的正确调节。
非物理类理工学科大学物理课程教学基本要求
二、教学内容基本要求(详见附表)
A为核心内容,共74条;B为扩展内容,共51条。
1.力学(A:7条,建议学时数≥14学时;B:5条)
2.振动和波(A:9条,建议学时数≥14学时;B:4条)
3.热学(A:10条,建议学时数≥14学时;B:4条)
4.电磁学(A:20条,建议学时数≥40学时;B:8条)
5.光学(A:14条,建议学时数≥18学时;B:9条)
6.狭义相对论力学基础(A:4条,建议学时数≥6学
时;B:3条)
7.量子物理基础(A:10条,建议学时数≥20学时;B:4条)
8.分子与固体(B:5条)
9.核物理与粒子物理(B:6条)
10.天体物理与宇宙学(B:3条)
附表:教学内容基本要求
说明:1. A类内容构成大学物理课程教学内容的基本框架,是核心内容;B类是扩展内容,它们常常是理解现代科学技术进展的基础,讲述这些内容可以使学生对大学物理的基本规律的理解更加深刻和充实。
2.应适当加强近代物理基础知识的教学,近代物理的内容一般不应少于总学时的五分之一。
3.为了拓展学生视野,培养学生的创新意识,夯实学生进一步发展的物理基础,在基本要求的
内容中包含了现代科学与高新技术物理基础专题。
专题内容可用以拓展物理知识面,例如:介观物理、等离子体物理、软凝聚态物理、信息光学、耗散结构理论等;也可以介绍物理学在科学技术应用中的新理论、新知识、新技术,例如:激光、超导、液晶、量子信息、红外辐射与遥感、扫描隧道显微镜、核磁共振、超声等。
理工科类大学物理课程教学基本要求物理学是研究物质的基本结构、基本运动形式、相互作用的自然科学。
它的基本理论渗透在自然科学的各个领域,应用于生产技术的许多部门,是其他自然科学和工程技术的基础。
在人类追求真理、探索未知世界的过程中,物理学展现了一系列科学的世界观和方法论,深刻影响着人类对物质世界的基本认识、人类的思维方式和社会生活,是人类文明发展的基石,在人才的科学素质培养中具有重要的地位。
一、课程的地位、作用和任务以物理学基础为内容的大学物理课程,是高等学校理工科各专业学生一门重要的通识性必修基础课。
该课程所教授的基本概念、基本理论和基本方法是构成学生科学素养的重要组成部分,是一个科学工作者和工程技术人员所必备的。
大学物理课程在为学生系统地打好必要的物理基础,培养学生树立科学的世界观,增强学生分析问题和解决问题的能力,培养学生的探索精神和创新意识等方面,具有其他课程不能替代的重要作用。
通过大学物理课程的教学,应使学生对物理学的基本概念、基本理论和基本方法有比较系统的认识和正确的理解,为进一步学习打下坚实的基础。
在大学物理课程的各个教学环节中,都应在传授知识的同时,注重学生分析问题和解决问题能力的培养,注重学生探索精神和创新意识的培养,努力实现学生知识、能力、素质的协调发展。
二、教学内容基本要求(详见附表)大学物理课程的教学内容分为A、B两类。
其中:A为核心内容,共74条,建议学时数不少于126学时,各校可在此基础上根据实际教学情况对A类内容各部分的学时分配进行调整;B为扩展内容,共51条。
1. 力学(A:7条,建议学时数≥14学时;B:5条)2. 振动和波(A:9条,建议学时数≥14学时;B:4条)3. 热学(A:10条,建议学时数≥14学时;B:4条)4. 电磁学(A:20条,建议学时数≥40学时;B:8条)5. 光学(A:14条,建议学时数≥18学时;B:9条)6. 狭义相对论力学基础(A:4条,建议学时数≥6学时;B:3条)7. 量子物理基础(A:10条,建议学时数≥20学时;B:4条)8. 分子与固体(B:5条)9. 核物理与粒子物理(B:6条)10. 天体物理与宇宙学(B:3条)11. 现代科学与高新技术的物理基础专题(自选专题)三、能力培养基本要求通过大学物理课程教学,应注意培养学生以下能力:1. 独立获取知识的能力——逐步掌握科学的学习方法,阅读并理解相当于大学物理水平的物理类教材、参考书和科技文献,不断地扩展知识面,增强独立思考的能力,更新知识结构;能够写出条理清晰的读书笔记、小结或小论文。
2023年版《理工科类大学物理课程教学基本要求》内容细化
修订解读
贾瑜;王炜
【期刊名称】《物理与工程》
【年(卷),期】2024(34)1
【摘要】本文介绍了对2010年版《理工科类大学物理课程教学基本要求》修订的意义和过程,并对2023年版《理工科类大学物理课程教学基本要求》中修订内容进行了解读。
【总页数】8页(P3-10)
【作者】贾瑜;王炜
【作者单位】郑州大学物理学院;南京大学物理学院和匡亚明学院
【正文语种】中文
【中图分类】G64
【相关文献】
1.各理工科类高校实施大学物理实验课程教学基本要求(2008年版)的必要性
2.深入学习"非物理类理工科大学物理实验课程教学基本要求",构建全面开放的物理实验教学体系
3.大学物理实验课程教学基本要求的指导思想和内容解读
4.深刻领会《非物理类理工科大学物理实验课程教学基本要求》的精神,深化改革,建设精品课程
5.认真学习《非物理类理工科大学物理实验课程教学基本要求》全面提高大学物理实验课程教学质量
因版权原因,仅展示原文概要,查看原文内容请购买。
大学物理实验课程教学基本要求(第四征求意见稿)物理学是研究物质的基本结构、基本运动形式、相互作用及其转化规律的学科。
它的基本理论渗透在自然科学的各个领域,应用于生产技术的许多部门,是自然科学和工程技术的基础。
在人类追求真理、探索未知世界的过程中,物理学展现了一系列唯物主义的哲学观和方法论,深刻影响着人类对物质世界的基本认识、人类的思维方式和社会生活,在人才的科学素质培养中具有重要的地位。
物理学本质上是一门实验科学。
物理实验是科学实验的先驱,体现了大多数科学实验的共性,在实验思想、实验方法以及实验手段等方面是各学科科学实验的基础。
一、课程的地位、作用和任务物理实验课是高等理工科院校对学生进行科学实验基本训练的必修基础课程,是本科生接受系统实验方法和实验技能训练的开端。
物理实验课覆盖面广,具有丰富的实验思想、方法、手段,同时能提供综合性很强的基本实验技能训练,是培养学生科学实验能力、提高科学素质的重要基础。
这在培养学生严谨的治学态度、活跃的创新意识、理论联系实际和适应科技发展的综合应用能力等方面具有其他实践类课程不可替代的作用。
本课程的具体任务是:1、培养学生的基本科学实验技能,提高学生的科学实验基本素质,使学生初步掌握实验科学的思想和方法。
2、培养学生的科学思维和创新意识,使学生掌握实验研究的基本方法,提高学生的分析能力和创新能力。
3、提高学生的科学素养,培养学生理论联系实际和实事求是的科学作风,认真严谨的科学态度,积极主动的探索精神,遵守纪律,团结协作,爱护公共财产的优良品德。
二、教学内容基本要求大学物理实验应包括普通物理实验(力学、热学、电学、光学实验)和近代物理实验,具体的教学内容基本要求如下:1、掌握测量误差的基本知识,具有正确处理实验数据的基本能力。
(1)测量误差与不确定度的基本概念,能逐步学会用不确定度对直接测量和间接测量的结果进行评估。
(2)处理实验数据的一些常用方法,包括列表法、作图法和最小二乘法等。
《大学物理学》课程标准(教学大纲)课程名称:《大学物理学》课程性质:职业能力必修课学分:4分计划学时:160学时适用专业:电气自动化专业选用教材:《大学物理学》1.前沿1.1课程定位大学物理学是生物医学工程专业重要的核心基础课。
定位于为培养创新型人才打好物理基础,以“培养创新型人才”的现代教育理念和新的课程标准。
它是研究物质世界最普通、最基本的运动形式及其规律的科学。
它是自然科学和工程技术的基础。
本课程的教学目的是使学生深入系统地加强物理基础理论、基本知识和基本技能的学习,从而为其它专业课程的学习和将来从事本专业的工作,特别是进一步学习新理论、新技术,不断更新知识奠定必要的基础。
与创新能力。
在教学目标的设置和组织上,与学校建设国际先进的研究型军医大学的定位相匹配,坚持学生为主体,教员为主导的教学理念。
在教学方法上要突出启发式教学,灵活利用讨论式教学、案例式教学、问题式教学等先进的教学方法,运用视频录像、课件、网络课程等多种现代化教学手段,提高学生学习兴趣、调动学生的积极主动性。
1.2设计思路《大学物理学》课程标准是在充分理解总参军训和兵种部印发的《军队院校制定课程标准的基本要求》精神的前提下,结合国家教委工科物理课程教学指导委员会审定通过的《高等工业学校物理课程教学基本要求》以及外校生物医学工程专业的培养目标,并结合我校实际情况以及教研室多年的教学经验,在进一步调查、研究的基础上形成的。
(1)课程标准符合《军队院校制定课程标准的基本要求》精神,体现“创新思维”,“以人为本”,“为军服务”的现代教育观念。
(2)课程标准力求构建我校新的大学物理学课程体系,更新、拓展课程内容和最新研究成果。
不局限于课堂基本理论教学,而是把实验教学、前沿专题讲座、读书报告、课外科研活动等内容纳入课程体系教学中,丰富大学物理学课程的内涵。
(3)课程标准在全面贯彻《军队院校制定课程标准的基本要求》精神下,结合我校学生状况、教学资源等实际,力求使课程达到既有前瞻性、科学性又实事求是。
“大学物理”课程教学要求和计划一绪论(2小时)二力学(21小时)(一)质点运动学(5)基本要求:1正确地应用矢量概念理解质点的运动函数的意义和运动的叠加以及位移、速度和加速度等概念。
2掌握一维变速运动、自由;落体运动及抛射运动的规律。
能利用分离变量法解质点的运动问题。
3正确理解切向加速度和法向加速度的意义,并能正确地计算。
4正确理解和应用伽利略变换。
学时安排:1位矢、速度、加速度(1)2质点运动学的两类问题(2)3 圆周运动和一般曲线运动、相对运动(2)(二)质点动力学(10)基本要求:1理解牛顿运动定律的意义以及惯性系的概念。
2熟练掌握重力、弹性力、摩擦力及万有引力的规律和计算方法。
熟练地应用牛顿定律分析和解答基本力学题目。
3理解惯性力的意义并能利用它来解答简单的力学问题。
4 掌握动量和冲量的概念及动量定理和动量守恒定律。
5 理解质心的概念及质心运动定理。
6掌握质点的角动量的意义,掌握质点的角动量守恒定律。
7掌握功的定义及变力作功的计算方法。
掌握质点动能定理的意义及其应用。
8掌握保守力作功的特点,掌握重力势能、万有引力势能和弹簧的弹性势能的概念和计算方法。
9掌握机械能守恒定律,能与动量守恒定律和角动量守恒定律联系解决简单问题。
学时安排:1牛顿三定律(2)2变力的功、保守力、势能(2)3 动量定理、动量守恒定律(1)4 质心和质心运动定理(1)5功能定理、机械能守恒定律(2)6角动量和角动量守恒定律(1)7 碰撞(1)(三)刚体定轴转动(6)基本要求:1掌握刚体定轴转动的角位移、角速度和角加速度等概念,以及它们与有关线量的联系。
2掌握力对固定转轴的力矩的计算方法。
3掌握转动惯量的意义及计算方法。
4掌握刚体定轴转动定律。
5会计算力矩的功,刚体转动动能,刚体重力势能。
能正确地应用机械能守恒定律。
6能正确理解和技术刚体对固定轴的角动量,并能对含有定轴刚体、质点在内的系统正确得应用角动量守恒定律学时安排:1转动惯量、转动定律(2)2力矩的功、转动动能定理(2)3角动量定理、角动量守恒定律(2)三气体动理论及热力学(15学时)(一)气体动理论基本要求:1理解系统和外界的意义,了解微观描述与宏观描述的不同和联系。
《大学物理课程教学基本要求》在我校实施的几点建议
大学物理课程在我校实施由《大学物理课程教学基本要求》来规范,在贯彻落实这一要求的基础上,我们提出了以下几点建议:
一、坚持基础优先调整,加强物理基础课程教学。
要把大学物理基础课程贯穿整个大学生涯,而不是集中在前几年。
同时,以大学物理实验室设计课程演示、操作和实施为内容的课程,有助于培养学生的实验分析和思维能力。
二、推进教学改革。
应注重培养学生的创新能力,加强物理实验教学,丰富教学内容,并将新的教学方法--微课、网络教学等,灵活运用于物理教学中,不断提高教学效果。
三、重视教师建设。
加强物理教师队伍的建设,不仅要注重教师知识能力和技能要求,还要重视教师专业教学技能,注重培养教师的专业教学素质与能力,激发教师的求知欲望,激发其课堂指导的热情。
四、拓展教学环境。
要为学生搭建一个更为便捷完善的物理教学环境,学校可以配备非常便利的物理实验设备,扩充和更新教学模型,丰富教学手段,使教学内容“有趣”,使物理课程教学更加充满乐趣。
总之,要实施《大学物理课程教学基本要求》,我们需要坚持基础优先调整,推进教学改革,重视教师建设,拓展教学环境,从而体现出大学物理课程的特点和价值观念。
《大学物理》课程教学大纲课程编号:07004212课程名称:大学物理英文名称:University Physics课程类型:公共基础课程要求:必修学时/学分:56/3.5适用专业:软件类本科专业一、课程性质与任务物理学是研究物质基本结构、相互作用和物质最基本最普遍的运动形式及其相互转化规律的科学。
它的基本理论渗透在自然科学的许多领域,应用于生产技术的各个部门,它是自然科学的许多领域和工程技术的理论基础。
大学物理课的任务一方面在于为学生较系统的打好必要的物理基础;另一方面,使学生初步掌握科学的思维方法和提高分析解决问题的能力,对开阔思想、激发探索和创新精神,增强适应能力,提高人才素质起着重要作用。
二、课程与其他课程的联系本课程的先修课程:高等数学。
大学物理课程是高等理工科学校各专业学生一门重要的必修的公共基础课。
通过该课程学习,能为学生学习其他的相关课程奠定所需要的物理基础。
三、课程教学目标1.掌握大学物理中的基本概念、定理和定律,了解各种理想物理模型,对所研究的对象能进行合理的简化,培养学生对终身学习的正确认识,提高学生的自学能力。
2.能运用物理的理论、观点和方法以及矢量、微积分等数学工具分析、计算一般难度的物理问题,并能根据单位、数量级和与已知典型结果的比较,判断结果的合理性,培养学生灵活运用物理分析问题和解决问题的方法和意识,具备较强的物理应用能力。
3.注重物理思想、科学思维方法的传授,着眼于学生能力的培养和物理素质的提高,激发和培养学生的创新思维能力、逻辑推理能力、独立获取知识的能力。
4.通过大学物理的学习,使学生对自然界中物质的最基本最普遍的运动形态及其基本规律有比较系统的认识,培养获取新知识的能力。
5.了解物理在自然科学和工程技术中的应用,以及相关科学互相渗透的关系,为理工科各专业课及其技术基础课打好基础,也为学生将来走向社会从事科学技术工作和科学研究工作打下基础,培养学生具备综合运用物理知识分析和解决实际问题的能力。
大学物理课程教学基本
要求
文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]
非物理类理工学科大学物理课程教学基本要求(正式报告稿)物理学是研究物质的基本结构、基本运动形式、相互作用的自然科学。
它
的基本理论渗透在自然科学的各个领域,应用于生产技术的许多部门,是其他
自然科学和工程技术的基础。
在人类追求真理、探索未知世界的过程中,物理学展现了一系列科学的世
界观和方法论,深刻影响着人类对物质世界的基本认识、人类的思维方式和社
会生活,是人类文明发展的基石,在人才的科学素质培养中具有重要的地位。
一、课程的地位、作用和任务
以物理学基础为内容的大学物理课程,是高等学校理工科各专业学生一门
重要的通识性必修基础课。
该课程所教授的基本概念、基本理论和基本方法是
构成学生科学素养的重要组成部分,是一个科学工作者和工程技术人员所必备
的。
大学物理课程在为学生系统地打好必要的物理基础,培养学生树立科学的
世界观,增强学生分析问题和解决问题的能力,培养学生的探索精神和创新意
识等方面,具有其他课程不能替代的重要作用。
通过大学物理课程的教学,应使学生对物理学的基本概念、基本理论和基
本方法有比较系统的认识和正确的理解,为进一步学习打下坚实的基础。
在大
学物理课程的各个教学环节中,都应在传授知识的同时,注重学生分析问题和
解决问题能力的培养,注重学生探索精神和创新意识的培养,努力实现学生知
识、能力、素质的协调发展。
二、教学内容基本要求(详见附表)
大学物理课程的教学内容分为A、B两类。
其中:A为核心内容,共74条,建议学时数不少于126学时,各校可在此基础上根据实际教学情况对A类内容各部分的学时分配进行调整;B为扩展内容,共51条。
1.力学
(A:7条,建议学时数14学时;B:5条)
2.振动和波
(A:9条,建议学时数14学时;B:4条)
3.热学
(A:10条,建议学时数14学时;B:4条)
4.电磁学
(A:20条,建议学时数40学时;B:8条)
5.光学
(A:14条,建议学时数18学时;B:9条)
6.狭义相对论力学基础
(A:4条,建议学时数6学时;B:3条)
7.量子物理基础
(A:10条,建议学时数20学时;B:4条)
8.分子与固体
(B:5条)
9.核物理与粒子物理
(B:6条)
10.天体物理与宇宙学
(B:3条)
11.现代科学与高新技术的物理基础专题(自选专题)
三、能力培养基本要求
通过大学物理课程教学,应注意培养学生以下能力:
1. 独立获取知识的能力——逐步掌握科学的学习方法,阅读并理解相当于大学
物理水平的物理类教材、参考书和科技文献,不断地扩展知识面,增强独立思考的能力,更新知识结构;能够写出条理清晰的读书笔记、小结或小论文。
2. 科学观察和思维的能力——运用物理学的基本理论和基本观点,通过观
察、分析、综合、演绎、归纳、科学抽象、类比联想、实验等方法培养学生发现问题和提出问题的能力,并对所涉问题有一定深度的理解,判断研究结果的合理性。
3.分析问题和解决问题的能力——根据物理问题的特征、性质以及实际情况,抓住主要矛盾,进行合理的简化,建立相应的物理模型,并用物理语言和基本数学方法进行描述,运用所学的物理理论和研究方法进行分析、研究。
四、素质培养基本要求
通过大学物理课程教学,应注重培养学生以下素质:
1. 求实精神——通过大学物理课程教学,培养学生追求真理的勇气、严谨求实
的科学态度和刻苦钻研的作风。
2. 创新意识——通过学习物理学的研究方法、物理学的发展历史以及物理学家
的成长经历等,引导学生树立科学的世界观,激发学生的求知热情、探索精神、创新欲望,以及敢于向旧观念挑战的精神。
3. 科学美感——引导学生认识物理学所具有的明快简洁、均衡对称、奇异相
对、和谐统一等美学特征,培养学生的科学审美观,使学生学会用美学的观点欣赏和发掘科学的内在规律,逐步增强认识和掌握自然科学规律的自主能力。
五、教学过程基本要求
在大学物理课程的教学过程中,应以培养学生的知识、能力、素质协调发展为目标,认真贯彻以学生为主体、教师为主导的教育理念;应遵循学生的认知规律,注重理论联系实际,激发学习兴趣,引导自主学习,鼓励个性发展;要加强教学方法和手段的研究与改革,努力营造一个有利于培养学生科学素养和创新意识的教学环境。
1.教学方法——采用启发式、讨论式等多种行之有效的教学方法,加强师生之
间、学生之间的交流,引导学生独立思考,强化科学思维的训练。
习题课、讨论课是启迪学生思维,培养学生提出、分析、解决问题能力的重要教学环节,提倡有条件的学校以小班形式进行,并应在教师引导下以讨论、交流为主,学时数应不少于总学时的10%,争取做到不少于15%。
鼓励通过网络资
源、专题讲座、探索性实践、小课题研究等多种方式开展探究式学习,因材施教,激发学生的智力和潜能,调动学生学习的主动性和积极性。
2.教学手段——应发挥好课堂教学主渠道的作用,教学手段应服务于教学目
的,提倡有效利用多媒体技术。
应积极创造条件,充分利用计算机辅助教学、网络教学等现代化教育技术的优势,扩大教学信息量,提高教学质量和效率。
3.演示实验——应充分利用演示实验帮助学生观察物理现象,增加感性知识,
提高学习兴趣。
大学物理课程的主要内容都应有演示实验(实物演示和多媒体仿真演示),其中实物演示实验的数目不应少于40个。
实物演示实验可以采用多种形式进行,如课堂实物演示、开放演示实验室、演示实验走廊等。
提倡建立开放性的物理演示实验室,鼓励和引导学生自己动手观察实验,思考和分析问题,进行定性或半定量验证。
有条件的学校可以通过选修课或适当计算学分等措施保证实现上述目标。
4. 习题与考核——习题与考核是引导学生学习、检查教学效果、保证教学质量
的重要环节,也是体现课程要求规范的重要标志。
习题的选取应注重基本概念,强调基本训练,贴近应用实际,激发学习兴趣。
考核要避免应试教育的倾向,积极探索以素质教育为核心的课程考核模式。
5. 双语教学——在保证教学效果的前提下,有条件的学校可开展物理课程的双
语教学,以提高学生查阅外文资料和科技外语交流的能力。
六、有关说明
1.本教学基本要求适用于各类高等院校的工科专业和理科非物理专业的本科物
理课程,其中A类内容是本科生学习本课程应达到的最低要求。
2.本课程宜从一年级第二学期开始,以确保学生学习本课程具有所需要的数学
基础。
3.本基本要求建议的最低学时数为126学时。
为了体现加强基础的教育思想,
增强学生的发展潜力,各学校应根据人才培养目标和专业特点增加一定数量的B类内容和学时数,例如:对于理科、师范类非物理专业和某些需要加强物理基础的工科专业,其大学物理课程的学时数不应少于144学时。
教育部高等学校非物理类专业物理基础课程教学指导分委员会
004年12月3日
附表:教学内容基本要求
说明:1. 教学内容基本要求分为A、B两类,其中A类共有74条,B类共有51条。
A类内容构成大学物理课程教学内容的基本框架,是核心
内容;B类是扩展内容,它们常常是理解现代科学技术进展的基
础,讲述这些内容可以使学生对大学物理的基本规律的理解更加深刻和充实。
各学校除了保证基本知识结构的系统性、完整性以外,在知识的深度和广度上不应仅满足于A类内容,而应当根据学时范围和授课对象所需基础尽可能多地选择B类内容,必要时还可适当开启新的“知识窗口”,介绍与科学前沿和技术应用发展相关的内容。
由于各学校类型、办学性质和人才培养目标的差异,在充分论证的基础上,一些专业的大学物理教学内容可以在A、B两类内容之间进行小幅调整,但由A类内容调整为B类的比例不应大于15%。
调整的论证资料应由学校存档。
调整后的教学内容通过各校教学大纲加以规范。
2.应适当加强近代物理基础知识的教学,近代物理的内容一般不应少于总学时的五分之一。
3.为了拓展学生视野,培养学生的创新意识,夯实学生进一步发展的
物理基础,在基本要求的内容中包含了现代科学与高新技术物理基础专题。
专题内容可用以拓展物理知识面,例如:介观物理、等离子体物理、软凝聚态物理、信息光学、耗散结构理论等;也可以介绍物理学在科学技术应用中的新理论、新知识、新技术,例如:激光、超导、液晶、量子信息、红外辐射与遥感、扫描隧道显微镜、核磁共振、超声等。
专题内容和学时由各学校自行确定,并应订入课程教学大纲,予以落实。
4.本教学基本要求不涉及教学内容的先后安排和编写教材的章节顺
序。
在实施教学中,要注意各部分内容之间的相互联系和有机衔
接。