反比例函数知识点-反比例函数解析式的特征_0
- 格式:doc
- 大小:19.50 KB
- 文档页数:1
数学反比例函数知识点大全反比例函数知识点反比例函数定义一般地,如果两个变量x、y之间的关系可以表示成y=k/x (k 为常数,k≠0)的形式,那么称y是x的反比例函数。
因为y=k/x 是一个分式,所以自变量X的取值范围是X≠0。
而y=k/x有时也被写成xy=k或y=k·x^(-1)。
反比例函数图像性质反比例函数的图像为双曲线。
1.当k 0时,反比例函数图像经过一,三象限,每一象限内,从左往右,y随x的增大而减小。
2.当k 0时,反比例函数图像经过二,四象限,每一象限内,从左往右,y随x的增大而增大。
反比例函数图像是中心对称图形,对称中心是原点;反比例函数的图像也是轴对称图形,其对称轴为y=x和y=-x;反比例函数图像上的点关于坐标原点对称。
知识点1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为| k |。
2.对于双曲线y= k/x,若在分母上加减任意一个实数m (即y=k/x(x±m)m为常数),就相当于将双曲线图象向左或右平移m 个单位。
(加一个数时向左平移,减一个数时向右平移) 数学反比例函数知识反比例性质1规律:反比函数与一次函数(与正比例函数相交,交点关于原点对称)相交,求线段数量关系时,切记“原点O到两交点的距离是相等的”若给出反比函数解析式,那么最终求得的结果的过程肯定要转化成关于“k”的几何意义。
2规律:一次函数与反比函数相交且两函数解析式都未知,此时一次函数所在直线与交点分别于x轴,y轴做垂线的交点所连接的线段是相互平行的,同时一次函数与反比函数的交点到一次函数与x轴,y轴的交点的距离是相等的。
3规律:题目中给出线段比例和四边形的面积求k问题,利用同底等高三角形面积与高之间的关系,面积与k之间的关系。
求出k(此时不用具体求出点坐标)。
4规律:有中点时利用中点坐标公式,再根据反比函数上任何一点处的几何意义都相同的思想转化出面积问题。
反比例函数知识点1:反比例函数的概念:一.形如y=k/x (k≠0)的函数叫反比例函数。
一般地,如果两个变量x、y之间的关系可以表示成y=k/x或y=kx-1(k为常数,k≠0)的形式,那么称y是x的反比例函数。
二.反比例函数的概念需注意以下几点:(1)k是常数,且k不为零;(2)k/x中分母x的指数为1,如y=k x -2不是反比例函数。
(3)自变量x的取值范围是x≠0一切实数.(4)自变量y的取值范围是y≠0一切实数。
知识点2. 反比例函数的图象及性质一.反比例函数的图像反比例函数y=k/x的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限。
它们关于原点对称、反比例函数的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交。
二.反比例函数的性质:y=k/x(k≠0)的变形形式为xy=k(常数)所以:(1)其图象的位置是:当k﹥0时,x、y同号,图象在第一、三象限;当k﹤0时,x、y异号,图象在第二、四象限。
(2)若点(m,n)在反比例函数y=k/x(k≠0)的图象上,则点(-m,-n)也在此图象上,故反比例函数的图象关于原点对称。
(3)当k﹥0时,在每个象限内,y随x的增大而减小;当k﹤0时,在每个象限内,y随x的增大而增大;知识点3. 反比例函数解析式的确定。
(1)反比例函数关系式的确定方法:待定系数法,由于在反比例函数关系式y=k/x(k≠0)中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。
因此只需给出一组x 、y 的对应值或图象上点的坐标,代入y=k/x(k ≠0)中即可求出k 的值,从而确定反比例函数的关系式。
(2)用待定系数法求反比例函数关系式的一般步骤是:①设所求的反比例函数为:y=k/x(k ≠0); ②根据已知条件,列出含k 的方程; ③解出待定系数k 的值;④把k 值代入函数关系式y=k/x(k ≠0)中。
反比例函数知识点归纳反比例函数是指形如y=k/x的函数,其中k为常数,且x≠0.在解决与自变量指数相关的问题时,需要特别注意系数。
另外,反比例函数也可以写成xy=k的形式,通过这个式子可以迅速求出反比例函数的解析式中的k。
反比例函数的图象与x轴和y轴无交点,因此在用描点法画反比例函数图象时,需要取关于原点对称的点。
反比例函数图象的形状为双曲线,其弯曲度与k的大小有关。
当k越大,曲线越平直;当k越小,曲线越弯曲。
反比例函数的图象关于原点对称,同时也关于直线y=x和y=-x对称。
k的几何意义可以通过双曲线上任意一点P(a,b)来解释,其中k等于矩形PBOA的面积除以三角形PAO和三角形PBO的面积之积。
在研究反比例函数的增减性时,需要将双曲线的两个分支分别讨论,不能一概而论。
反比例函数与一次函数之间有联系,而求函数解析式的方法可以采用待定系数法或根据实际意义列函数解析式。
在解决实际问题时,需要充分利用数形结合的思想。
2.图像和性质对于反比例函数,以下是已知函数的情况:①若它的图像在第二、四象限内,则k为负数。
②若y随x的增大而减小,则k为正数。
对于一次函数y=ax+b的图像经过第一、二、四象限,则函数的图像位于第一、三象限。
如果反比例函数通过点(m,2),则一次函数的图像不会通过点(m,2)。
已知a·b<0,点P(a,b)在反比例函数的图像上,则直线y=x不会通过第三象限。
如果P(2,2)和Q(m,n)是反比例函数图像上的两点,则一次函数y=kx+m的图像经过第一、三、四象限。
已知函数y=k/x和y=kx(k≠0),它们在同一坐标系内的图像大致是反比例函数和正比例函数的图像。
3.函数的增减性①在反比例函数的图像上有两个点A(x1,y1)和B(x2,y2),且x1<x2,则y1y2<0,即y1和y2的符号不同。
②在函数y=ax(a为常数)的图像上有三个点A(x1,y1)、B(x2,y2)和C(x3,y3),且x1<x2<x3,则y1<y2<y3.对于四个函数中的①、②、③、④,其中y随x的增大而减小的函数只有一个,即②。
反比例函数的定义:
(1)判定一个函数为反比例函数的条件:
①所给等式是形如y=k
x或y=kx-1或xy=k的等式;
②比例系数k是常数,且k≠0.
(2)y是x的反比例函数⇔函数解析式为y=k
x或y=kx-1或xy=k (k为常数,k≠0).
求反比例函数的表达式,就是确定反比例函数表达式
y =k
x(k≠0)中常数k的值,它一般需经历:“设→代→求→还原”这四步.
即:(1)设:设出反比例函数表达式y=k
x(k≠0);
(2)代:将所给的数据代入函数表达式;
(3)求:求出k的值;
(4)还原:写出反比例函数的表达式.
要点分析:由于反比例函数的表达式中只有一个待定系数k,因此求反比例函数的表达式只需一组对应值或一个条件即可
反比例函数图象
图象的画法:
(1)反比例函数的图象是双曲线;
(2)画反比例函数的图象要经过“列表、描点、连线”这三个步骤.
对称性:
双曲线既是一个轴对称图形又是一个中心对称图形.
对称轴有两条,分别是直线y=x与直线y=-x;
对称中心是坐标原点,任何一条经过原点的直线只要与双曲线有两个交点,则这两个交点关于原点对称.
反比例函数的图象性质
反比例函数中k的几何性质:
过双曲线y=k
x(k≠0) 上任一点向两坐标轴作垂线所得的矩形面积等于|k|;
过双曲线y=k
x(k≠0) 上任一点向一坐标轴作垂线且与原点连线所得的三角形面积等于
2
1
|k|.。
反比例函数知识点总结归纳反比例函数知识点总结归纳反比例函数的表达式X是自变量,Y是X的函数y=k/x=k·1/xxy=ky=k·x(-1)(即:y等于x的负一次方,此处X必须为一次方)y=kx(k为常数且k≠0,x≠0)假设y=k/nx此时比例系数为:k/n函数式中自变量取值的范围①k≠0;②在一般的情况下,自变量x的'取值范围可以是不等于0的任意实数;③函数y的取值范围也是任意非零实数。
解析式y=k/x其中X是自变量,Y是X的函数,其定义域是不等于0的一实在数y=k/x=k·1/x xy=k y=k·x(-1) y=kx(k为常数(k≠0),x不等于0)反比例函数图象反比例函数的图像属于以原点为对称中心的中心对称的双曲线,反比例函数图像中每一象限的每一支曲线会无限接近X 轴Y轴但不会与坐标轴相交(K≠0)。
反比例函数中k的几何意义是什么?有哪些应用所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。
从而有k的绝对值。
在解有关反比例函数的问题时,假设能灵敏运用反比例函数中k 的几何意义,会给解题带来很多方便。
拓展阅读:进步数学成绩的窍门学习效率之关于难题很多学生喜欢攻克难题的那种乐趣,于是他们拿出那种不到黄河心不死的精神,有时候消耗一节课时间,攻克一道难题,并且很有成就感。
记住:永远不要花一节课时间去攻克一道难题,这是造成学习效率低下的重大原因。
你用一节课攻克一道题,其他题目怎么办,你时间够用吗,更重要的是,你对这道题目,真的收获很大吗。
看完答案,或者听完讲解之后,你必需要花更多的时间来归纳总结:我为何没有解答出这道题,打破口在哪里,我为什么没找到,是哪些【关键词】:^p 汇触发理解题思路,我该如何建立条件反射,以便以后再次看到这些词汇信息,迅速找到相关打破口。
记住,这才是最重要的工作。
归纳总结很重要数学的归纳总结太重要了。
专题14反比例函数【考查题型】【知识要点】知识点一反比例函数的基础反比例函数的概念:一般地,形如=(为常数,≠)的函数称为反比例函数。
【注意】1)反比例函数=的自变量x≠0,故函数图象与x 轴、y 轴无交点。
2)变式xy=k(定值)、1-=kx y 、xky 1=(k≠0)考查题型一反比例函数的定义题型1.(2022·山东潍坊·中考真题)地球周围的大气层阻挡了紫外线和宇宙射线对地球生命的伤害,同时产生一定的大气压,海拔不同,大气压不同,观察图中数据,你发现,正确的是()A .海拔越高,大气压越大B .图中曲线是反比例函数的图象C .海拔为4千米时,大气压约为70千帕D .图中曲线表达了大气压和海拔两个量之间的变化关系题型1-1.(2022·海南·中考真题)若反比例函数(0)ky k x=≠的图象经过点(2,3)-,则它的图象也一定经过的点是()A .(2,3)--B .(3,2)--C .(1,6)-D .(6,1)题型1-2.(2022·湖北宜昌·中考真题)已知经过闭合电路的电流I (单位:A )与电路的电阻R (单位:Ω)是反比例函数关系.根据下表判断a 和b 的大小关系为()/AI 5…a………b…1/R Ω2030405060708090100A .a b >B .a b≥C .a b<D .a b≤题型1-3(2022·黑龙江哈尔滨·中考真题)已知反比例函数6y x=-的图象经过点()4,a ,则a 的值为___________.易错点总结:反比例函数解析式的特征:1)等号左边是函数,等号右边是一个分式。
分子是不为零的常数(也叫做比例系数),分母中含有自变量,且指数为1.2)比例系数≠03)自变量的取值为一切非零实数,函数的取值是一切非零实数。
待定系数法求反比例函数解析式的一般步骤(考点):1)设反比例函数的解析式为=(k 为常数,k≠0);2)把已知的一对x,y 的值带入解析式,得到一个关于待定系数k 的方程;3)解方程求出k 值,并将将k 值代入所设解析式中。
反比例函数知识点总结知识点1 反比例函数的定义一般地,形如xky =(k 为常数,0k ≠)的函数称为反比例函数,它可以从以下几个方面来理解:⑴x 是自变量,y 是x 的反比例函数;⑵自变量x 的取值范围是0x ≠的一切实数,函数值的取值范围是0y ≠; ⑶比例系数0k ≠是反比例函数定义的一个重要组成部分; ⑷反比例函数有三种表达式:①xky =(0k ≠),②1kx y -=(0k ≠), ③k y x =⋅(定值)(0k ≠);⑸函数xk y =(0k ≠)与y kx =(0k ≠)是等价的,所以当y 是x 的反比例函数时,x 也是y 的反比例函数。
(k 为常数,0k ≠)是反比例函数的一部分,当k=0时,xky =,就不是反比例函数了,由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。
知识点2用待定系数法求反比例函数的解析式由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。
知识点3反比例函数的图像与画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x ≠,函数值0y ≠,所以它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。
再作反比例函数的图像时应注意以下几点: ①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线; ④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。
知识点4反比例函数的性质☆关于反比例函数的性质,主要研究它的图像的位置与函数值的增减情况,如下表:反比例函数xky =(0k ≠)k 的符号0k > 0k <图像性质①x 的取值范围是0x ≠,y 的取值范围是0y ≠②当0k >时,函数图像的两个分支分别在第一、第三象限,在每个象限内,y 随x 的增大而减小。
反比例函数知识点-反比例函数解析式的特征聪明出于勤奋,天才在于积累。
我们要振作精神,下苦功学习。
小编准备了反比例函数知识点-反比例函数解析式的特征,希望能帮助到大家。
⑴等号左边是函数,等号右边是一个分式。
分子是不为零的常数(也叫做比例系数),分母中含有自变量,且指数为1。
⑵比例系数
⑶自变量的取值为一切非零实数。
⑷函数的取值是一切非零实数。
上面就是为大家准备的反比例函数知识点-反比例函数解析式的特征,希望同学们认真浏览,希望同学们在考试中取得优异成绩。