2020-2021学年最新温州市中考数学第一次模拟试卷及答案解析
- 格式:doc
- 大小:431.50 KB
- 文档页数:20
中考数学模拟试卷(解析版)注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为1.若AA'=1,则A'D等于()A.2 B.3 C.23D.32解析:A【解析】分析:由S△ABC=9、S△A′EF=1且AD为BC边的中线知S△A′DE=12S△A′EF=2,S△ABD=12S△ABC=92,根据△DA′E∽△DAB知2A DEABDSA DAD S''=VV(),据此求解可得.详解:如图,∵S△ABC=9、S△A′EF=1,且AD为BC边的中线,∴S△A′DE=12S△A′EF=2,S△ABD=12S△ABC=92,∵将△ABC沿BC边上的中线AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,则2A DEABDSA DAD S''=VV(),即22912A DA D'='+(),解得A′D=2或A′D=-25(舍),故选A.点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.2.如图,四边形ABCD是菱形,对角线AC,BD交于点O,AC8=,BD6=,DH AB⊥于点H,且DH 与AC交于G,则OG长度为()A.92B.94C35D35解析:B【解析】试题解析:在菱形ABCD中,6AC=,8BD=,所以4OA=,3OD=,在Rt AOD△中,5AD=,因为11641222ABDS BD OA=⋅⋅=⨯⨯=V,所以1122ABDS AB DH=⋅⋅=V,则245DH=,在Rt BHDV中,由勾股定理得,22222418655BH BD DH⎛⎫=-=-=⎪⎝⎭,由DOG DHBV V∽可得,OG ODBH DH=,即3182455OG=,所以94OG=.故选B.3.已知A、B两地之间铁路长为450千米,动车比火车每小时多行驶50千米,从A市到B市乘动车比乘火车少用40分钟,设动车速度为每小时x千米,则可列方程为()A.4504504050x x-=-B.4504504050x x-=-C.4504502503x x-=+D.4504502503x x-=-解析:D 【解析】解:设动车速度为每小时x千米,则可列方程为:45050x-﹣450x=23.故选D.4.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.5B.2 C.52D.25解析:C【解析】【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=5,应用两次勾股定理分别求BE和a.【详解】过点D作DE⊥BC于点E.由图象可知,点F 由点A 到点D 用时为as ,△FBC 的面积为acm 1..∴AD=a. ∴12DE•AD=a. ∴DE=1. 当点F 从D 到B 时,用5s.∴BD=5.Rt△DBE 中,BE=()2222=521BD DE --=,∵四边形ABCD 是菱形,∴EC=a -1,DC=a ,Rt△DEC 中,a 1=11+(a-1)1.解得a=52. 故选C .【点睛】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.5.欧几里得的《原本》记载,形如22x ax b +=的方程的图解法是:画Rt ABC ∆,使90ACB ∠=o ,2a BC =,AC b =,再在斜边AB 上截取2a BD =.则该方程的一个正根是( )A .AC 的长B .AD 的长C .BC 的长D .CD 的长解析:B【解析】 【分析】可以利用求根公式求出方程的根,根据勾股定理求出AB 的长,进而求得AD 的长,即可发现结论.【解答】用求根公式求得:22221244b a a b a a x x -+-+-== ∵90,2a C BC ACb ∠=︒==,,∴224a AB b=+,∴22224.42a ab a a AD b+-=+-=AD的长就是方程的正根.故选B.【点评】考查解一元二次方程已经勾股定理等,熟练掌握公式法解一元二次方程是解题的关键.6.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b解析:A【解析】【分析】根据这块矩形较长的边长=边长为3a的正方形的边长-边长为2b的小正方形的边长+边长为2b的小正方形的边长的2倍代入数据即可.【详解】依题意有:3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选A.【点睛】本题主要考查矩形、正方形和整式的运算,熟读题目,理解题意,清楚题中的等量关系是解答本题的关键.7.如图,若a<0,b>0,c<0,则抛物线y=ax2+bx+c的大致图象为()A.B.C.D.解析:B【解析】【分析】。
2020年浙江省温州XX中学中考数学一模试卷一、选择题(共10小题,每小题4分,满分40分)1.﹣2的倒数是()A.2 B.﹣2 C.D.﹣2.有一种美丽的图形,它具有独特的对称美,有无数条对称轴,这种图形是()A.等边三角形B.正方形C.正六边形 D.圆3.下列变形正确的是()A.(a2)3=a9B.2a×3a=6a2C.a6﹣a2=a4 D.2a+3b=6ab4.由5个相同的立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.5.多项式x2﹣1与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)26.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是黄灯的概率是()A.B.C.D.7.如图是一个安全用电标记图案,可以抽象为下边的几何图形,其中AB∥DC,BE∥FC,点E,F 在AD上,若∠A=15°,∠B=65°,则∠AFC的度数是()A.50°B.65°C.80°D.90°8.某工厂现在平均每天比原计划多生产50台机器,现在生产800台所需时间与原计划生产600台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.=B.=C.=D.=9.如图,面积为5的正方形ABCD的顶点A在y轴上,顶点D在反比例函数y=(x>0)的图象上,已知点B的坐标是(1,3),则k的值为()A.16 B.12 C.8 D.410.如图,矩形ABCD的外接圆O与水平地面相切于点A,已知圆O的半径为4,且=2.若在没有滑动的情况下,将圆O向右滚动,使得O点向右移动了66π,则此时与地面相切的弧为()A.B.C.D.二、填空题(共6小题,每小题5分,满分30分)11.PM2.5是指大气中直径小于或等于0.0000025m颗粒物,它们含有大量的有毒、有害物质,对人体健康危害很大,0.0000025m用科学记数法可表示为m.12.不等式组的解是.13.某正n边形的一个内角为108°,则n=.14.如图,在边长为的菱形ABCD中,∠B=45°,AE是BC边上的高,将△AEB沿AE所在直线翻折得△AEB1,则△AEB1与四边形AECF重叠部分的面积为.15.如图,在直角坐标平面上,△AOB是直角三角形,点O在原点上,A、B两点的坐标分别为(﹣1,y1)、(3,y2),线段AB交y轴于点C.若S△AOC=1,记∠AOC为α,∠BOC为β,则sinα•sinβ的值为.16.如图,在正方形ABCD中,E为对角线AC,BD的交点,经过点A和点E作⊙O,分别交AB、AD于点F、G.已知正方形边长为5,⊙O的半径为2,则AG•GD的值为.三、解答题(共8小题,满分80分)17.(1)计算:+(﹣1)2﹣2cos60°;(2)化简:÷.18.如图,在平面直角坐标系xOy中点A(6,8),点B(6,0).(1)只用直尺(没有刻度)和圆规,求作一个点P,使点P同时满足下列两个条件(要求保留作图痕迹,不必写出作法):①点P到A,B两点的距离相等;②点P到∠xOy的两边的距离相等.(2)在(1)作出点P后,直接写出点P的坐标.19.将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯的半径是4cm,水面宽度AB是4cm.(1)求水的最大深度(即CD)是多少?(2)求杯底有水部分的面积(阴影部分).20.为了解我省2020届九年级学生学业水平考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段(A:0﹣29分;B:30﹣39分;C:40﹣44分;D:45﹣49分;E:50分)统计如下:学业考试体育成绩(分数段)统计表分数段人数(人)频率A 12 0.05B 36 bC 84 0.35D a 0.25E 48 0.2根据上面提供的信息,回答下列问题:(1)在统计表中,a的值为,b的值为,并将统计图补充完整;(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数.”请问:甲同学的体育成绩应在什么分数段内?(填相应分数段的字母).(3)如果把成绩在45分以上(含45分)定为优秀,那么该县2020年4020名九年级学生中体育成绩为优秀的学生人数约有多少名?21.如图,在矩形ABCD中,AB=2,AD=5,过点A、B作⊙O,交AD、BC于点E、F,连接BE、CE,过点F作FG⊥CE,垂足为G.(1)当点F是BC的中点时,求证:直线FG与⊙O相切;(2)若FG∥BE时,求AE的长.22.如图,在平面直角坐标系中,已知A,B两点的坐标分别是(0,2),0,﹣3),点P是x轴正半轴上一个动点,过点B作直线BC⊥AP于点D,直线BC与x轴交于点C.(1)当OP=2时,求点C的坐标及直线BC的解析式;(2)若△OPD为等腰三角形,则OP的值为.23.某超市有单价总和为100元的A、B、C三种商品.小明共购买了三次,其中一次购买时三种商品同时打折,其余两次均按单价购买,三次购买商品的数量和总费用如下表:商品A的数量商品B的数量商品C的数量总费用(元)第一次 5 4 3 390第二次 5 4 5 312第三次0 6 4 420(1)小明以折扣价购买的商品是第次购物.(2)若设A商品的单价为x元,B商品的单价为y元.①C商品的单价是元(请用x与y的代数式表示);②求出x,y的值;(3)若小明单价(没打折)第四次购买商品A、B、C的数量总和为m个,其中购买B商品数量是A商品数量的2倍,购买总费用为720元,m的最小值为.24.如图1,在平面直角坐标系中,点A、B、C的坐标分别为(﹣8,0),(﹣5,0),(0,﹣8),点P,E分别从点A,B同时出发沿x轴正方向运动,同时点D从点C出发沿y轴正方向运动.以PD,PE为邻边构造平行四边形EPDF,已知点P,D的一点速度均为每秒2个单位,点E的运动速度为每秒1个单位,运动时间为t秒.(1)当0<t<3时,PE=(用含t的代数式表示);(2)记平行四边形的面积为S,当S=12时,求t的值;(3)如图2,当0<t<4时,过点P的作抛物线y=ax2+bx+c交x轴于另一点为H(点H在点P的右侧),若PH=6,且该二次函数的最大值不变均为.①当t=2时,试判断点F是否恰好落在抛物线y=ax2+bx+c上?并说明理由;②若点D关于直线EF的对称点Q恰好落在抛物线y=ax2+bx+c,请直接写出t的值.2020年浙江省温州XX中学中考数学一模试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.﹣2的倒数是()A.2 B.﹣2 C.D.﹣【考点】倒数.【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵﹣2×()=1,∴﹣2的倒数是﹣.故选D.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.2.有一种美丽的图形,它具有独特的对称美,有无数条对称轴,这种图形是()A.等边三角形B.正方形C.正六边形 D.圆【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、是轴对称图形,有3条对称轴,故此选项错误;B、是轴对称图形,有4条对称轴,故此选项错误;C、轴对称图形,有6条对称轴,故此选项错误;D、是轴对称图形,有无数条对称轴,故此选项正确;故选:D.【点评】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.下列变形正确的是()A.(a2)3=a9B.2a×3a=6a2C.a6﹣a2=a4 D.2a+3b=6ab【考点】单项式乘单项式;合并同类项;幂的乘方与积的乘方.【分析】根据幂的乘方、单项式乘法、合并同类项法则的运算方法,利用排除法求解.【解答】解:A、应为(a2)3=a6,故本选项错误;B、2a×3a=6a2是正确的;C、a6与a2不是同类项,不能合并,故本选项错误;D、3a与3b不是同类项,不能合并,故本选项错误.故选:B.【点评】本题主要考查了幂的乘方的性质,单项式的乘法法则,合并同类项的法则,熟练掌握运算法则是解题的关键.4.由5个相同的立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看第一层是三个正方形,第二层是左边一个正方形.故选:B.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5.多项式x2﹣1与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)2【考点】公因式.【分析】分别利用公式法分解因式,进而得出公因式.【解答】解:∵x2﹣1=(x+1)(x﹣1),x2﹣2x+1=(x﹣1)2,∴多项式x2﹣1与多项式x2﹣2x+1的公因式是:x﹣1.故选:A.【点评】此题主要考查了公因式,正确分解因式是解题关键.6.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是黄灯的概率是()A.B.C.D.【考点】概率公式.【专题】压轴题.【分析】让黄灯亮的时间除以总时间即为抬头看信号灯时,是黄灯的概率.【解答】解:每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒共60秒,所以是黄灯的概率是=.故选C.【点评】本题考查概率的基本计算;用到的知识点为:概率=所求情况数与总情况数之比.7.如图是一个安全用电标记图案,可以抽象为下边的几何图形,其中AB∥DC,BE∥FC,点E,F 在AD上,若∠A=15°,∠B=65°,则∠AFC的度数是()A.50°B.65°C.80°D.90°【考点】平行线的性质.【专题】应用题.【分析】先根据平行线的性质得出∠D=∠A,∠C=∠B,再由三角形外角的性质即可得出结论.【解答】解:∵AB∥DC,BE∥FC,∠A=15°,∠B=65°,∴∠D=∠A=15°,∠C=∠B=65°.∵∠AFC是△CDF的外角,∴∠AFC=∠D+∠C=15°+65°=80°.故选C.【点评】本题考查的是平行线的性质,先根据题意得出∠C及∠D的度数是解答此题的关键.8.某工厂现在平均每天比原计划多生产50台机器,现在生产800台所需时间与原计划生产600台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.=B.=C.=D.=【考点】由实际问题抽象出分式方程.【分析】根据题意可知现在每天生产x+50台机器,而现在生产800台所需时间和原计划生产600台机器所用时间相等,从而列出方程即可.【解答】解:设原计划平均每天生产x台机器,根据题意得:=,故选:A.【点评】此题主要考查了列分式方程应用,利用本题中“现在平均每天比原计划多生产50台机器”这一个隐含条件,进而得出等式方程是解题关键.9.如图,面积为5的正方形ABCD的顶点A在y轴上,顶点D在反比例函数y=(x>0)的图象上,已知点B的坐标是(1,3),则k的值为()A.16 B.12 C.8 D.4【考点】反比例函数图象上点的坐标特征.【分析】过点B作BE⊥y轴于E,过点D作DF⊥y轴于F,根据正方形的性质可得AB=AD,∠BAD=90°,再根据同角的余角相等求出∠BAE=∠ADF,然后利用“角角边”证明△ABE和△DAF全等,根据全等三角形对应边相等可得AF=BE,DF=AE,再求出OF,然后写出点D的坐标,再把点D的坐标代入反比例函数解析式计算即可求出k的值.【解答】解:如图,过点B作BE⊥y轴于E,过点D作DF⊥y轴于F,在正方形ABCD中,AB=AD,∠BAD=90°,∴∠BAE+∠DAF=90°,∵∠DAF+∠ADF=90°,∴∠BAE=∠ADF,在△ABE和△DAF中,∵,∴△ABE≌△DAF(AAS),∴AF=BE,DF=AE,∵正方形的面积为5,B(1,3),∴BE=1,AE=2∴OF=OE+AE+AF=3+2+1=6,∴点D的坐标为(2,6),∵顶点D在反比例函数y=(x>0)的图象上,∴k=xy=2×6=12.故选B.【点评】本题考查的是反比例函数图象上点的坐标特点,涉及到正方形的性质,全等三角形的判定与性质,反比例函数图象上的点的坐标特征,作辅助线构造出全等三角形并求出点D的坐标是解题的关键.10.如图,矩形ABCD的外接圆O与水平地面相切于点A,已知圆O的半径为4,且=2.若在没有滑动的情况下,将圆O向右滚动,使得O点向右移动了66π,则此时与地面相切的弧为()A.B.C.D.【考点】弧长的计算;旋转的性质.【分析】根据圆的周长公式求出圆的周长以及圆转动的周数,根据题意分别求出和+的长,比较即可得到答案.【解答】解:∵圆O半径为4,∴圆的周长为:2π×r=8π,∵将圆O向右滚动,使得O点向右移动了66π,∴66π÷8π=8…2π,即圆滚动8周后,又向右滚动了2π,∵矩形ABCD的外接圆O与水平地面相切于A点,=2,∴=×8π=<2π,+=8π=4π>2π,∴此时与地面相切的弧为,故选:C.【点评】此题主要考查了旋转的性质以及圆的周长公式等知识,得出O点转动的周数是解题关键.二、填空题(共6小题,每小题5分,满分30分)11.PM2.5是指大气中直径小于或等于0.0000025m颗粒物,它们含有大量的有毒、有害物质,对人体健康危害很大,0.0000025m用科学记数法可表示为 2.5×10﹣6m.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 00025=2.5×10﹣6;故答案为2.5×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.不等式组的解是<x≤3.【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x>2,解②得:x≤3.则不等式组的解集是:2<x≤3.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.13.某正n边形的一个内角为108°,则n=5.【考点】多边形内角与外角.【分析】易得正n边形的一个外角的度数,正n边形有n个外角,外角和为360°,那么,边数n=360°÷一个外角的度数.【解答】解:∵正n边形的一个内角为108°,∴正n边形的一个外角为180°﹣108°=72°,∴n=360°÷72°=5.故答案为:5.【点评】考查了多边形内角与外角,用到的知识点为:多边形一个顶点处的内角与外角的和为180°;正多边形的边数等于360÷正多边形的一个外角度数.14.如图,在边长为的菱形ABCD中,∠B=45°,AE是BC边上的高,将△AEB沿AE所在直线翻折得△AEB1,则△AEB1与四边形AECF重叠部分的面积为﹣1.【考点】翻折变换(折叠问题);菱形的性质.【分析】根据等腰直角三角形的性质求出BE、AE,根据翻转变换的性质得到△FCB1是等腰直角三角形,根据三角形的面积公式计算即可.【解答】解:∵AE⊥BC,∠B=45°,AB=∴BE=AE=1,∵将△AEB沿AE所在直线翻折得△AEB1,∴∠B1=∠B=45°,∴EB 1=BE=1,CB1=2﹣,∴△AEB1的面积为×AE×EB1=,∵四边形ABCD是菱形,∴AB∥CD,∴∠FCB1=∠B=45°,∴△FCB1是等腰直角三角形,∴△FCB1的面积为×(2﹣)××(2﹣)=﹣,∴△AEB1与四边形AECF重叠部分的面积=﹣(﹣)=﹣1,故答案为:﹣1.【点评】本题考查的是翻转变换的性质和菱形的性质,翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.15.如图,在直角坐标平面上,△AOB是直角三角形,点O在原点上,A、B两点的坐标分别为(﹣1,y1)、(3,y2),线段AB交y轴于点C.若S△AOC=1,记∠AOC为α,∠BOC为β,则sinα•sinβ的值为.【考点】相似三角形的判定与性质;坐标与图形性质;三角形的面积;锐角三角函数的定义.【分析】首先过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,由A、B两点的坐标分别为(﹣1,y1)、(3,y2),S△AOC=1,可求得OD,OE,OC的长,继而求得△AOB的面积,求得OA•OB的值,又由三角函数的定义,即可求得答案.【解答】解:过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,∵A、B两点的坐标分别为(﹣1,y1)、(3,y2),∴OD=1,OE=3,∵S△AOC=1,∴OC•OD=1,∴OC=2,∴S Rt△AOB=S△AOC+S△BOC=1+OC•OE=1+3=4,∴OA•OB=4,∴OA•OB=8,∵OA∥OC∥BE,∴∠OAD=∠AOC=α,∠OBE=∠BOC=β,∴sinα•sinβ=•==.故答案为:.【点评】此题考查了三角函数的定义、直角三角形的性质以及坐标与图形的性质.此题难度适中,解题的关键是准确作出辅助线,注意数形结合思想的应用.16.如图,在正方形ABCD中,E为对角线AC,BD的交点,经过点A和点E作⊙O,分别交AB、AD于点F、G.已知正方形边长为5,⊙O的半径为2,则AG•GD的值为9.【考点】相似三角形的判定与性质;正方形的性质;圆周角定理.【分析】连接EF、FG,GE如图,根据正方形的性质得到∠BAD=90°,∠BEA=90°证得△BPF≌△APE,根据全等三角形的性质得到BF=AE,求得DE=AF,根据圆周角定理得到GF为⊙O的直径,得到GF=4,根据勾股定理得到AF2+AG2=GF2=16,由①②联立起来组成方程组,即可得到结论.【解答】解:连接EF、FG,GE如图,∵四边形ABCD为正方形,∴∠BAD=90°,∠BEA=90°∴∠FEG=90°,∴∠BEF=∠AEG,又∵∠FBE=∠EAG=45°,在△BEF与△AGE中,,∴△BPF≌△APE,∴BF=AE,而AB=AD,∴DE=AF,∵∠BAD=90°,∴GF为⊙O的直径,而⊙O的半径为2,∴GF=4,∴AF2+AG2=GF2=16①,而DG=AF,DG2+AG2=16;又∵AD=AG+GD=AB,∴AG+GD=5②,由①②联立起来组成方程组,解得:AG=,GD=或AE=,ED=,∴AG•GD=9.故答案为:9.【点评】本题考查了全等三角形的判定和性质,圆周角定理.在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.同时考查了直径所对的圆周角为直角、圆内接四边形的性质、正方形的性质以及方程组的解法.三、解答题(共8小题,满分80分)17.(1)计算:+(﹣1)2﹣2cos60°;(2)化简:÷.【考点】实数的运算;分式的乘除法;特殊角的三角函数值.【专题】计算题;实数.【分析】(1)原式利用算术平方根,乘方的意义,以及特殊角的三角函数值计算即可得到结果;(2)原式利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=2+1﹣1=2;(2)原式=•=.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.如图,在平面直角坐标系xOy中点A(6,8),点B(6,0).(1)只用直尺(没有刻度)和圆规,求作一个点P,使点P同时满足下列两个条件(要求保留作图痕迹,不必写出作法):①点P到A,B两点的距离相等;②点P到∠xOy的两边的距离相等.(2)在(1)作出点P后,直接写出点P的坐标(4,4).【考点】作图—复杂作图;坐标与图形性质;角平分线的性质;线段垂直平分线的性质.【专题】作图题.【分析】(1)作AB的垂轴平分线和∠xOy的角平分线,它们的交点即为P点;(2)由于点P在AB的垂轴平分线上,则P点的纵坐标为4,再利用点P在第一象限的角平分线上,则点P的横纵坐标相同,从而得到P点坐标.【解答】解:(1)如图,点P为所作;(2)P点坐标为(4,4).故答案为(4,4).【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.19.将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯的半径是4cm,水面宽度AB是4cm.(1)求水的最大深度(即CD)是多少?(2)求杯底有水部分的面积(阴影部分).【考点】垂径定理的应用;勾股定理.【分析】(1)由垂径定理可得出BC 的长,在Rt △OBC 中,根据勾股定理求出OC 的长,由DC=OD ﹣OC 即可得出结论.(2)解直角三角形求得∠AOB 的度数,然后求S △AOB 和S 扇形OAB ,然后根据S 阴影=S 扇形﹣S △AOB 即可求得.【解答】解:(1)∵OD ⊥AB ,AB=4cm ,∴BC=AB=×4=2cm ,在Rt △OBC 中, ∵OB=4cm ,BC=2cm ,∴OC===2cm ,∴DC=OD ﹣OC=4﹣2=2cm . ∴水的最大深度(即CD )是2cm . (2)∵OC=2,OB=4, ∴OC=OB , ∴∠ABO=30°, ∵OA=OB ,∴∠BAO=∠ABO=30°, ∴∠AOB=120°, ∵S △AOB =AB •OC=×4×2=4,∴S 扇形OAB ==π,∴S 阴影=S 扇形﹣S △AOB =π﹣4(cm )2. 【点评】本题考查的是垂径定理的应用,解答此类问题的关键是构造出直角三角形,利用垂径定理及勾股定理进行解答.20.为了解我省2020届九年级学生学业水平考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段(A:0﹣29分;B:30﹣39分;C:40﹣44分;D:45﹣49分;E:50分)统计如下:学业考试体育成绩(分数段)统计表分数段人数(人)频率A 12 0.05B 36 bC 84 0.35D a 0.25E 48 0.2根据上面提供的信息,回答下列问题:(1)在统计表中,a的值为60,b的值为0.15,并将统计图补充完整;(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数.”请问:甲同学的体育成绩应在什么分数段内?C(填相应分数段的字母).(3)如果把成绩在45分以上(含45分)定为优秀,那么该县2020年4020名九年级学生中体育成绩为优秀的学生人数约有多少名?【考点】条形统计图;用样本估计总体;频数(率)分布表;中位数.【分析】(1)首先根据A有12人,所占的频率是0.05即可求得抽查的总人数,则a,b的值即可求解;(2)根据中位数的定义即可求解;(3)利用4020乘以抽查的人数中优秀的人数所占的频率即可.【解答】解:(1)12÷0.05=240(人)240×0.25=60(人)36÷240=0.15补充后如下图:(2)根据中位数的定义即可求解;(3)0.45×4020=1809(名)答:该区九年级考生中体育成绩为优秀的学生人数有1809名.故答案为:60,0.15,C.【点评】此题考查读频数分布直方图的能力和利用统计图获取信息的能力.用到的知识点是:将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.频率=频数÷总数,用样本估计整体让整体×样本的百分比即可.21.如图,在矩形ABCD中,AB=2,AD=5,过点A、B作⊙O,交AD、BC于点E、F,连接BE、CE,过点F作FG⊥CE,垂足为G.(1)当点F是BC的中点时,求证:直线FG与⊙O相切;(2)若FG∥BE时,求AE的长.【考点】切线的判定.【分析】(1)连接OF,由点F是BC的中点,得到BF=CF,在矩形ABCD中,∠A=90°,证得BE 是⊙O的直径,求得BO=OE,根据三角形的中位线的性质得到OF∥CE,证得OF⊥FG,即可得到结论;(2)根据平行线的性质得到BE⊥CE,由余角的性质得到∠ABE=∠DEC,证得△ABE∽△CDE,根据相似三角形的性质即可得到结论.【解答】(1)证明:连接OF,∵点F是BC的中点,∴BF=CF,在矩形ABCD中,∵∠A=90°,∴BE是⊙O的直径,∴BO=OE,∴OF∥CE,∵FG⊥CE,∴OF⊥FG,∴直线FG与⊙O相切;(2)解:∵FG∥BE,FG⊥CE,∴BE⊥CE,∴∠AEB+∠DEC=90°,∵∠ABE+∠AEB=90°,∴∠ABE=∠DEC,∵∠A=∠D=90°,∴△ABE∽△CDE,∴,∵AB=2,AD=5,∴CD=AB=2,∴,∴AE=1,或AE=4.【点评】本题考查的是切线的判定,三角形的中位线的性质,相似三角形的判定和性质,平行线的判定和性质,正确的作出辅助线是解题的关键.22.如图,在平面直角坐标系中,已知A,B两点的坐标分别是(0,2),0,﹣3),点P是x轴正半轴上一个动点,过点B作直线BC⊥AP于点D,直线BC与x轴交于点C.(1)当OP=2时,求点C的坐标及直线BC的解析式;(2)若△OPD为等腰三角形,则OP的值为或4.【考点】两条直线相交或平行问题;全等三角形的判定与性质;勾股定理;等腰直角三角形;相似三角形的判定与性质.【专题】分类讨论.【分析】(1)易证△BOC是等腰直角三角形,从而可求出点C的坐标,然后运用待定系数法就可解决问题;(2)由于等腰三角形OPD的顶角不确定,故需分情况讨论,然后运用全等三角形的性质、相似三角形的性质及勾股定理就可解决问题.【解答】解:(1)∵A,B两点的坐标分别是(0,2),0,﹣3),∴OA=2,OB=3.∵OP=2,∴OA=OP.∵∠AOP=90°,∴∠APO=45°,∴∠CPD=∠APO=45°.∵BC⊥AP,∴∠PCD=45°.∵∠BOC=90°,∴∠OBC=∠OCB=45°,∴OC=OB=3,∴点C的坐标为(3,0).设直线BC的解析式为y=kx+b,则有,解得,∴直线BC的解析式为y=x﹣3;(2)①当点P在点C左边时,如图1,此时∠OPD>90°.∵△OPD为等腰三角形,∴OP=DP.在△AOP和△CDP中,∴△AOP≌△CDP,∴AP=CP,∴OC=AD.在△ADB和△COB中,∴△ADB≌△COB,∴CB=AB=5,∴AD=OC==4,设OP=x,则有AP=CP=4﹣x,在Rt△AOP中,22+x2=(4﹣x)2,解得x=,∴OP=.②当点P在点C右边时,如图2,此时∠ODP>90°.∵△OPD为等腰三角形,∴OD=DP,∴∠DOP=∠DPO.∵∠AOP=90°,∴∠OAP+∠APO=90°,∠AOD+∠DOP=90°,∴∠OAP=∠AOD,∴AD=OD,∴AD=DP.设AD=x,则有AP=2x.∵∠DAB=∠OAP,∠ADB=∠AOP=90°,∴△ADB∽△AOP,∴=,∴=,解得x=(舍去).∴AP=2,∴OP===4.综上所述:OP的值为或4.故答案为或4.【点评】本题主要考查了等腰直角三角形的判定与性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理等知识,运用分类讨论的思想是解决第(2)小题的关键.23.某超市有单价总和为100元的A、B、C三种商品.小明共购买了三次,其中一次购买时三种商品同时打折,其余两次均按单价购买,三次购买商品的数量和总费用如下表:商品A的数量商品B的数量商品C的数量总费用(元)第一次 5 4 3 390第二次 5 4 5 312第三次0 6 4 420(1)小明以折扣价购买的商品是第二次购物.(2)若设A商品的单价为x元,B商品的单价为y元.①C商品的单价是100﹣x﹣y元(请用x与y的代数式表示);②求出x,y的值;(3)若小明单价(没打折)第四次购买商品A、B、C的数量总和为m个,其中购买B商品数量是A商品数量的2倍,购买总费用为720元,m的最小值为18.【考点】二元一次方程组的应用.【分析】(1)分析前两次购物,发现第二次购买数量比第一次多但是价钱反而降低了,故得出小明以折扣价购买的商品是第二次购物这个结论;(2)由A、B、C三种商品单价总和为100元,得出C商品的单价,由表格得出关于x、y的二元一次方程,解方程即可求得x、y的值;(3)根据总费用=单价×数量得出购买商品数量m关于购买商品A的数量a的一次函数,结合函数的单调性以及a的取值范围可以得出m的最小值.【解答】解:(1)分析一二次购物:第二次购物比第一次购物A、B商品购买数量没有减少,C商品购买数量增加总费用反而比第一购物少,所以小明以折扣价购买的商品是第二次购物.故答案为:二.(2)①∵某超市有单价总和为100元的A、B、C三种商品,且A商品的单价为x元,B商品的单价为y元,∴C商品的单价为100﹣x﹣y元.故答案为:100﹣x﹣y.②结合一三次购物可知:,解得:.答:A商品的单价为20元,B商品的单价为50元.(3)由(2)可知C商品的单价是100﹣20﹣50=30(元),设第四次购买商品A的数量为a个,则购买商品B的数量为2a个,购买商品C的数量为m﹣3a个,依据题意可知:20a+50×2a+30×(m﹣3a)=720,即m=24﹣a.又∵m﹣3a≥0,∴24﹣4a≥0,解得:a≤6.∵m关于a的函数单调递减,∴当a=6时,m最小,此时m=24﹣6=18.故答案为:18.【点评】本题考查了一次函数的性质以及解二元一次方程组,解题的关键是:(1)第二次购物比第一次多而费用少;(2)列出关于x、y的二元一次方程;(3)找出购买商品数量m关于购买商品A的数量a的一次函数.本题属于中档题,(1)(2)难度不大,(3)需要结合一次函数的性质和解一元一次不等式得出a的取值范围,由一次函数的单调性得出最值问题.24.如图1,在平面直角坐标系中,点A、B、C的坐标分别为(﹣8,0),(﹣5,0),(0,﹣8),点P,E分别从点A,B同时出发沿x轴正方向运动,同时点D从点C出发沿y轴正方向运动.以PD,PE为邻边构造平行四边形EPDF,已知点P,D的一点速度均为每秒2个单位,点E的运动速度为每秒1个单位,运动时间为t秒.(1)当0<t<3时,PE=3﹣t(用含t的代数式表示);(2)记平行四边形的面积为S,当S=12时,求t的值;(3)如图2,当0<t<4时,过点P的作抛物线y=ax2+bx+c交x轴于另一点为H(点H在点P的右侧),若PH=6,且该二次函数的最大值不变均为.①当t=2时,试判断点F是否恰好落在抛物线y=ax2+bx+c上?并说明理由;②若点D关于直线EF的对称点Q恰好落在抛物线y=ax2+bx+c,请直接写出t的值.【考点】二次函数综合题.【分析】(1)根据题意,求出OP及OE的长度,即可求得PE的长度;(2)根据平行四边形的面积=底×高,以BE为底,OD为高,即可解答;(3)根据点P的坐标,PH=6,求出点H的坐标,然后求出抛物线的顶点坐标,用含t的式子表示出函数的解析式;①求出当t=2时,点B,E,D,F的坐标,将点F的横坐标代入解析式,看求出的y的值是否与点F的纵坐标相等,即可判断;②根据对称,求出点Q的坐标,将点Q的坐标代入抛物线,即可求出t的值.【解答】解:(1)根据题意,得:OP=8﹣2t,OE=5﹣t,∴PE=OP﹣OE=(8﹣2t)﹣(5﹣t)=3﹣t;故答案为:3﹣t;。
2020年浙江省温州市中学中考数学全真模拟试卷1解析版一.选择题(共10小题,满分40分,每小题4分)1.﹣10+3的结果是()A.﹣7B.7C.﹣13D.132.在一次体育测试中,10名女生完成仰卧起坐的个数如下:38,52,47,46,50,50,61,72,45,48.则这10名女生仰卧起坐个数不少于50个的频率为()A.0.3B.0.4C.0.5D.0.63.如图,几何体的左视图是()A.B.C.D.4.在下列网格中,小正方形的边长为1,点A、B、O都在格点上,则∠A的正弦值是()A.B.C.D.5.化简÷的结果是()A.B.C.D.6.关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,则a的值可以是()A.0B.﹣1C.﹣2D.﹣37.将不等式组的解集在数轴上表示出来,应是()A.B.C.D.8.已知三角形的三边长分别为2、x、10,若x为正整数,则这样的三角形个数为()A.1B.2C.3D.49.如图,在平面直角坐标系中,点A在一次函数y=x(x>0)的图象上,点B在x轴的正半轴上,以AB为边作矩形ABCD,AB=6,AD=2.则线段OD的最大长度()A.4+2B.5+C.4+2D.2+10.关于特殊四边形对角线的性质,矩形具备而平行四边形不一定具备的是()A.对角线互相平分B.对角线互相垂C.对角线相等D.对角线平分一组对角二.填空题(共6小题,满分30分,每小题5分)11.分解因式:2x2﹣2=.12.已知关于x,y的二元一次方程组的解满足x﹣y=3,则m的值为13.如图,从一个直径为1m的圆形铁片中剪出一个圆心角为90°的扇形,再将剪下的扇形围成一个圆锥,则圆锥的底面半径为m.14.一个正多边形的内角和与外角和的比是4:1,则它的边数是.15.把一个长方形纸片按如图所示折叠,若量得∠AOD′=36°,则∠D′OE的度数为.16.如图,正方形ABOD的边长为4,OB在x轴上,OD在y轴上,点A在第二象限内,且AD∥OB,AB∥OD,点C为AB的中点,直线CD交x轴于点F,过点C作CE⊥DF于点C,交x轴于点E,则点E坐标为,点P是直线CE上的一个动点,当点P的坐标为时,PB+PF 有最小值.三.解答题(共8小题,满分80分)17.(8分)(1)计算:;(2)化简:(a+2)2﹣a(a﹣1).18.(8分)如图:AB是半圆的直径,∠ABC的平分线交半圆于D,AD和BC的延长线交于圆外一点E,连结CD.(1)求证:△EDC是等腰三角形.(2)若AB=5,BC=3,求四边形ABCD的面积.19.(8分)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,5×5正方形方格纸中,点A、B都在格点处.(1)请在图中作等腰△ABC,使其底边AC=,且点C为格点;(2)在(1)的条件下,作出平行四边形ABDC,且D为格点,并直接写出平行四边形ABDC的面积.20.(8分)一个不透明的布袋里装有16个只有颜色不同的球,其中红球有x个,白球有2x个,其他均为黄球,现甲同学从布袋中随机摸出1个球,若是红球,则甲同学获胜,甲同学把摸出的球放回并搅匀,由乙同学随机摸出1个球,若为黄球,则乙同学获胜.(1)当x=3时,谁获胜的可能性大?(2)当x为何值时,游戏对双方是公平的?21.(10分)如图,一次函数y=kx+b与反比例函数y=(x<0)的图象相交于点A、点B,与X 轴交于点C,其中点A(﹣1,3)和点B(﹣3,n).(1)填空:m=,n=.(2)求一次函数的解析式和△AOB的面积.(3)根据图象回答:当x为何值时,kx+b≥(请直接写出答案).22.(12分)某市居民用电电费目前实行梯度价格表)(1)若月用电150千瓦时,应交电费元,若月用电250千瓦时,应交电费元;(2)若居民王大爷家12月应交电费150元,请计算他们家12月的用电量;(3)若居民李大爷家11、12月份共用电480千瓦时(其中11月份用电量少于12月份),共交电费262.6元.请直接写出李大爷家这两个月的用电量.23.(12分)如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.24.(14分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.(1)求证:AH是⊙O的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若=,求证:CD=DH.参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【分析】根据有理数的加法法则,即可解答.【解答】解:﹣10+3=﹣(10﹣3)=﹣7,故选:A.【点评】本题考查了有理数的加法,解决本题的关键是熟记有理数的加法法则.2.【分析】用仰卧起坐个数不少于50个的频数除以女生总人数10计算即可得解.【解答】解:仰卧起坐个数不少于50个的有52、50、50、61、72共5个,所以,频率==0.5.故选:C.【点评】本题考查了频数与频率,频率=.3.【分析】找到从几何体左面看得到的平面图形即可.【解答】解:从几何体左面看得到是矩形的组合体,且长方形靠左.故选:A.【点评】此题主要考查了三视图的相关知识;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.4.【分析】根据勾股定理求出OA,根据正弦的定义解答即可.【解答】解:由题意得,OC=2,AC=4,由勾股定理得,AO==2,∴sin A==,故选:A.【点评】本题考查的是锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.5.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=•=故选:D.【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.6.【分析】由方程根的情况,根据根的判别式可得到关于a的不等式,可求得a的取值范围,则可求得答案.【解答】解:∵关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,∴△>0且a≠0,即32﹣4a×(﹣2)>0且a≠0,解得a>﹣1且a≠0,故选:B.【点评】本题主要考查根的判别式,掌握方程根的情况与根的判别式的关系是解题的关键.7.【分析】根据一元一次不等式组的解法解出不等式组,根据小于等于或大于等于用实心圆点在数轴上表示解答.【解答】解:不等式组的解集为:1≤x≤3,故选:A.【点评】本题考查的是解一元一此不等式组及在数轴上表示一元一次不等式组的解集,在解答此类题目时要注意实心圆点与空心圆点的区别.8.【分析】先根据三角形任意两边之和大于第三边,任意两边之差小于第三边求出x的取值范围,然后根据若x为正整数,即可选择答案.【解答】解:∵10﹣2=8,10+2=12,∴8<x<12,∵若x为正整数,∴x的可能取值是9,10,11,故这样的三角形共有3个.故选:C.【点评】本题考查了三角形的三边关系,熟练掌握“三角形任意两边之和大于第三边,任意两边之差小于第三边”求出x的取值范围是解题的关键.9.【分析】由直线的斜率得出tan∠AOB=,作△AOB的外接圆⊙P,连接OP、PA、PB、PD,作PG⊥CD,交AB于H,垂足为G,易得∠APH=∠AOB,解直角三角形求得PH=2,然后根据广告代理渠道PD、PA,根据三角形三边关系得出OD取最大值时,OD=OP+PD,据此即可求得.【解答】解:∵点A在一次函数y=x(x>0)的图象上,∴tan∠AOB=,作△AOB的外接圆⊙P,连接OP、PA、PB、PD,作PG⊥CD,交AB于H,垂足为G,∵四边形ABCD是矩形,∴AB∥CD,四边形AHGD是矩形,∴PG⊥AB,GH=AD=2,∵∠APB=2∠AOB,∠APG=∠APB,AH=AB=3=DG,∴∠APH=∠AOB,∴tan∠APH=tan∠AOB=,∴=,∴PH=2,∴PG=2+2=4,∴PD===5,OP=PA===,在△OPD中,OP+PD≥OD,∴OD的最大值为5+,故选:B.【点评】本题考查了一次函数图象上点的坐标特征,圆心角和圆周角的关系,垂径定理以及勾股定理的应用,三角形三边关系等,作出辅助线是解题的关键.10.【分析】根据矩形、平行四边形的性质即可判断;【解答】解:矩形的对角线互相平分且相等,平行四边形的对角线互相平分,∴矩形具备而平行四边形不一定具备的是矩形的对角线相等,故选:C.【点评】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.如,矩形的对角线相等是常考内容.二.填空题(共6小题,满分30分,每小题5分)11.【分析】先提取公因式2,再根据平方差公式进行二次分解即可求得答案.【解答】解:2x2﹣2=2(x2﹣1)=2(x+1)(x﹣1).故答案为:2(x+1)(x﹣1).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.12.【分析】②﹣①得到x﹣y=4﹣m,代入x﹣y=3中计算即可求出m的值.【解答】解:,②﹣①得:x﹣y=4﹣m,∵x﹣y=3,∴4﹣m=3,解得:m=1,故答案为:1【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13.【分析】利用勾股定理易得扇形的半径,那么就能求得扇形的弧长,除以2π即为圆锥的底面半径.【解答】解:易得扇形的圆心角所对的弦是直径,∴扇形的半径为:m,∴扇形的弧长为:=πm,∴圆锥的底面半径为:π÷2π=m.【点评】本题用到的知识点为:90度的圆周角所对的弦是直径;圆锥的侧面展开图的弧长等于圆锥的底面周长.14.【分析】多边形的外角和是360度,内角和与外角和的比是4:1,则内角和是1440度.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据题意,得(n﹣2)•180=1440,解得:n=10.则此多边形的边数是10.故答案为:10.【点评】本题考查了多边形内角和定理和外角和定理:多边形内角和为(n﹣2)•180°,外角和为360°.15.【分析】由翻折变换的性质可知∠D′OE=∠DOE,故∠AOD′+2∠D′OE=180°,求出∠D′OE的度数即可.【解答】解:∵四边形ODCE折叠后形成四边形OD′C′E,∴∠D′OE=∠DOE,∴∠AOD′+2∠D′OE=180°,∵∠AOD′=36°,∴∠D′OE=72°.故答案为:72°.【点评】本题考查的是图形的翻折变换,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.16.【分析】由条件可求得B点坐标,可求得BF=BC的长,利用△BCF∽△BEC可求得BE的长,则可求得OE的长,可求得E点坐标;易知可知点D与F关于直线CE对称,连接BD交直线CE 于点P,则可知P点即为满足条件的动点,求出直线EC、直线BD的解析式构建方程组确定点P 坐标即可;【解答】解:∵C是AB的中点,∴AC=BC,∵四边形ABOD是正方形,∴∠A=∠CBF=90°,在△ACD和△BCF中,∴△ACD≌△BCF(ASA),∴CF=CD,BF=AD=4∵CE⊥DF,∴CE垂直平分DF,∴D、F关于直线CE对称,∵∠CBF=∠CBE=∠FCE=90°,∴∠CFB+∠FCB=∠FCB+∠ECB=90°,∴∠CFB=∠BCE,∴△BCF∽△BEC,∴=,即=,解得BE=1,∴OE=OB﹣BE=4﹣1=3,∴E点坐标为(﹣3,0);如图,连接BD交直线CE于点P,∵点D与点F关于直线CE对称,∴PD=PF,∴PB+PF=PB+PD≥BD,此时PF+PE的值最小,∵直线CE的解析式为y=﹣2x﹣6,直线BD的解析式为y=x+4,由,解得,∴P(﹣,).故答案为(﹣3,0),(﹣,).【点评】本题为一次函数的综合应用,正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质、轴对称的性质等知识.三.解答题(共8小题,满分80分)17.【分析】(1)直接利用绝对值的性质以及二次根式的性质、零指数幂的性质分别化简得出答案; (2)直接利用完全平方公式以及单项式乘以多项式分别化简得出答案.【解答】解:(1)原式=2﹣1﹣(﹣1)=;(2)原式=a 2+4a +4﹣a 2+a=5a +4.【点评】此题主要考查了完全平方公式以及单项式乘以多项式、实数运算,正确掌握相关运算法则是解题关键.18.【分析】(1)根据圆周角定理由AB 是半圆的直径得∠ADB =∠ACB =90°,加上∠ABC 的平分线交半圆于D ,根据等腰三角形的判定得BA =BE ,再根据等腰三角形的性质得AD =ED ,即可得到CD 为直角三角形ACE 斜边上的中线,所以CD =DE =AD ,因此可判断△EDC 是等腰三角形;(2)先利用BA =BE =5得到CE =EB ﹣CB =2,利用勾股定理,在Rt △ACE 中计算出AE =2,在Rt △ABC 中计算出AC =4,利用三角形面积公式得到S △ABE =AC •BE =10,再证明△ECD ∽△EAB ,利用相似的性质求出S △ECD =2,然后利用四边形ABCD 的面积=S △ABE ﹣S △ECD 进行计算..【解答】(1)证明:∵AB 是半圆的直径,∴∠ADB =∠ACB =90°,∵∠ABC 的平分线交半圆于D ,∴BA=BE,∴AD=ED,∴CD为直角三角形ACE斜边上的中线,∴CD=DE=AD,∴△EDC是等腰三角形;(2)解:∵BA=BE=5,∴CE=EB﹣CB=2,在Rt△ACE中,AE==2,在Rt△ABC中,AC==4,∴S△ABE=AC•BE=×4×5=10,∵∠EDC=∠EBA,而∠DEC=∠BEA,∴△ECD∽△EAB,∴=()2,即S△ECD=10×()2=2,∴四边形ABCD的面积=S△ABE ﹣S△ECD=10﹣2=8.【点评】本题考查了圆周角定理:圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了等腰三角形的判定与性质和相似三角形的判定与性质.19.【分析】(1)利用数形结合的思想解决问题即可.(2)利用数形结合的思想解决问题,根据平行四边形的面积公式计算即可.【解答】解:(1)如图,△ABC即为所求.(2)如图,平行四边形ABDC即为所求.S平行四边形ABCD=2×2=8.【点评】本题考查作图﹣应用与设计,等腰三角形的判定和性质,平行四边形的判定和性质,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.【分析】(1)比较A、B两位同学的概率解答即可;(2)根据游戏的公平性,列出方程=解答即可.【解答】解:(1)A同学获胜可能性为,B同学获胜可能性为=,因为≠,当x=3时,B同学获胜可能性大;(2)游戏对双方公平必须有:=,解得:x=4,答:当x=4时,游戏对双方是公平的.【点评】此题考查游戏的公平性问题,关键是根据A、B两位同学的概率解答.21.【分析】(1)将A点坐标,B点坐标代入解析式可求m,n的值(2)用待定系数法可求一次函数解析式,根据S△AOB =S△AOC﹣S△BOC可求△AOB的面积.(3)由图象直接可得【解答】解:(1)∵反比例函数y=过点A(﹣1,3),B(﹣3,n)∴m=3×(﹣1)=﹣3,m=﹣3n∴n=1故答案为﹣3,1(2)设一次函数解析式y=kx+b,且过(﹣1,3),B(﹣3,1)∴解得:∴解析式y =x +4∵一次函数图象与x 轴交点为C∴0=x +4∴x =﹣4∴C (﹣4,0)∵S △AOB =S △AOC ﹣S △BOC∴S △AOB =×4×3﹣×4×1=4(3)∵kx +b ≥∴一次函数图象在反比例函数图象上方∴﹣3≤x ≤﹣1故答案为﹣3≤x ≤﹣1【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法,利用函数图象上的点满足函数关系式解决问题是本题关键.22.【分析】(1)根据表格中电费收取方法计算即可得到结果;(2)根据题意确定出他们家12月的用电量范围,设为x 度,由表格中的电费收取方式列出方程,求出方程的解即可得到结果;(3)设12月用电y 度,则11月用电(480﹣y )度,根据11月份用电量少于12月份,得出y >240,分类讨论y 的范围确定出x 的值即可.【解答】解:(1)根据题意得:0.5×150=75,180×0.5+0.6×(250﹣180)=132; 故答案为:75;132;(2)设12月用电量为x 度,由题意,当用电量为400度时,电费222元;当用电量为180度时,电费90元;∴181≤x ≤400,180×0.5+(x ﹣180)×0.6=150,解得:x =280,即用电280度;(3)设12月用电y 度,则11月用电(480﹣y )度,由题意,y >240,①当y>400时,11月用电在180度内,(480﹣y)×0.5+180×0.5+(400﹣180)×0.6+(x﹣400)×0.8=262.6,解得:x=402,则11月用电78度,12月用电402度;②当300<y≤400时,11月用电在180度内,12月用电在181﹣400度,(480﹣y)×0.5+180×0.5+(y﹣180)×0.6,解得:y=406>400,舍去;③当240<y≤300时,两个月用电量都在181﹣400度,180×0.5+(y﹣180)×0.6+180×0.5+(480﹣y﹣180)×0.6=262.6,方程无解,综上,11月用电78度,12月用电402度.【点评】此题考查了一元一次方程的应用,弄清题意是解本题的关键.23.【分析】(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)过P作PE⊥x轴,交x轴于点E,交直线BC于点F,用P点坐标可表示出PF的长,则可表示出△PBC的面积,利用二次函数的性质可求得△PBC面积的最大值及P点的坐标.【解答】解:(1)设抛物线解析式为y=ax2+bx+c,把A、B、C三点坐标代入可得,解得:,∴抛物线解析式为y=x2﹣3x﹣4;(2)∵点P在抛物线上,∴可设P(t,t2﹣3t﹣4),过P作PE⊥x轴于点E,交直线BC于点F,如图1,∵B (4,0),C (0,﹣4)∴直线BC 解析式为y =x ﹣4,∴F (t ,t ﹣4),∴PF =(t ﹣4)﹣(t 2﹣3t ﹣4)=﹣t 2+4t ,∴S △PBC =S △PFC +S △PFB ===, ∴当t =2时,S △PBC 最大值为8,此时t 2﹣3t ﹣4=﹣6,∴当P 点坐标为(2,﹣6)时,△PBC 的最大面积为8.【点评】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、三角形的面积、方程思想等知识.在(1)中注意待定系数法的应用,在(2)中用P 点坐标表示出△PBC 的面积是解题的关键.24.【分析】(1)连接OA ,证明△DAB ≌△DAE ,得到AB =AE ,得到OA 是△BDE 的中位线,根据三角形中位线定理、切线的判定定理证明;(2)利用正弦的定义计算;(3)证明△CDF ∽△AOF ,根据相似三角形的性质得到CD =CE ,根据等腰三角形的性质证明.【解答】(1)证明:连接OA ,由圆周角定理得,∠ACB =∠ADB ,∵∠ADE =∠ACB ,∴∠ADE =∠ADB ,∵BD 是直径,∴∠DAB =∠DAE =90°,在△DAB 和△DAE 中,,∴△DAB≌△DAE,∴AB=AE,又∵OB=OD,∴OA∥DE,又∵AH⊥DE,∴OA⊥AH,∴AH是⊙O的切线;(2)解:由(1)知,∠E=∠DBE,∠DBE=∠ACD,∴∠E=∠ACD,∴AE=AC=AB=6.在Rt△ABD中,AB=6,BD=8,∠ADE=∠ACB,∴sin∠ADB==,即sin∠ACB=;(3)证明:由(2)知,OA是△BDE的中位线,∴OA∥DE,OA=DE.∴△CDF∽△AOF,∴==,∴CD=OA=DE,即CD=CE,∵AC=AE,AH⊥CE,∴CH=HE=CE,∴CD=CH,∴CD=DH.【点评】本题考查的是圆的知识的综合应用,掌握圆周角定理、相似三角形的判定定理和性质定理、三角形中位线定理是解题的关键.。
2021年浙江省温州中考数学一模试卷一、选择题(本大题共10小题,共40.0分)1.2的相反数是()A. 2B. −2C. 12D. −122.如图,由相同的小正方体搭成的几何体的主视图是()A.B.C.D.3.计算−2ab⋅a2的结果是()A. 2a2bB. −2a2bC. −2a3bD. 2a3b4.我校七年级举行大合唱比赛,六位评委给七年级一班的打分如下:(单位:分)9.2,9.4,9.6,9.5,9.8,9.5,则该班得分的平均分为()A. 9.45分B. 9.50分C. 9.55分D. 9.60分5.由于新冠疫情影响,某口罩加工厂改进技术,扩大生产,从10月份开始,平均每个月生产量的增长率为50%,已知第四季度的生产量为2375万个,设10月份口罩的生产量为x万个,则可列方程()A. x(1+50%)2=2375B. x+x(1+50%)2=2375C. x+x(1+50%)+x(1+50%)2=2375D. x(1+50%)+x(1+50%)2=23756.如图,四边形ABCD是⊙O的内接四边形,它的一个外角∠CBE=70°,则∠AOC的度数为()A. 70°B. 110°C. 140°D. 160°7.如图是一张高脚木凳,AC//EF//GH,AB=CD,点E,G是AB的三等分点,已知EF与GH之间的距离为25cm,∠EGH=80°,则椅脚AB的长度为()cm.A. 25sin80∘B. 75sin80°C. 75sin80∘D. 75tan80∘8.已知一次函数y=ax+1(a≠0)与x轴交于点A,与反比例函数y=4交于点B,过x 点B作BC⊥x轴于点C,OC=OA,则线段AB的长为()A. 2√3B. 2√5C. 5D. 2√109.若m,n(m<n)是关于x的一元二次方程(x−a)(x−b)−3=0的两根,且a<b,则m,n,a,b的大小关系是()A. m<n<a<bB. a<m<n<bC. a<m<b<nD. m<a<b<n10.我国汉代数学家赵爽为了证明勾股定理,创制了一幅弦图,后人称其为赵爽弦图(如图1).图2为小明同学根据弦图思路设计的.在正方形ABCD中,以点B为圆心,AB 为半径作AC⏜,再以CD为直径作半圆交AC⏜于点E,若边长AB=10,则△CDE的面积为()A. 20B. 252√3 C. 24 D. 10√5二、填空题(本大题共6小题,共30.0分)11.分解因式:a2−9=______.12.不等式组{x−13+x>−32x+3≤9的解集为______ .13.某校初三(1)班同学参加内容为“最适合自己的考前减压方式”的调查,收集并整理数据绘制如图扇形统计图,已知选择享用美食的8人,则选择体育运动的有______ 人.14.如图,点O为平行四边形ABCD的对角线AC和BD的交点,点E为边BC的中点,连接AE交BD于点F,则OFBD的值为______ .15.如图,在⊙O内放置两个全等菱形ABCD和菱形EFGH.点A,C,E,G均在同一直径上,点A,B,F,G,H,D均在圆周上,已知AB=4√13,AE=10.则⊙O的半径为______ .16.某游乐场经过改造之后游客明显增多,现需要在入口处增建一个大型售货亭如图1.小羽设计该售货亭主体结构,其侧面为Rt△ABE与矩形BCDE组合而成如图2,其中∠A=90°,AE=2.4米,BE=5.1米,A点到地面CD的距离5米,已知立柱BC 造价每米400元,立柱DE造价每米340元.则图2中立柱DE的造价为______ 元.在综合考虑造价与占地面积后,小哲在图2的基础上保持Rt△ABE形状大小以及点A 到地面CD的距离不变,给出图3的设计,此时DE=3.08米,则图3中立柱BC的造价为______ 元.三、解答题(本大题共8小题,共80.0分)17.(1)计算:−4sin30°+(√2−1)0+√8.(2)化简:(1−1x )×xx2−1.18.如图,在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,AC=CD,BC=CE.(1)求证:AB=DE.(2)若AB=1,AC=AE,求CD的长.19.为了缓解我校周五放学家长接送学生造成校门口的拥堵情况,我校党委成立“交通管理志愿者服务队”,设立三个交通管理点:①中学东门,②中学南门,③小学门口.李老师和王老师报名参加了志愿者服务工作,学校将报名的志愿者随机分配到三个管理点.(1)李老师被分配到“中学东门”的概率为______ .(2)用列表法或画树状图法,求李老师和王老师都被分配到中学东门的概率.20.如图,在6×6的方格纸中,线段AB的两个端分别落在格点上,请按要求画图:(1)在图1中画一个格点四边形APBQ,且AB与PQ垂直.(2)在图2中画一个以AB为中位线的格点△DEF.21.已知抛物线l:y=−x2+bx经过点(4,0),点A,点B均在抛物线上,且AB//x轴.(1)求b的值和抛物线的顶点坐标.(2)在第一象限内作一个矩形ABCD,点C,D落在x轴上.将抛物线l平移,使抛物线顶点落在矩形ABCD 内部(包括顶点),新抛物线与y轴交点为(0,c),若AB=2,请求出c的取值范围.22.如图,在△ABC中,BA=BC,以AB为直径作⊙O,交边AC于点D,交CB的延长线于点E,连接DE交AB于点F.(1)求证:AD=DE.(2)若sin∠ABE=√15,AD=2√10,求⊙O的直径4和EF的长.23.为了推进现代化教育,教育局决定给某区每所中学配备m台电脑,每所小学配备n台电脑.现有甲、乙两家企业愿意捐赠其结对的学校所需的电脑(结对学校数的情况如图),甲企业计划捐赠295台,乙企业计划捐赠305台.(1)求m,n的值.(2)现两家企业决定在计划购买电脑总金额1650000元不变的情况下,统一购买A,B两种型号电脑(单价如下表).在实际购买时,商家给予打折优惠:A,B两种型号电脑分别打a折和b折(a≤b<10,a、b都是整数),最后购进的电脑总数比计划多100台.求实际购买的A,B两种型号电脑各多少台.型号A B单价(元/台)3000250024.如图,已知正方形ABCD,AB=8,点M为射线DC上的动点,射线AM交BD于E,交射线BC于F,过点C作CQ⊥CE,交AF于点Q.(1)当BE=2DE时,求DM的长.(2)当M在线段CD上时,若CQ=3,求MF的长.(3)①当DM=2CM时,作点D关于AM的对称点N,求tan∠NAB的值.②若BE=4DE,直接写出△CQE与△CMF的面积比______ .答案和解析1.【答案】B【解析】【分析】本题考查了相反数的知识,根据相反数的定义求解即可.【解答】解:2的相反数为:−2.故选B.2.【答案】D【解析】解;从正面看第一层是三个正方形,第二层是中间一个正方形.故选:D.根据从正面看得到的图形是主视图,可得答案.本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.【答案】C【解析】解:−2ab⋅a2=−2a3b.故选:C.直接利用单项式乘多项式运算法则计算得出答案.此题主要考查了单项式乘多项式运算,正确掌握相关运算法则是解题关键.4.【答案】B【解析】解:(9.2+9.4+9.6+9.5+9.8+9.5)÷6=9.50(分).故该班得分的平均分为9.50分.故选:B.根据求平均数的计算公式计算即可求解.本题考查了平均数的求法,熟记平均数的公式是解决本题的关键.5.【答案】C【解析】解:设10月份口罩的生产量为x万个,则11月份口罩的生产量为x(1+50%)万个,12月份口罩的生产量为x(1+50%)2万个,依题意得:x+x(1+50%)+x(1+50%)2=2375.故选:C.设10月份口罩的生产量为x万个,则11月份口罩的生产量为x(1+50%)万个,12月份口罩的生产量为x(1+50%)2万个,根据第四季度的生产量为2375万个,即可得出关于x的一元一次方程,此题得解.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.6.【答案】C【解析】解:∵∠CBE是圆内接四边形ABCD的一个外角,∠CBE=70°,∴∠D=∠CBE=70°,由圆周角定理得,∠AOC=2∠D=140°,故选:C.根据圆内接四边形的性质求出∠D,再根据圆周角定理计算,得到答案.本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的任意一个外角等于它的内对角是解题的关键.7.【答案】C【解析】解:∵E,G是AB的三等分点,∴AE=EG=GB=13AB,∴AE:EG:GB=1:1:1,∵AC//EF//GH,∴AEEG =CFFH,∵AEEG=1,∴CFFH=1,∴CF=FH,过E点作ME⊥GH于M,∵EF//GH,∴EM即为EF与GH之间的距离,在Rt△EMG中,sin∠EGM=EMEG,∵∠EGM=∠EGH=80°,且EF与GH之间的距离为25cm,∴EM=25cm,∴sin∠EGM=sin80°=EMEG,∴EG=EMsin80∘=25sin80∘(cm),∵EG=13AB,∴AB=3EG=3×25sin80∘=75sin80∘(cm),故选:C.根据平行线线段成比例得出CF=FH,过E点作ME⊥GH于M,进而利用直角三角形的三角函数解答即可.此题考查解直角三角形的应用,关键是根据直角三角形的三角函数解答.8.【答案】B【解析】解:在y=ax+1中,当x=0时,y=1,∴D(0,1),∴OD=1,∵BC⊥x轴于点C,∴BC//OD,又OA=OC,∴OAAC =ODBC,即12=1BC,∴BC=2,∴B点的纵坐标为2,代入y=4x,可得B点的横坐标为2,∴A(−2,0),B(2,2),∴AB=√(2+2)2+(2−0)2)=2√5,故选:B.根据一次函数的解析式求得D的坐标,进而B点的纵坐标,代入反比例函数解析式求得横坐标,得到A、B点的坐标,根据勾股定理即可求得AB.本题考查了一次函数和反比例函数图象的交点问题,求得A、B的坐标是解题的关键.9.【答案】D【解析】解:如图,抛物线y2=(x−a)(x−b)与x轴交点(a,0),(b,0),抛物线与直线y1=3的交点为(m,3),(n,3),由图象可知m<a<b<n.故选:D.由(x−a)(x−b)−3=0可以将(m,3),(n,3)看成直线y1=3与抛物线y2=(x−a)(x−b)两交点,画出大致图象即可以判断.此题考查的是一元二次方程根的分布,一元二次方程转化为二次函数与x轴的交点问题,在此题中关键在于能够对(x−a)(x−b)−3=0拆分成直线y1=3与抛物线y2=(x−a)(x−b),再通过大致图象即可解题,这也给我提供了一种解决此类问题的技巧.10.【答案】A【解析】解:取CD的中点F,连接BF、BE、EF,由题意可得,FE=FC,BE=BC,∴BF是EC的垂直平分线,∴∠FBC+∠BCE=90°,∵∠BCD=90°,∴∠DCE+∠BCE=90°,∴∠FBC=∠DCE,又∵∠BCF=∠CED=90°,∴△BCF∽△CED,∴BCCE =CFED=BFCD,∵BC=10,CD=10,CF=5,∠BCF=90°,∴BF=√102+52=5√5,∴10CE =5ED=5√510,解得CE=4√5,ED=2√5,∴△CDE的面积为:4√5×2√5=20,2故选:A.根据题意,作出合适的辅助线,然后根据相似三角形的判定与性质,可以得到DE和CE的值,从而可以求得△CDE的面积.本题考查圆的有关计算、勾股定理、正方形的性质、线段垂直平分线的性质、相似三角形的判定与性质,解答本题的关键是明确题意,利用数形结合的思想解答.11.【答案】(a+3)(a−3)【解析】解:a2−9=(a+3)(a−3).故答案为:(a+3)(a−3).直接利用平方差公式分解因式,进而得出答案.此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.12.【答案】−2<x≤3+x>−3,得:x>−2,【解析】解:解不等式x−13解不等式2x+3≤9,得:x≤3,故答案为:−2<x≤3.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.【答案】12【解析】解:由题意知,参与调查的总人数为8÷20%=40(人),所以选择体育运动的有40×30%=12(人),故答案为:12.先根据选择享用美食的人数及其所占百分比求出参与调查的总人数,再用总人数乘以选择体育运动的人数所占百分比即可得出答案.本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.14.【答案】16【解析】解:连接OE,如图,∵四边形ABCD为平行四边形,∴OA=OC,OB=OD,∵点E为边BC的中点,∴OE为△CAB的中位线,∴OE//AB,OE=12AB,∵OB//AB,∴△OEF∽△BAF,∴OFBF =OEAB=12,∴OFOB =13,∴OFBD =16.故答案为16.连接OE,如图,根据平行四边形的性质得到OA=OC,OB=OD,则OE为△CAB的中位线,所以OE//AB,OE=12AB,证明△OEF∽△BAF,利用相似比得到OFBF=12,然后根据比例的性质求OFBD的值.本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系;也考查了平行四边形的性质.15.【答案】13【解析】解:连接BD交AG于J,连接OA.由题意AE=CG=10,∵OA=OC,∴OE=OC,设OE=OC=x,则OA=OB=x+10,AC=AE+EC=10+2x,∵OA⊥BD,AJ=IC,∴AJ=JC=5+x,OJ=x+10−(5+x)=5,∵BE2=AB2−AJ2=OB2−OJ2,∴(4√13)2−(5+x)2=(x+10)2−52,∴x=3或−18(舍弃),∴OA=13,故答案为:13.连接BD交AG于J,连接OA.设OE=OC=x,则OA=OB=x+10,AC=AE+EC= 10+2x,根据BE2=AB2−AJ2=OB2−OJ2,构建方程求解即可.本题考查菱形的性质,垂径定理,解直角三角形等知识,解题的关键是理解题意,学会利用参数构建方程解决问题.16.【答案】980 960【解析】解:作AH⊥CD交BE于F,∵BE=5.1米,AH=2.4米,∠HAE=90°,∴AB=4.5(米),∴S△AEB=12×4.5×2.4,∵S△AEB12×5.1×AF,∴AF=12×4.5×2.412×5.1=3617(米),∵AH=5(米),∴DE=HF=5−3617=4917(米),∴DE的造价为4917×340=980(元),如图,将其补成最大矩形,由DM=5米,DE=3.08米,∴EH=1.92(米),∵∠EAB=90°,∴AB=√BE2−AE2=√5.12−2.42=4.5(米),∵∠TAB+∠EAH=90°,∠TBA+∠TAB=90°,∴∠TBA=∠EAH,∠BTA=∠AHE=90°,∴△ATB∽△EHA,∴HEAE =ATAB,∴1.922.4=AT4.5,∴AT=3.6(米),∴TB=√4.52−3.62=2.7(米),∴BC=TC−TB=HD−TB=2.3(米),∴造价为2.3×400=960(元),故答案为:980;960.作AH⊥CD交BE于F,根据三角形面积公式得出AF,进而利用勾股定理解答即可.此题考查勾股定理的应用,关键是根据勾股定理和三角形面积公式解答.17.【答案】解:(1)原式=−4×12+1+2√2=−1+2√2.(2)原式=x−1x ⋅x(x+1)(x−1)=1x+1.【解析】(1)根据特殊角的锐角三角函数、零指数幂的意义以及二次根式的运算法则即可求出答案.(2)分式的运算法则即可求出答案.本题考查实数的以及分式的运算,解题的关键是熟练运用分式的运算法则以及实数的运算法则,本题属于基础题型.18.【答案】解:(1)证明:∵∠BCE=∠ACD=90°,∴∠ACB=∠DCE,在△ABC和△DEC中,{AC=CD∠ACB=∠DCE BC=CE,∴△ABC≌△DEC(SAS),∴AB=DE;(2)∵AC=AE,AC=CD,∴AC=AE=CD,在Rt△ACD中,根据勾股定理,得AD2=AC2+CD2,∴(CD+DE)2=CD2+CD2,∴(CD+1)2=2CD2,解得CD=1+√2或CD=1−√2(舍去),∴CD的长为1+√2.【解析】(1)由“SAS”可证△ABC≌△DEC,可得结论;(2)由等腰直角三角形的性质和勾股定理可求解.本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,掌握全等三角形的判定是本题的关键.19.【答案】13【解析】解:(1)∵共有三个交通管理点,分别是:①中学东门,②中学南门,③小学门口,∴李老师被分配到“中学东门”的概率为1.3.故答案为:13(2)根据题意列表如下:共有9种等可能的结果,其中李老师和王老师都被分配到中学东门的有1种,.所以李老师和王老师都被分配到中学东门的概19(1)直接根据概率公式求解即可;(2)列表得出所有等可能结果,从中找到李老师和王老师都被分配到中学东门的结果,再利用概率公式求解即可.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.【答案】解:(1)如图1中,四边形APBQ即为所求作(答案不唯一).(2)如图,△DEF即为所求作(答案不唯一).【解析】(1)根据要求作出图形即可(答案不唯一).(2)根据要求作出图形即可(答案不唯一).本题考查作图−应用与设计作图,解题的关键是理解题意,灵活运用所学知识解决问题. 21.【答案】解:(1)∵抛物线l :y =−x 2+bx 经过点(4,0),∴−16+4b =0,∴b =4,∴抛物线l 为:y =−x 2+4x ,∵y =−x 2+4x =−(x −2)2+4,∴顶点坐标为(2,4);(2)设A 、B 点的横坐标为x 1,x 2,∵对称轴x =2,∴x 1+x 2=4,∵AB =2,∴x 1−x 2=2,由{x 1+x 2=4x 1−x 2=2解得{x 1=3x 2=1, 把x =1代入y =−x 2+4x 得y =3,∴A(3,3),B(1,3),∴D(3,0),当抛物线顶点移到点B 时,则y =−(x −1)2+3,令x =0,则y =2,∴c =2,当抛物线顶点移到点D 时,则y =−(x −3)2,令x =0,则y =−9,∴c =−9,∴−9≤c ≤2.【解析】(1)把点(4,0)代入y=−x2+bx,利用待定系数法即可求得解析式,然后把解析式化成顶点式即可求得顶点坐标;(2)根据题意求得A、B的坐标,即可求得D的坐标,根据A、D的坐标即可求得抛物线的解析式,令x=0,与y轴的交点,求得c的值,根据图象即可求得符合题意的c的取值.本题考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征,矩形的性质,求得A、B的坐标是解题的关键.22.【答案】(1)证明:连接BE,∵BA=BC,∴∠A=∠C,∵∠A=∠E,∴∠E=∠C,∴DE=DC,∵AB为⊙O的直径,∴∠AB=90°,即BD⊥AC,∴AD=DC,∴AD=DE;(2)解:连接AE,设⊙O的半径为r,在Rt△ABE中,根据sin∠ABE=√154得,AEAB=AE2r=√154,∴AE=√152r,由勾股定理得BE=12r,∵AD=2√10,AD=CD=DE,∴AC=4√10,DE=2√10,在Rt△ACE中,∵AC2=AE2+CE2,∴(4√10)2=(52r)2+(√152r)2,解得r=4,∴⊙O的直径为8,连接OD,∵AO =BO ,AD =CD ,∴OD//BC ,∴OD//BE ,∴△DOF∽△EBF ,∴OD BE=DF EF , ∴r 12r =2√10−EF EF, 解得EF =2√103.【解析】(1)连接BE ,根据等腰三角形的性质和圆周角定理DE =DC ,再根据等腰三角形的性质证得AD =DC ,即可得到AD =DE ;(2)连接AE ,设⊙O 的半径为r ,在Rt △ABE 中,根据三角函数的意义得到AE =√152r ,由勾股定理得BE =12r ,在Rt △ACE 中,根据勾股定理r =4,可得⊙O 的直径为8.连接OD ,证得△DOF∽△EBF ,根据相似三角形的性质即可求得EF .本题主要考查了相似三角形的性质和判定,圆周角定理,勾股定理,等腰三角形的性质,解直角三角形等知识,正确作出辅助线是解决问题的关键. 23.【答案】解:(1)由题意得:{4m +3n =2952m +5n =305, 解得:{m =40n =45; (2)设购买的A ,B 两种型号电脑分别为x 台、(295+305+100−x)台,即(700−x)台,由题意得:3000×0.1ax +2500×0.1b(700−x)=1650000,整理得:x =1650000−175000b 300a−250b ,∵A 型电脑台数小于700台,∴1650000−175000b 300a−250b<700, 解得:a >557,又∵a ≤b <10,a 、b 都是整数,∴有三种情况:①{a =8b =8,②{a =8b =9,③{a =9b =9, 代入方程检验得:①x =625,②x =500,③x 不是整数,舍去;∴实际购买A 型625台,B 型电脑75台或A 型500台,B 型电脑200台.【解析】(1)由题意得出方程组,解方程组即可;(2)设购买的A,B两种型号电脑分别为x台、(295+305+100−x)台,即(700−x)台,由题意得出方程,进而得出得1650000−175000b300a−250b <700,则a>557,再由∵a≤b<10,a、b都是整数,得出有三种情况,即可解决问题.本题考查了二元一次方程组的应用以及不等式的应用,根据题意列出正确的方程组和不等式是本题的关键.24.【答案】1730【解析】解:(1)∵四边形ABCD是正方形,∴AB//CD,∴△ABE∽△MDE,∴ABDM =BEDE,∵BE=2DE,AB=8,∴ABDM =BEDE=2,∴DM=12AB=4;(2)∵四边形ABCD是正方形,∴AD=CD=AB=8,∠ADC=∠BCD=90°,∠ADE=∠CDE=45°,AD//BC,∴∠EAD=∠F,又∵DE=DE,∴△ADE≌△CDE(SAS),∴∠EAD=∠ECM,∵CQ⊥CE,∴∠ECQ=90°=∠BCD,∴∠ECM=∠QCF,∴∠F=∠QCF,∴CQ=FQ,又∵∠F+∠CMQ=∠QCF+∠MCQ=90°,∴∠CMQ=∠MCQ,∴CQ=MQ,∴CQ=MQ=FQ=12MF=3,∴MF=6;(3)①a、当点N在正方形内部时,延长AN交BC于点G,如图1所示:∵DM=2CM,CD=8,∴CM=13CD=83,∵四边形ABCD是正方形,∴BC=AB=8,AB//CD,AD//BC,∴∠DAF=∠F,△MCF∽△ABF,∴CFBF =CMAB=13,∴CF=13BF,∴CF=12AB=4,∴BF=AB+CF=12,由对称的性质得:∠GAF=∠DAF,∴∠GAF=∠F,∴AG=FG,设BG=x,则AG=FG=12−x,在Rt△ABG中,由勾股定理得:AB2+BG2=AG2,即82+x2=(12−x)2,解得:x=103,∴BG=103,∴tan∠NAB=BGAB =1038=512;b、当点N在正方形外部时,连接AN、MN,延长AB交MN 于点G,如图2所示:由得出的性质得:∠N=∠ADC=90°,AN=AD=8,∠AMN=∠AMD,同上得:∠BAM=∠AMD=∠NMA,∴AG=MG,设NG=x,则AG=MG=16−x,在Rt△ANG中,由勾股定理得:AN2+NG2=AG2,即82+x2=(16−x)2,解得:x =6,∴NG =6,∴tan∠NAB =NG AN =68=34; 综上所述,tan∠NAB 的值为512或34; ②过E 作EP ⊥CD 于P ,如图3所示: 则EP//BC , ∴△DEP∽△DBC ,∴DPDC =EPBC =DEBD ,∵BE =4DE ,∴BD =5DE ,∴DP DC =EP BC =DE BD =15,∴DP =EP =15BC =85,∵AB//CD ,∴△MDE∽△ABE ,∴DMAB =MEAE=DE BE =14, ∴DM =14AB =2,ME AM =15, ∴CM =CD −DM =8−2=6,AM =√AD 2+DM 2=√82+22=2√17,∴EM =15AM =2√175,∵AB//CD ,∴△MCF∽△ABF ,∴MFAF =MCAB =68=34, ∴MF =3AM =6√17,同(2)得:CQ =MQ =FQ =12MF =3√17,∴EQ =EM +MQ =2√175+3√17=17√175, ∴△CQE 与△CMF 的面积比=EQ MF =17√1756√17=1730, 故答案为:1730.(1)证△ABE∽△MDE,得ABDM =BEDE,则ABDM=BEDE=2,即可得出答案;(2)证△ADE≌△CDE(SAS),得∠EAD=∠ECM,再证∠ECM=∠QCF=∠F,得CQ= MQ=FQ=12MF=3,则MF=6;(3)①a、当点N在正方形内部时,延长AN交BC于点G,证△MCF∽△ABF,得CFBF =CMAB=13,则CF=12AB=4,BF=AB+CF=12,再证AG=FG,设BG=x,则AG=FG=12−x,由勾股定理得:AB2+BG2=AG2,即82+x2=(12−x)2,得BG=103,即可求解;b、当点N在正方形外部时,连接AN、MN,延长AB交MN于点G,证AG=MG,设NG=x,则AG=MG=16−x,由勾股定理得:AN2+NG2=AG2,求出NG=6,即可求解;②过E作EP⊥CD于P,由相似三角形的判定与性质求出EQ和MF的长,即可解决问题.本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质、等腰直角三角形的判定与性质、平行线的性质、轴对称的性质、勾股定理、锐角三角函数定义等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解题的关键.。
2020年中考数学第一次模拟测试试卷一、选择题(共10小题)1.下列各数中是负数的是()A.|﹣3|B.﹣3C.﹣(﹣3)D.2.下列方程中,是一元一次方程的为()A.3x+2y=6B.4x﹣2=x+1C.x2+2x﹣1=0D.﹣3=3.下列各项中,不是由平移设计的是()A.B.C.D.4.下列六个数:0、、、π、﹣、中,无理数出现的频数是()A.3B.4C.5D.65.下列运算正确的是()A.a15÷b5=a3B.4a•3a2=12a2C.(a﹣b)2=a2﹣b2D.(2a2)2=4a46.如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是()A.﹣1B.1C.﹣5D.57.如图,在正方形ABCD中,AB=4cm,动点E从点A出发,以1cm/秒的速度沿折线AB ﹣BC的路径运动,到点C停止运动.过点E作EF∥BD,EF与边AD(或边CD)交于点F,EF的长度y(cm)与点E的运动时间x(秒)的函数图象大致是()A.B.C.D.8.如图,在平面直角坐标系中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B、C在反比例函数y=(x>0)的图象上,则△OAB的面积等于()A.2B.3C.4D.69.某校九年级(1)班在举行元旦联欢会时,班长觉得快要毕业了,决定临时增加一个节目:班里面任意两名同学都要握手一次.小张同学统计了一下,全班同学共握手了465次.你知道九年级(1)班有多少名同学吗?设九年级(1)班有x名同学,根据题意列出的方程是()A.=465B.=465C.x(x﹣1)=465D.x(x+1)=46510.如图,△ABC,AC=3,BC=4,∠ACB=60°,过点A作BC的平行线1,P为直线l上一动点,⊙O为△APC的外接圆,直线BD交⊙O于E点,则AE的最小值为()A.B.7﹣4C.D.1二.填空题(共6小题)11.因式分解:xy2﹣9x=.12.已知a、b满足方程组,则a+b的值为.13.如图是七年级(21)班学生上学的不同方式的扇形统计图,若步行人数所占的圆心角的度数为72°,坐车的人数占40%,骑车人数为20人,则该班人数为人.14.如图两条相交直线y1与y2的图象如图所示,当x时,y1<y2.15.如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴与点B,点C在x 轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为.16.如图,在菱形ABCD中,∠B=60°,AB=2,M为边AB的中点,N为边BC上一动点(不与点B重合),将△BMN沿直线MN折叠,使点B落在点E处,连接DE、CE,当△CDE为等腰三角形时,BN的长为.三.解答题(共8小题,共80分)17.(1)计算:(﹣3)2+20170﹣×sin45°(2)解方程:+2=18.已知:如图,在平面直角坐标系中.(1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1三个顶点的坐标:A1(),B1(),C1();(2)直接写出△ABC的面积为;(3)在x轴上画点P,使PA+PC最小.19.已知:如图,在▱ABCD中,BD是对角线,AE⊥BD于E,CF⊥BD于F.求证:BF=DE20.每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.21.已知,如图,抛物线y=﹣x2+bx+c经过直线y=﹣x+3与坐标轴的两个交点A,B.此抛物线与x轴的另一个交点为C.抛物线的顶点为D.(1)求此抛物线的解析式.(2)若点M为抛物线上一动点,是否存在点M.使△ACM与△ABC的面积相等?若存在,求点M的坐标;若不存在,请说明理由.22.如图,AB是O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE于点F.(1)求证:CF=BF;(2)若AD=6,⊙O的半径为5,求BC的长.23.某植物园有一块足够大的空地,其中有一堵长为a米的墙,现准备用20米的篱笆围两间矩形花圃,中间用篱笆隔开.小俊设计了如图甲和乙的两种方案:方案甲中AD的长不超过墙长;方案乙中AD的长大于墙长.(1)若a=6.①按图甲的方案,要围成面积为25平方米的花圃,则AD的长是多少米?②按图乙的方案,能围成的矩形花圃的最大面积是多少?(2)若0<a<6.5,哪种方案能围成面积最大的矩形花圃?请说明理由.24.如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且AD=AE,连接DE.(1)如图①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度数;(2)如图②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度数;(3)当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE的数量关系,并说明理由.参考答案一.选择题(共10小题,每小题4分,共40分)1.下列各数中是负数的是()A.|﹣3|B.﹣3C.﹣(﹣3)D.解:﹣3的绝对值=3>0;﹣3<0;﹣(﹣3)=3>0;>0.故选:B.2.下列方程中,是一元一次方程的为()A.3x+2y=6B.4x﹣2=x+1C.x2+2x﹣1=0D.﹣3=解:A、是二元一次方程,错误;B、是一元一次方程,正确;C、是一元二次方程,错误;D、是分式方程,错误;故选:B.3.下列各项中,不是由平移设计的是()A.B.C.D.解:根据平移的性质可知:A、B、C选项的图案都是由平移设计的,D选项的图案是由旋转设计的.故选:D.4.下列六个数:0、、、π、﹣、中,无理数出现的频数是()A.3B.4C.5D.6解:0、、、π、﹣、中,无理数有:、、π,则无理数出现的频数是3.故选:A.5.下列运算正确的是()A.a15÷b5=a3B.4a•3a2=12a2C.(a﹣b)2=a2﹣b2D.(2a2)2=4a4解:A、原式=b10,不符合题意;B、原式=12a3,不符合题意;C、原式=a2﹣2ab+b2,不符合题意;D、原式=4a4,符合题意,故选:D.6.如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是()A.﹣1B.1C.﹣5D.5解:∵点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,又∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,∴a=﹣2,b=3.∴a+b=1,故选B.7.如图,在正方形ABCD中,AB=4cm,动点E从点A出发,以1cm/秒的速度沿折线AB ﹣BC的路径运动,到点C停止运动.过点E作EF∥BD,EF与边AD(或边CD)交于点F,EF的长度y(cm)与点E的运动时间x(秒)的函数图象大致是()A.B.C.D.解:∵四边形ABCD是正方形,EF∥BD,∴当0≤x≤4时,y=,当4<x≤8,y==,故符合题意的函数图象是选项A.故选:A.8.如图,在平面直角坐标系中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B、C在反比例函数y=(x>0)的图象上,则△OAB的面积等于()A.2B.3C.4D.6解:如图,过点B、点C作x轴的垂线,垂足为D,E,则BD∥CE,∴==,∵OC是△OAB的中线,∴===,设CE=x,则BD=2x,∴C的横坐标为,B的横坐标为,∴OD=,OE=,∴DE=OE﹣OD=,∴AE=DE=,∴OA=OE+AE=,∴S△OAB=OA•BD=××2x=3.故选:B.9.某校九年级(1)班在举行元旦联欢会时,班长觉得快要毕业了,决定临时增加一个节目:班里面任意两名同学都要握手一次.小张同学统计了一下,全班同学共握手了465次.你知道九年级(1)班有多少名同学吗?设九年级(1)班有x名同学,根据题意列出的方程是()A.=465B.=465C.x(x﹣1)=465D.x(x+1)=465解:设九年级(1)班有x名同学,根据题意列出的方程是=465,故选:A.10.如图,△ABC,AC=3,BC=4,∠ACB=60°,过点A作BC的平行线1,P为直线l上一动点,⊙O为△APC的外接圆,直线BD交⊙O于E点,则AE的最小值为()A.B.7﹣4C.D.1解:如图,连接CE.∵AP∥BC,∴∠PAC=∠ACB=60°,∴∠CEP=∠CAP=60°,∴∠BEC=120°,∴点E在以O'为圆心,O'B为半径的上运动,连接OA交于E′,此时AE′的值最小.此时⊙O与⊙O'交点为E'.∵∠BE'C=120°∴所对圆周角为60°,∴BOC=2×60°=120°,∵△BOC是等腰三角形,BC=4,OB=OC=4,∵∠ACB=60°,∠BCO'=30°,∴∠ACO;=90°∴O'A==5,∴AE′=O'A﹣O'E′=5﹣4=1.故选:D.二.填空题(共6小题,每小题5分,共30分)11.因式分解:xy2﹣9x=x(y+3)(y﹣3).解:原式=x(y2﹣9)=x(y+3)(y﹣3).故答案为:x(y+3)(y﹣3).12.已知a、b满足方程组,则a+b的值为5.解:,①+②得:3a+3b=15,则a+b=5,故答案为:513.如图是七年级(21)班学生上学的不同方式的扇形统计图,若步行人数所占的圆心角的度数为72°,坐车的人数占40%,骑车人数为20人,则该班人数为50人.解:∵步行的人数占总人数的百分比为×100%=20%,∴骑车人数占总人数的百分比为1﹣40%﹣20%=40%,∵骑车人数为20人,∴该班人数为20÷40%=50(人),故答案为:50.14.如图两条相交直线y1与y2的图象如图所示,当x>a时,y1<y2.解:观察图象得:当x>a时,y1<y2;故答案为>a.15.如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴与点B,点C在x 轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为.解:连DC,如图,∵AE=3EC,△ADE的面积为3,∴△CDE的面积为1,∴△ADC的面积为4,设A点坐标为(a,b),则AB=a,OC=2AB=2a,而点D为OB的中点,∴BD=OD=b,∵S梯形OBAC=S△ABD+S△ADC+S△ODC,∴(a+2a)×b=a×b+4+×2a×b,∴ab=,把A(a,b)代入双曲线y=,∴k=ab=.故答案为:.16.如图,在菱形ABCD中,∠B=60°,AB=2,M为边AB的中点,N为边BC上一动点(不与点B重合),将△BMN沿直线MN折叠,使点B落在点E处,连接DE、CE,当△CDE为等腰三角形时,BN的长为或2.解:分两种情况:①当DE=DC时,连接DM,作DG⊥BC于G,如图1所示:∵四边形ABCD是菱形,∴AB=CD=BC=2,AD∥BC,AB∥CD,∴∠DCG=∠B=60°,∠A=120°,∴DE=AD=2,∵DG⊥BC,∴∠CDG=90°﹣60°=30°,∴CG=CD=1,∴DG=CG=,BG=BC+CG=3,∵M为AB的中点,∴AM=BM=1,由折叠的性质得:EN=BN,EM=BM=AM,∠MEN=∠B=60°,在△ADM和△EDM中,,∴△ADM≌△EDM(SSS),∴∠A=∠DEM=120°,∴∠MEN+∠DEM=180°,∴D、E、N三点共线,设BN=EN=x,则GN=3﹣x,DN=x+2,在Rt△DGN中,由勾股定理得:(3﹣x)2+()2=(x+2)2,解得:x=,即BN=;②当CE=CD时,CE=CD=AD,此时点E与A重合,N与点C重合,如图2所示:CE=CD=DE=DA,△CDE是等边三角形,BN=BC=2(含CE=DE这种情况);综上所述,当△CDE为等腰三角形时,线段BN的长为或2;故答案为:或2.三.解答题(共8小题,共80分)17.(1)计算:(﹣3)2+20170﹣×sin45°(2)解方程:+2=解:(1)原式=9+1﹣3×=9+1﹣3=7;(2)去分母得:2﹣3x+4x﹣2=2﹣x,移项合并得:2x=2,解得:x=1,经检验x=1是分式方程的解.18.已知:如图,在平面直角坐标系中.(1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1三个顶点的坐标:A1(0,﹣2),B1(﹣2,﹣4),C1(﹣4,﹣1);(2)直接写出△ABC的面积为5;(3)在x轴上画点P,使PA+PC最小.解:(1)如图所示:A1(0,﹣2),B1(﹣2,﹣4),C1(﹣4,﹣1);故答案为:(0,﹣2),(﹣2,﹣4),(﹣4,﹣1);(2)△ABC的面积为:12﹣×1×4﹣×2×2﹣×2×3=5;故答案为:5;(3)如图所示:点P即为所求.19.已知:如图,在▱ABCD中,BD是对角线,AE⊥BD于E,CF⊥BD于F.求证:BF=DE【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD.AB∥CD,∴∠ABE=∠CDF.又∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴BE=DF,∴BE+EF=DF+EF,∴BF=DE.20.每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有2000人;(2)扇形统计图中,扇形E的圆心角度数是28.8°;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.解:(1)本次接受调查的市民人数为300÷15%=2000人,故答案为:2000;(2)扇形统计图中,扇形E的圆心角度数是360°×=28.8°,故答案为:28.8°;(3)D选项的人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为90×40%=36(万人).21.已知,如图,抛物线y=﹣x2+bx+c经过直线y=﹣x+3与坐标轴的两个交点A,B.此抛物线与x轴的另一个交点为C.抛物线的顶点为D.(1)求此抛物线的解析式.(2)若点M为抛物线上一动点,是否存在点M.使△ACM与△ABC的面积相等?若存在,求点M的坐标;若不存在,请说明理由.解:(1)∵直线y=﹣x+3,∴当x=0时,y=3,当y=0时,x=3,∵直线y=﹣x+3与坐标轴的两个交点A,B,∴点A的坐标为(3,0),点B的坐标为(0,3),∵抛物线y=﹣x2+bx+c经过直线y=﹣x+3与坐标轴的两个交点A,B,∴,得,即抛物线的解析式为y=﹣x2+2x+3;(2)存在点M.使△ACM与△ABC的面积相等.∵抛物线y=﹣x2+2x+3=﹣(x﹣3)(x+1)=﹣(x﹣1)2+4与x轴的另一个交点为C.抛物线的顶点为D,∴点C的坐标为(﹣1,0),点D的坐标为(1,4),∵△ACM与△ABC的面积相等,点B的坐标为(0,3),∴点M的纵坐标是3或﹣3,当点M的纵坐标为3时,3=﹣x2+2x+3,得x1=0,x2=2,则点M的坐标为(2,3);当点M的纵坐标为﹣3时,﹣3=﹣x2+2x+3,得x3=+1,x4=﹣+1,则点M的坐标为(+1,﹣3)或(﹣+1,﹣3);由上可得,点M的坐标为(2,3)、(+1,﹣3)或(﹣+1,﹣3).22.如图,AB是O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE于点F.(1)求证:CF=BF;(2)若AD=6,⊙O的半径为5,求BC的长.【解答】(1)证明:连接AC,如图1所示:∵C是弧BD的中点,∴∠DBC=∠BAC,在ABC中,∠ACB=90°,CE⊥AB,∴∠BCE+∠ECA=∠BAC+∠ECA=90°,∴∠BCE=∠BAC,又C是弧BD的中点,∴∠DBC=∠CDB,∴∠BCE=∠DBC,∴CF=BF.(2)解:连接OC交BD于G,如图2所示:∵AB是O的直径,AB=2OC=10,∴∠ADB=90°,∴BD===8,∵C是弧BD的中点,∴OC⊥BD,DG=BG=BD=4,∵OA=OB,∴OG是△ABD的中位线,∴OG=AD=3,∴CG=OC﹣OG=5﹣3=2,在Rt△BCG中,由勾股定理得:BC===2.23.某植物园有一块足够大的空地,其中有一堵长为a米的墙,现准备用20米的篱笆围两间矩形花圃,中间用篱笆隔开.小俊设计了如图甲和乙的两种方案:方案甲中AD的长不超过墙长;方案乙中AD的长大于墙长.(1)若a=6.①按图甲的方案,要围成面积为25平方米的花圃,则AD的长是多少米?②按图乙的方案,能围成的矩形花圃的最大面积是多少?(2)若0<a<6.5,哪种方案能围成面积最大的矩形花圃?请说明理由.解:(1)①设AB的长是x米,则AD=20﹣3x,根据题意得,x(20﹣3x)=25,解得:x1=5,x2=,当x=时,AD=15>6,∴x=5,∴AD=5,答:AD的长是5米;②设BC的长是x米,矩形花圃的最大面积是y平方米,则AB=[20﹣x﹣(x﹣6)]=,根据题意得,y=x()=﹣x2+x=﹣(x>6),∴当x=时,y有最大值为.答:按图乙的方案,能围成的矩形花圃的最大面积是平方米;(2)设BC=x,能围成的矩形花圃的面积为S,按图甲的方案,S=x×=﹣x=﹣,∴在x=a<10时,S的值随x的增大而增大,∴当x=a的最大值n时,S的值最大,为S;按图乙方案,S=[20﹣x﹣(x﹣a)]x=,∴当x=时,S的值最大为S=,此时a取最大值n时,S的值最大为S =;∵﹣[﹣(n﹣10)2+]=>0,∴,故第二种方案能围成面积最大的矩形花圃.24.如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且AD=AE,连接DE.(1)如图①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度数;(2)如图②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度数;(3)当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE的数量关系,并说明理由.解:(1)∵∠B=∠C=35°,∴∠BAC=110°,∵∠BAD=80°,∴∠DAE=30°,∴∠ADE=∠AED=75°,∴∠CDE=180°﹣35°﹣30°﹣75°=40°;(2)∵∠ACB=75°,∠CDE=18°,∴∠E=75°﹣18°=57°,∴∠ADE=∠AED=57°,∴∠ADC=39°,∵∠ABC=∠ADB+∠DAB=75°,∴∠BAD=36°;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β①如图1,当点D在点B的左侧时,∠ADC=x°﹣α,∴,(1)﹣(2)得2α﹣β=0,∴2α=β;②如图2,当点D在线段BC上时,∠ADC=x°+α,∴,(2)﹣(1)得α=β﹣α,∴2α=β;③如图3,当点D在点C右侧时,∠ADC=x°﹣α,∴,(2)﹣(1)得2α﹣β=0,∴2α=β.综上所述,∠BAD与∠CDE的数量关系是2∠CDE=∠BAD.。
2021-2022中考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共10小题,每小题3分,共30分)1.在a2□4a□4的空格□中,任意填上“+”或“﹣”,在所有得到的代数式中,能构成完全平方式的概率是()A.1 B.C.D.2.实数a,b,c,d在数轴上的对应点的位置如图所示,下列结论①a<b;②|b|=|d|;③a+c=a;④ad>0中,正确的有()A.4个B.3个C.2个D.1个3.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查4.在下列网格中,小正方形的边长为1,点A、B、O都在格点上,则A∠的正弦值是()A 5B5C25D.125.小张同学制作了四张材质和外观完全一样的书签,每个书签上写着一本书的名称或一个作者姓名,分别是:《西游记》、施耐庵、《安徒生童话》、安徒生,从这四张书签中随机抽取两张,则抽到的书签正好是相对应的书名和作者姓名的概率是( )A.12B.13C.14D.166.如图,ABC ∆的三边,,AB BC CA 的长分别为20,30,40,点O 是ABC ∆三条角平分线的交点,则::ABO BCO CAO S S S ∆∆∆等于( )A .1∶1∶1B .1∶2∶3C .2∶3∶4D .3∶4∶57.已知一元二次方程2x 2+2x ﹣1=0的两个根为x 1,x 2,且x 1<x 2,下列结论正确的是( )A .x 1+x 2=1B .x 1•x 2=﹣1C .|x 1|<|x 2|D .x 12+x 1=12 8.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则此时轮船所在位置B 与灯塔P 之间的距离为( )A .60海里B .45海里C .203海里D .303海里9.计算327-的值为( )A .26-B .-4C .23-D .-210.如图,在△ABC 中,∠ACB=90°,点D 为AB 的中点,AC=3,cosA=13,将△DAC 沿着CD 折叠后,点A 落在点E 处,则BE 的长为( )A .5B .2C .7D .2二、填空题(本大题共6个小题,每小题3分,共18分)11.在一个不透明的布袋中,红色、黑色的玻璃球共有20个,这些球除颜色外其它完全相同.将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断地重复这个过程,摸了200次后,发现有60次摸到黑球,请你估计这个袋中红球约有_____个.12.若a,b互为相反数,则a2﹣b2=_____.13.阅读下面材料:在数学课上,老师提出如下问题:小亮的作法如下:老师说:“小亮的作法正确”请回答:小亮的作图依据是______.14.如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD=_________.15.百子回归图是由1,2,3,…,100 无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19 99 12 20”标示澳门回归日期,最后一行中间两位“23 50”标示澳门面积,…,同时它也是十阶幻方,其每行10 个数之和、每列10 个数之和、每条对角线10 个数之和均相等,则这个和为______.百子回归16.已知α是锐角1sin 2α=,那么cos α=_________. 三、解答题(共8题,共72分)17.(8分)如图1,点O 是正方形ABCD 两对角线的交点,分别延长OD 到点G ,OC 到点E ,使OG=1OD ,OE=1OC ,然后以OG 、OE 为邻边作正方形OEFG ,连接AG ,DE .(1)求证:DE ⊥AG ;(1)正方形ABCD 固定,将正方形OEFG 绕点O 逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图1. ①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD 的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.18.(8分)如图,在△ABC 中,BD 平分∠ABC ,AE ⊥BD 于点O ,交BC 于点E ,AD ∥BC ,连接CD .(1)求证:AO =EO ;(2)若AE 是△ABC 的中线,则四边形AECD 是什么特殊四边形?证明你的结论.19.(8分)如图,在平面直角坐标系xOy 中,直线16y k x =+与函数()20k y x x=>的图象的两个交点分别为A (1,5),B .(1)求1k ,2k 的值;(2)过点P (n ,0)作x 轴的垂线,与直线16y k x =+和函数()20k y x x=>的图象的交点分别为点M ,N ,当点M 在点N 下方时,写出n 的取值范围.20.(8分)如图,AB 是⊙O 的直径,D 是⊙O 上一点,点E 是AC 的中点,过点A 作⊙O 的切线交BD 的延长线于点F .连接AE 并延长交BF 于点C .(1)求证:AB=BC ;(2)如果AB=5,tan ∠FAC=12,求FC 的长.21.(8分)已知矩形ABCD ,AB=4,BC=3,以AB 为直径的半圆O 在矩形ABCD 的外部(如图),将半圆O 绕点A 顺时针旋转α度(0°≤α≤180°)(1)半圆的直径落在对角线AC 上时,如图所示,半圆与AB 的交点为M ,求AM 的长;(2)半圆与直线CD 相切时,切点为N ,与线段AD 的交点为P ,如图所示,求劣弧AP 的长;(3)在旋转过程中,半圆弧与直线CD 只有一个交点时,设此交点与点C 的距离为d ,直接写出d 的取值范围.22.(10分)某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.求出y与x的函数关系式;当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?23.(12分)某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.降价前商场每月销售该商品的利润是多少元?要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?24.计算:4cos30°+|3﹣12|﹣(12)﹣1+(π﹣2018)0参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】试题解析:能够凑成完全平方公式,则4a前可是“-”,也可以是“+”,但4前面的符号一定是:“+”,此题总共有(-,-)、(+,+)、(+,-)、(-,+)四种情况,能构成完全平方公式的有2种,所以概率是.考点:1.概率公式;2.完全平方式.2、B【解析】根据数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义,可得答案.【详解】解:由数轴,得a=-3.5,b=-2,c=0,d=2,①a <b ,故①正确;②|b|=|d|,故②正确;③a+c=a ,故③正确;④ad <0,故④错误;故选B .【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义是解题关键. 3、D【解析】A 、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A 错误;B 、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B 错误;C 、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C 错误;D 、对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D 正确;故选D .4、A【解析】由题意根据勾股定理求出OA ,进而根据正弦的定义进行分析解答即可.【详解】解:由题意得,2OC =,4AC =,由勾股定理得,2225AO AC OC +=5OC sinA OA ∴== 故选:A .本题考查的是锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.5、D【解析】根据题意先画出树状图得出所有等情况数和到的书签正好是相对应的书名和作者姓名的情况数,再根据概率公式即可得出答案.【详解】解:根据题意画图如下:共有12种等情况数,抽到的书签正好是相对应的书名和作者姓名的有2种情况,则抽到的书签正好是相对应的书名和作者姓名的概率是212=16;故选D.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.6、C【解析】作OF⊥AB于F,OE⊥AC于E,OD⊥BC于D,根据角平分线的性质得到OD=OE=OF,根据三角形的面积公式计算即可.【详解】作OF⊥AB于F,OE⊥AC于E,OD⊥BC于D,∵三条角平分线交于点O,OF⊥AB,OE⊥AC,OD⊥BC,∴OD=OE=OF,∴S△ABO:S△BCO:S△CAO=AB:BC:CA=20:30:40=2:3:4,故选C.【点睛】考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.7、D【解析】【分析】直接利用根与系数的关系对A、B进行判断;由于x1+x2<0,x1x2<0,则利用有理数的性质得到x1、x2异号,且负数的绝对值大,则可对C进行判断;利用一元二次方程解的定义对D进行判断.【详解】根据题意得x1+x2=﹣22=﹣1,x1x2=﹣12,故A、B选项错误;∵x1+x2<0,x1x2<0,∴x1、x2异号,且负数的绝对值大,故C选项错误;∵x1为一元二次方程2x2+2x﹣1=0的根,∴2x12+2x1﹣1=0,∴x12+x1=12,故D选项正确,故选D.【点睛】本题考查了一元二次方程的解、一元二次方程根与系数的关系,熟练掌握相关内容是解题的关键.8、D【解析】根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的长,求出答案.【详解】解:由题意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),则此时轮船所在位置B处与灯塔P之间的距离为:=故选:D.【点睛】此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键.9、C【解析】根据二次根式的运算法则即可求出答案.【详解】原式=3-33=-23,故选C.【点睛】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.10、C【解析】连接AE,根据余弦的定义求出AB,根据勾股定理求出BC,根据直角三角形的性质求出CD,根据面积公式出去AE,根据翻转变换的性质求出AF,根据勾股定理、三角形中位线定理计算即可.【详解】解:连接AE,∵AC=3,cos∠CAB=13,∴AB=3AC=9,由勾股定理得,22AB AC2,∠ACB=90°,点D为AB的中点,∴CD=12AB=92,S△ABC=12×3×22,∵点D为AB的中点,∴S△ACD=12S△ABC=922,由翻转变换的性质可知,S四边形ACED2,AE⊥CD,则12×CD×2,解得,,∴,由勾股定理得,72,∵AF=FE,AD=DB,∴BE=2DF=7,故选C.【点睛】本题考查的是翻转变换的性质、直角三角形的性质,翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】估计利用频率估计概率可估计摸到黑球的概率为0.3,然后根据概率公式计算这个口袋中黑球的数量,继而得出答案.【详解】因为共摸了200次球,发现有60次摸到黑球,所以估计摸到黑球的概率为0.3,所以估计这个口袋中黑球的数量为20×0.3=6(个),则红球大约有20-6=1个,故答案为:1.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.12、1【解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.【详解】∵a,b互为相反数,∴a+b=1,∴a2﹣b2=(a+b)(a﹣b)=1,故答案为1.【点睛】本题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键.13、两点确定一条直线;同圆或等圆中半径相等【解析】根据尺规作图的方法,两点之间确定一条直线的原理即可解题.【详解】解:∵两点之间确定一条直线,CD和AB都是圆的半径,∴AB=CD,依据是两点确定一条直线;同圆或等圆中半径相等.【点睛】本题考查了尺规作图:一条线段等于已知线段,属于简单题,熟悉尺规作图方法是解题关键.14、或2【解析】根据裁开折叠之后平行四边形的面积可得CD的长度为或.【详解】如图①,当四边形ABCE为平行四边形时,作AE∥BC,延长AE交CD于点N,过点B作BT⊥EC于点T.∵AB=BC,∴四边形ABCE是菱形.∵∠BAD=∠BCD=90°,∠ABC=150°,∴∠ADC=30°,∠BAN=∠BCE=30°,∴∠NAD=60°,∴∠AND=90°.设BT=x,则CN=x,BC=EC=2x.∵四边形ABCE面积为2,∴EC·BT=2,即2x×x=2,解得x=1,∴AE=EC=2,EN=,∴AN=AE+EN=2,∴CD=AD=2AN=4+如图②,当四边形BEDF是平行四边形,∵BE=BF,∴平行四边形BEDF是菱形.∵∠A=∠C=90°,∠ABC=150°,∴∠ADB=∠BDC=15°.∵BE=DE,∴∠EBD=∠ADB=15°,∴∠AEB=30°.设AB=y,则DE=BE=2y,AE3.∵四边形BEDF的面积为2,∴AB·DE=2,即2y2=2,解得y=1,∴AE3,DE=2,∴AD=AE+DE=23综上所述,CD的值为4+323【点睛】考核知识点:平行四边形的性质,菱形判定和性质.15、505【解析】根据已知得:百子回归图是由1,2,3…,100无重复排列而成,先计算总和;又因为一共有10行,且每行10个数之和均相等,所以每行10个数之和=总和÷10,代入求解即可.【详解】1~100的总和为:()11001002+⨯=5050,一共有10行,且每行10个数之和均相等,所以每行10个数之和为:n=5050÷10=505,故答案为505.【点睛】本题是数字变化类的规律题,是常考题型;一般思路为:按所描述的规律从1开始计算,从计算的过程中慢慢发现规律,总结出与每一次计算都符合的规律,就是最后的答案16、2【解析】根据已知条件设出直角三角形一直角边与斜边的长,再根据勾股定理求出另一直角边的长,由三角函数的定义直接解答即可.【详解】由sinα=a c =12知,如果设a=x ,则c=2x ,结合a 2+b 2=c 2得∴cos α=bc【点睛】 本题考查的知识点是同角三角函数的关系,解题的关键是熟练的掌握同角三角函数的关系.三、解答题(共8题,共72分)17、(1)见解析;(1)①30°或150°,②AF '的长最大值为2+0315α=. 【解析】(1)延长ED 交AG 于点H ,易证△AOG ≌△DOE ,得到∠AGO=∠DEO ,然后运用等量代换证明∠AHE=90°即可;(1)①在旋转过程中,∠OAG′成为直角有两种情况:α由0°增大到90°过程中,当∠OAG′=90°时,α=30°,α由90°增大到180°过程中,当∠OAG′=90°时,α=150°;②当旋转到A 、O 、F′在一条直线上时,AF′的长最大,AF′=AO+OF′=2+1,此时α=315°. 【详解】(1)如图1,延长ED 交AG 于点H,∵点O 是正方形ABCD 两对角线的交点,∴OA=OD ,OA ⊥OD ,∵OG=OE ,在△AOG 和△DOE 中,90OA OD AOG DOE OG OE =⎧⎪∠=∠=︒⎨⎪=⎩,∴△AOG ≌△DOE ,∴∠AGO=∠DEO ,∵∠AGO+∠GAO=90°,∴∠GAO+∠DEO=90°,∴∠AHE=90°,即DE ⊥AG ;(1)①在旋转过程中,∠OAG′成为直角有两种情况:(Ⅰ)α由0°增大到90°过程中,当∠OAG′=90°时,∵OA=OD=12OG=12OG′, ∴在Rt △OAG′中,sin ∠AG′O=OA OG '=12, ∴∠AG′O=30°,∵OA ⊥OD,OA ⊥AG′,∴OD ∥AG′,∴∠DOG′=∠AG′O=30°∘,即α=30°;(Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时,同理可求∠BOG′=30°,∴α=180°−30°=150°.综上所述,当∠OAG′=90°时,α=30°或150°.②如图3,当旋转到A. O、F′在一条直线上时,AF′的长最大,∵正方形ABCD的边长为1,∴OA=OD=OC=OB=22,∵OG=1OD,∴2,∴OF′=1,∴AF′=AO+OF′=22+1,∵∠COE′=45°,∴此时α=315°.【点睛】本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,掌握正方形的四条边相等、四个角相等,旋转变换的性质是解题的关键,注意特殊角的三角函数值的应用.18、(1)详见解析;(2)平行四边形.【解析】(1)由“三线合一”定理即可得到结论;(2)由AD ∥BC ,BD 平分∠ABC ,得到∠ADB=∠ABD ,由等腰三角形的判定得到AD=AB ,根据垂直平分线的性质有AB=BE ,于是AD=BE ,进而得到AD=EC ,根据平行四边形的判定即可得到结论.【详解】证明:(1)∵BD 平分∠ABC ,AE ⊥BD ,∴AO=EO ;(2)平行四边形,证明:∵AD ∥BC ,∴∠ADB=∠ABD ,∴AD=AB ,∵OA=OE ,OB ⊥AE ,∴AB=BE ,∴AD=BE ,∵BE=CE ,∴AD=EC ,∴四边形AECD 是平行四边形.【点睛】考查等腰直角三角形的性质以及平行四边形的判定,掌握平行四边形的判定方法是解题的关键.19、(1)11k =-,25k =;(2)0<n <1或者n >1.【解析】(1)利用待定系数法即可解决问题;(2)利用图象法即可解决问题;【详解】解:(1)∵A (1,1)在直线16y k x =+上,∴11k =-,∵A (1,1)在()20k y x x=>的图象上, ∴25k =. (2)观察图象可知,满足条件的n 的值为:0<n <1或者n >1.【点睛】此题考查待定系数法求反比例函数与一次函数的解析式,解题关键在于利用数形结合的思想求解.20、 (1)见解析;(2)103. 【解析】分析:(1)由AB 是直径可得BE ⊥AC ,点E 为AC 的中点,可知BE 垂直平分线段AC ,从而结论可证;(2)由∠FAC +∠CAB =90°,∠CAB +∠ABE =90°,可得∠FAC =∠ABE ,从而可设AE =x ,BE=2x ,由勾股定理求出AE 、BE 、AC 的长. 作CH ⊥AF 于H ,可证Rt △ACH ∽Rt △BAC ,列比例式求出HC 、AH 的值,再根据平行线分线段成比例求出FH ,然后利用勾股定理求出FC 的值.详解:(1)证明:连接BE.∵AB 是⊙O 的直径,∴∠AEB=90°,∴BE ⊥AC ,而点E 为AC 的中点,∴BE 垂直平分AC ,∴BA=BC ;(2)解:∵AF 为切线,∴AF ⊥AB ,∵∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,∴∠FAC=∠ABE ,∴tan ∠ABE=∠FAC=,在Rt△ABE中,tan∠ABE==,设AE=x,则BE=2x,∴AB=x,即x=5,解得x=,∴AC=2AE=2,BE=2作CH⊥AF于H,如图,∵∠HAC=∠ABE,∴Rt△ACH∽Rt△BAC,∴==,即==,∴HC=2,AH=4,∵HC∥AB,∴=,即=,解得FH=在Rt△FHC中,FC==.点睛:本题考查了圆周角定理的推论,线段垂直平分线的判定与性质,切线的性质,勾股定理,相似三角形的判定与性质,平行线分线段成比例定理,锐角三角函数等知识点及见比设参的数学思想,得到BE垂直平分AC是解(1)的关键,得到Rt△ACH∽Rt△BAC是解(2)的关键.21、(2)AM=165;(2)AP=23π;(3)7≤d<4或3【解析】(2)连接B′M,则∠B′MA=90°,在Rt△ABC中,利用勾股定理可求出AC的长度,由∠B=∠B′MA=90°、∠BCA=∠MAB′可得出△ABC∽△AMB′,根据相似三角形的性质可求出AM的长度;(2)连接OP、ON,过点O作OG⊥AD于点G,则四边形DGON为矩形,进而可得出DG、AG的长度,在Rt△AGO 中,由AO=2、AG=2可得出∠OAG=60°,进而可得出△AOP为等边三角形,再利用弧长公式即可求出劣弧AP的长;(3)由(2)可知:△AOP为等边三角形,根据等边三角形的性质可求出OG、DN的长度,进而可得出CN的长度,画出点B′在直线CD上的图形,在Rt△AB′D中(点B′在点D左边),利用勾股定理可求出B′D的长度进而可得出CB′的长度,再结合图形即可得出:半圆弧与直线CD只有一个交点时d的取值范围.【详解】(2)在图2中,连接B′M,则∠B′MA=90°.在Rt△ABC中,AB=4,BC=3,∴AC=2.∵∠B=∠B′MA=90°,∠BCA=∠MAB′,∴△ABC∽△AMB′,∴AMAB=AB'AC,即AM4=45,∴AM=165;(2)在图3中,连接OP、ON,过点O作OG⊥AD于点G,∵半圆与直线CD相切,∴ON⊥DN,∴四边形DGON为矩形,∴DG=ON=2,∴AG=AD-DG=2.在Rt△AGO中,∠AGO=90°,AO=2,AG=2,∴∠AOG=30°,∠OAG=60°.又∵OA=OP,∴△AOP为等边三角形,∴AP=60π4360⨯⨯=23π.(3)由(2)可知:△AOP为等边三角形,∴DN=GO=32OA=3,∴CN=CD+DN=4+3.当点B′在直线CD上时,如图4所示,在Rt△AB′D中(点B′在点D左边),AB′=4,AD=3,∴22AB'AD-7,∴CB′=47.∵AB′为直径,∴∠ADB′=90°,∴当点B′在点D右边时,半圆交直线CD于点D、B′.∴当半圆弧与直线CD只有一个交点时,7≤d<4或3【点睛】本题考查了相似三角形的判定与性质、矩形的性质、等边三角形的性质、勾股定理以及切线的性质,解题的关键是:(2)利用相似三角形的性质求出AM的长度;(2)通过解直角三角形找出∠OAG=60°;(3)依照题意画出图形,利用数形结合求出d的取值范围.22、(1)y=﹣2x+80(20≤x≤28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.【解析】(1)待定系数法列方程组求一次函数解析式.(2)列一元二次方程求解.(3)总利润=单件利润⨯销售量:w=(x-20)(-2x+80),得到二次函数,先配方,在定义域上求最值.【详解】(1)设y与x的函数关系式为y=kx+b.把(22,36)与(24,32)代入,得2236 2432.k bk b+=⎧⎨+=⎩解得280. kb=-⎧⎨=⎩∴y=-2x+80(20≤x≤28).(2)设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是x元,根据题意,得(x-20)y=150,即(x-20)(-2x+80)=150.解得x1=25,x2=35(舍去).答:每本纪念册的销售单价是25元.(3)由题意,可得w=(x-20)(-2x+80)=-2(x-30)2+200.∵售价不低于20元且不高于28元,当x<30时,y随x的增大而增大,∴当x=28时,w最大=-2×(28-30)2+200=192(元).答:该纪念册销售单价定为28元时,能使文具店销售该纪念册所获利润最大,最大利润是192元.23、(1) 4800元;(2) 降价60元.【解析】试题分析:(1)先求出降价前每件商品的利润,乘以每月销售的数量就可以得出每月的总利润;(2)设每件商品应降价x元,由销售问题的数量关系“每件商品的利润×商品的销售数量=总利润”列出方程,解方程即可解决问题.试题解析:(1)由题意得60×(360-280)=4800(元).即降价前商场每月销售该商品的利润是4800元;(2)设每件商品应降价x元,由题意得(360-x-280)(5x+60)=7200,解得x1=8,x2=60.要更有利于减少库存,则x=60.即要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价60元.点睛:本题考查了列一元二次方程解实际问题的销售问题,解答时根据销售问题的数量关系建立方程是关键.24、4【解析】直接利用特殊角的三角函数值和负指数幂的性质、零指数幂的性质、二次根式的性质分别化简得出答案.【详解】原式=1×+2﹣3﹣2+1=2+2﹣1=1﹣1.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.。
2020-2021学年浙江省温州市中考数学冲刺卷1注意事项:本试卷满分150分,试题共24题,选择10道、填空6道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(本题4分)(2021·浙江温州市·九年级一模)数0,﹣2,43,2中最小的是( ) A .0 B .﹣2 C .43D .2 2.(本题4分)(2021·浙江温州市·九年级其他模拟)1938年出版的第一部中国现代数学词典《算学名词汇编》是温籍数学家姜立夫领导审定的,共收入7400多数学词汇,从而奠定了中国现代数学名词的基础.其中数据7400用科学记数法表示为( ) A .27410⨯ B .47.410⨯ C .40.7410⨯ D .37.410⨯ 3.(本题4分)(2021·浙江温州市·九年级一模)某服务台如图所示,它的主视图为( )A .B .C .D . 4.(本题4分)(2021·浙江温州市·九年级其他模拟)某校九年级学生中考体育选考项目组合情况的统计图如图所示,若九年级学生共有400人,则选择跳远、游泳、篮球项目组合的有( )A .60人B .80人C .120人D .140人5.(本题4分)(2020·温州育英国际实验学校八年级月考)如图,P 是y 轴正半轴上一点,过点P 作y 轴垂线,分别交反比例函数y=1k x和y=2k x 的图象于点A ,B ,若43AP BP =,则12k k 的值为( )A .34B .43C .34-D .43- 6.(本题4分)(2021·浙江温州市·九年级一模)如图,在菱形ABCD 中,E 是对角线AC 上的一点,过点E 作FH //AD ,GI //AB ,点F ,G ,H ,I 分别在AB ,BC ,CD ,DA 上.若AC =a ,∠B =60°,则图中阴影部分的周长为( )A. B .4a C. D .6a7.(本题4分)(2020·温州市实验中学九年级期末)如图,在∠O 中,点B 是弧AC 上的一点,∠AOC=140°,则∠ABC 的度数为( )A .70°B .110°C .120°D .140° 8.(本题4分)(2021·浙江温州市·九年级一模)某零件轴截面的示意图如图所示,它是关于直线m 成轴对称的梯形,则大头直径D 的长为( )A .(10+40sin α)厘米B .(1040tan α+)厘米 C .(10+40sinα)厘米 D .(10+40tanα)厘米9.(本题4分)(2020·温州市实验中学九年级期末)已知抛物线22y x bx c 与x轴交于点A ,B 两点(A 在原点O 左侧,B 在原点O 右侧),与y 轴交于点C ,若OC=OB ,则点A 的横坐标为( )A .b 2B .12-C .2c -D .2- 10.(本题4分)(2020·浙江温州市·九年级二模)如图,已知矩形ABCD 的周长为16,E 和F 分别为ABC ∆和ADC ∆的内切圆,连接AE ,CE ,AF ,CF ,EF ,若37AECFABCD S S =四边形矩形,则EF 的长为( )A.B.C.D.二、填空题(本题有6小题,每小题5分,共30分)11.(本题5分)(2020·温州市南浦实验中学九年级二模)因式分解:249m -=________.12.(本题5分)(2021·浙江温州市·九年级一模)不等式组32340x x +⎧≥⎪⎨⎪-<⎩的解集为_____.13.(本题5分)(2021·浙江温州市·九年级期末)已知扇形的圆心角为120°,半径长为2,则该扇形的弧长为______.14.(本题5分)(2021·浙江温州市·九年级一模)在同一副扑克牌中抽取3张“黑桃”,1张“红桃”,4张“梅花”,将这8张牌背面朝上,从中任意抽取1张,是“黑桃”的概率为_____.15.(本题5分)(2020·温州市南浦实验中学九年级二模)如图,平面直角坐标系xOy 中,正方形ABCO 的顶点,A C 分别在x 轴和y 轴的正半轴上,反此例函数()0k y x x=>的图象分别与边BC ,AB 交于点D 和点E ,连接OD ,//EF OD 交OA 于点F ,若2OF FA =,且OD k =,则k 的值为_________.16.(本题5分)(2020·温州市实验中学九年级期中)如图,已知点P 是抛物线26y mx mx =-+()0m >的顶点,过P 作直线AB 分别交x 轴正半轴和y 轴正半轴于点A 、B 交抛物线于点C ,且45BAO ∠=︒,过点C 作CG x ⊥轴,垂足为G ,若ACG 的面积是PCG △的2倍,则m 的值为______.三、解答题(本题8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程) 17.(本题10分)(2020·平阳县万全镇郑楼中心学校九年级期中)(1)计算()()021344+-+⨯- (2)化简()21122a a ⎛⎫+-+⎪⎝⎭18.(本题8分)(2021·浙江温州市·九年级其他模拟)如图,在四边形ABCD 中,90,B DA AC ∠=︒⊥,点E 在线段AC 上,//,AB DE AC DE =.(1)求证:ABC EAD △≌△.(2)连结CD ,当4,3AC AB ==,求CD 的长.19.(本题8分)(2019·浙江省温州市平阳县梅溪中学九年级期末)为了让孩子们掌握垃圾分类知识,树立环保意识,李老师制作了一盒垃圾分类卡片,其中,“可回收物”卡片有30张,“易腐垃圾”卡片22张,“其他垃圾”卡片20张以及若干张“有害垃圾”卡片,这些卡片除图案外都相同.(1)从这盒卡片中任取一张,是“其他垃圾”卡片的概率是15,求“有害垃圾”卡片的数量.(2)现从中取出4张卡片:A .塑料瓶,B .旧书本,C .过期药品,D .剩饭菜(其中A ,B 为可回收物,C 为有害垃圾,D 为易腐垃圾),将取出的四张卡片放入一个不透明的袋子中,小聪和小明从袋子中各取一张卡片,问两人取到的卡片恰好都是“可回收物”卡片的概率(要求列表或画树状图).20.(本题8分)(2020·浙江九年级一模)如图,点, , A B C 是55⨯的方格纸中的三个格点,按下列要求作出格点四边形(顶点在格点上).(1)在图1中画出一个以,?A C 为顶点的菱形,使点B 在该图形内部(不包括在边界上).(2)在图2中画出一个以,?A C 为顶点的平行四边形,使该图形的一边所在直线与AB夹角为45︒21.(本题10分)(2020·温州市第十二中学九年级期中)如图,抛物线2y x 2x 3=-++与x 轴交于A ,B 两点,交y 轴于点C ,点M 抛物线的顶点.(1)连接BC ,求BC 与对称轴MN 的交点D 坐标.(2)点E 是对称轴上的一个动点,求OE CE +的最小值.22.(本题10分)(2021·浙江温州市·九年级一模)如图,点C ,D 在以AB 为直径的半圆O 上,AD BC =,切线DE 交AC 的延长线于点E ,连接OC .(1)求证:∠ACO =∠ECD .(2)若∠CDE =45°,DE =4,求直径AB 的长.23.(本题12分)(2019·瑞安市新纪元实验学校九年级期末)某企业接到一批钢笔生产任务,按合同每支钢笔出厂价为8元在开始生产后,前三天进行设备调试,期间每支钢笔的成本为2.1元,调试结束后,每增加1天,每支钢笔的成本增加0.2元,设开始生产后第x 天(3x >)的钢笔成本为每支y 元.(1)y 关于x 的关系式为______;(2)若开始生产后第x 天(3x >)的钢笔产量为m (支),m 满足关系式:2050m x =+.∠该企业开始生产后第几天获得的利润为1125元?(利润=出厂价一成本) ∠为保证获利,当每支钢笔成本超过7.5元时,即要停止生产,则在生产的过程中,该企业每日能获得的利润至少为多少元?24.(本题14分)(2020·龙湾区永中中学九年级月考)如图,在平面直角坐标系中,直线AB 与x 轴,y 轴分别交于点()6,0A ,()0,8B ,动点C 从点B 出发,沿射线BO 方向以每秒1个单位的速度运动,同时动点D 从点A 出发,沿x 轴正方向以每秒1个单位的速度运动,连结CD 交直线AB 于点E ,设点C 运动的时间为t 秒.(1)当点C 在线段BO 上时,∠当5OC =时,求点D 的坐标;∠问:在运动过程中,CE ED 的值是否为一个不变的值?若是,请求出的值,若不是,请说CE ED明理由? (2)是否存在t 的值,使得BCE 与DAE △全等?若存在,请求出所有满足条件的t 的值;不存在,请说明理由.(3)过点E 作AB 的垂线交x 轴于点H ,交y 轴于点G (如图),当2HG EH 时,请直接写出所有满足条件的t 的值.。
2021年浙江省温州市鹿城区中考数学一模试卷一、选择题(本题有10小题,每小题4分,共40分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(4分)3的相反数是()A.3B.﹣3C.D.﹣2.(4分)截止2021年3月21日,电影《你好,李焕英》的票房已突破5310000000元,其中数据5310000000用科学记数法表示为()A.53.1×108B.5.31×108C.0.531×109D.5.31×109 3.(4分)如图所示,某物体由4块立方体组成,它的主视图是()A.B.C.D.4.(4分)一只不透明的盒子里装有9个只有颜色不同的球,其中红球4个、白球3个、黑球2个.从盒子里任意摸出1个球,是红球的概率为()A.B.C.D.5.(4分)某校举办了一次“交通安全知识“测试,王老师从全校学生的答卷中随机地抽取了200名学生的答卷,并将测试成绩分为A,B,C,D四个等级,绘制成如图所示的条形统计图.若该校学生共有1000人,则该校成绩为A的学生人数估计为()A.30B.75C.150D.2006.(4分)如图,小华在课外时间利用仪器测量红旗的高度,从点A处测得旗杆顶部B的仰角为α,并测得到旗杆的距离AC为l米,若AD为h米,则红旗的高度BE为()A.(l tanα+h)米B.()米C.l tanα米D.米7.(4分)一家工艺品厂按计件方式结算工资.小鹿去这家工艺品厂打工,第一天工资60元,第二天比第一天多做了5件,工资为75元.设小鹿第一天做了x件,根据题意可列出方程为()A.=B.=C.=D.=+5 8.(4分)《几何原本》里有一个图形:在△ABC中,D,E是边AB上的两点(AD<AE),且满足AD=BE.过点D,E分别作BC的平行线,过点D作AC的平行线,它们将△ABC 分成如图的5个部分,其面积依次记为S1,S2,S3,S4,S5.若S2=18,S3=6,则S4的值为()A.9B.18C.27D.549.(4分)在平面直角坐标系中,点M,N的坐标分别为(0,4),(3,4),若抛物线y=a (x﹣2)2+3与线段MN有且只有一个交点,则a的值可以是()A.B.C.1D.10.(4分)如图,E,F分别是正方形ABCD边AB,BC上的点,BE=BF=2.以DE,DF 为边作▱DEGF,连接GE并延长交AD于点H,连接HF.若HF⊥ED,则AE的长为()A.B.C.2﹣2D.2﹣2二、填空题(本题有6小题,每小题5分,共30分)11.(5分)因式分解:a2﹣3a=.12.(5分)不等式2x﹣1>3的解集是.13.(5分)已知圆的半径为2cm,90°圆心角所对的弧长为cm.14.(5分)如图,点A(2,2)在反比例函数y=(x>0)的图象上,则△BCD的面积为.15.(5分)如图,直线l1:y=x+3分别与x轴,y轴交于点A,B,直线l2:y=﹣x+m分别与x轴,y轴交于点C,D,直线l1,l2相交于点E,将△ABO向右平移5个单位得到△A′B'O',若点B′恰好落在直线l2上,则DE:B'C=.16.(5分)某厂家设计一种双层长方体垃圾桶,AB=70cm,BC=25cm,CP=30cm,侧面如图1所示,EG为隔板,等分上下两层.下方内桶BCGH绕底部轴(CP)旋转打开,若点H恰好能卡在原来点G的位置,则内桶边BH的长度应设计为cm;现将BH调整为25cm,打开最大角度时,点H卡在隔板上,如图2所示,可完全放入下方内桶的球体的直径不大于cm.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(5分)计算:2sin30°+﹣20210.18.(5分)化简:(a﹣1)2﹣a(a+2).19.(8分)如图,在△ABC中,AB=AC,点D,E在BC上(BD<BE),BD=CE.(1)求证:△ABD≌△ACE.(2)若∠ADE=2∠B,BD=2,求AE的长.20.(8分)某学校在一次广播操比赛中,901班,902班,903班的各项得分如表:班级服装统一动作整齐动作标准901班857085902班758580903班908595(1)若取三个项目的得分平均分作为该班成绩,分别求各班的成绩.(2)若学校认为三个项目的重要程度各不相同,从低到高依次为“服装统一”“动作整齐”“动作准确”,它们在总分中所占的比例分别为10%,a%,b%.请你设计一组符合要求的a,b值,并直接给出三个班级的排名顺序.21.(8分)如图,将一个长为8,宽为6的大矩形分割成如图所示24个全等的小长方形,它们的顶点称为格点.请按下列要求分别作出格点三角形和格点四边形.(1)在图1中画出一个等腰△PCD,使点A,B在△PCD内部(不包括在△PCD边上).(2)在图2中画出一个矩形QEFG,使点A,B在矩形QEFG内部(不包括在矩形QEFG 边上).22.(10分)如图,抛物线y=﹣(x﹣m)2+9交x轴于A,B两点,点A在点B左侧,点C 的坐标为(6,0),AC<BC,过点C作CD⊥x轴交抛物线于点D,过点D作DE⊥CD 交抛物线于点E.(1)若点A的坐标为(4,0),求DE的长.(2)当DE=AB时,求m的值.23.(10分)如图,AB是⊙O的直径,点C为圆上一点,点D为的中点,连接AD,作DE⊥AB交BC的延长线于点E.(1)求证:DE=EB.(2)连接DO并延长交BC于点F.若CF=2CE,BD=5,求⊙O的半径.24.(12分)下表是某奶茶店的一款奶茶近两天的销售情况.销售情况销售数量(单位:杯)销售收入(单位:元)小杯大杯第一天2030460第二天2525450(1)问这款奶茶小杯和大杯的销售单价各是多少元?(2)已知这款奶茶小杯成本4元/杯,大杯成本5元/杯,奶茶店每天只能供应80杯该款奶茶,其中小杯不少于10杯,求该款奶茶一天的最大利润.(销售利润=销售收入﹣成本)(3)为了满足市场的需求,奶茶店推出每杯2元的加料服务,顾客在选完杯型后可以自主选择加料或者不加料.小明恰好用了208元购买该款奶茶,其中小杯不加料的数量是总杯数的,则小明这款奶茶大杯加料的买了杯.25.(14分)如图,在矩形ABCD中,BC=1,AB=2,过对角线BD上一点P作AB的垂线交AB于点F,交CD于点E,过点E作EG∥BD交BC于点G,连接FG交BD于点H,连接DF.(1)求的值.(2)当四边形DFGE有一组邻边相等时,求BG的长.(3)点B关于FG的对称点记为B',若B'落在△EFG内部(不包含边界),求DP长度的取值范围.2021年浙江省温州市鹿城区中考数学一模试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(4分)3的相反数是()A.3B.﹣3C.D.﹣【解答】解:根据相反数的概念及意义可知:3的相反数是﹣3.故选:B.2.(4分)截止2021年3月21日,电影《你好,李焕英》的票房已突破5310000000元,其中数据5310000000用科学记数法表示为()A.53.1×108B.5.31×108C.0.531×109D.5.31×109【解答】解:5310000000000=5.31×109.故选:D.3.(4分)如图所示,某物体由4块立方体组成,它的主视图是()A.B.C.D.【解答】解:从正面看易得底层有3个正方形,上层中间有一个正方形.故选:B.4.(4分)一只不透明的盒子里装有9个只有颜色不同的球,其中红球4个、白球3个、黑球2个.从盒子里任意摸出1个球,是红球的概率为()A.B.C.D.【解答】解:袋子中球的总数为9,而红球有4个,则从中任摸一球,恰为红球的概率为.故选:D.5.(4分)某校举办了一次“交通安全知识“测试,王老师从全校学生的答卷中随机地抽取了200名学生的答卷,并将测试成绩分为A,B,C,D四个等级,绘制成如图所示的条形统计图.若该校学生共有1000人,则该校成绩为A的学生人数估计为()A.30B.75C.150D.200【解答】解:1000×=150(人),即该校成绩为A的学生人数估计为150人,故选:C.6.(4分)如图,小华在课外时间利用仪器测量红旗的高度,从点A处测得旗杆顶部B的仰角为α,并测得到旗杆的距离AC为l米,若AD为h米,则红旗的高度BE为()A.(l tanα+h)米B.()米C.l tanα米D.米【解答】解:如图,DE=1米,∠BAC=α,DE=h米,四边形ADEC为矩形,则DE=AC=1米,AD=CE=h米,在Rt△ADC中,∵tan∠BAC=,∴BC=1tanα,∴BE=BC+CE=(1tanα+h)米.故选:A.7.(4分)一家工艺品厂按计件方式结算工资.小鹿去这家工艺品厂打工,第一天工资60元,第二天比第一天多做了5件,工资为75元.设小鹿第一天做了x件,根据题意可列出方程为()A.=B.=C.=D.=+5【解答】解:设小鹿第一天做了x件,则第二天比第一天多做了(x+5)件,依题意得:=.故选:A.8.(4分)《几何原本》里有一个图形:在△ABC中,D,E是边AB上的两点(AD<AE),且满足AD=BE.过点D,E分别作BC的平行线,过点D作AC的平行线,它们将△ABC 分成如图的5个部分,其面积依次记为S1,S2,S3,S4,S5.若S2=18,S3=6,则S4的值为()A.9B.18C.27D.54【解答】解:如图,连接GF,∵AD=BE,DG∥AC,EF∥BC,∴===,∵∠DHE=∠GHF,∴△DHE∽△GHF,∴=()2,∵S2=18,S3=6,∴=,S△HGF=S3,∴S△DHE=()2×3=27,则S4的值为27.故选:C.9.(4分)在平面直角坐标系中,点M,N的坐标分别为(0,4),(3,4),若抛物线y=a (x﹣2)2+3与线段MN有且只有一个交点,则a的值可以是()A.B.C.1D.【解答】解:∵抛物线y=a(x﹣2)2+3,∴该抛物线的顶点坐标为(2,3),∵点M,N的坐标分别为(0,4),(3,4),抛物线y=a(x﹣2)2+3与线段MN有且只有一个交点,∴,解得≤a<1,故选:B.10.(4分)如图,E,F分别是正方形ABCD边AB,BC上的点,BE=BF=2.以DE,DF为边作▱DEGF,连接GE并延长交AD于点H,连接HF.若HF⊥ED,则AE的长为()A.B.C.2﹣2D.2﹣2【解答】解:如图,延长BC至Q,使得CQ=AE,连接EF,∵四边形ABCD是正方形,∴∠A=∠B=∠ADC=∠BCD=90°,AB=CD=BC=AD,AD∥BC,∵BE=BF,∴AB﹣BE=BC﹣BF,即AE=CF,在△AED和△CFD中,,∴△AED≌△CFD(SAS),∴DE=DF,∠1=∠4,∵四边形DEGF是平行四边形,∴四边形DEGF是菱形,∴DE∥GF,DF=FG,∵HF⊥ED,∴∠HFG=90°,∴∠1+∠2=90°,∠4+∠ADF=90°,∴∠HDF=∠2,∴HF=DF,∴HF=GF,∴△GFH是等腰直角三角形,∴∠G=∠EDF=45°,∠1=∠4=22.5°,在△AED与△CDQ中,,∴△AED≌△CDQ(SAS),∴DE=DQ,∠1=∠3=22.5°,∴∠FDQ=45°,在△EDF与△QDF中,,∴△EDF≌△QDF(SAS),∴EF=FQ=2AE,∵BE=BF=2,∴EF==2,∴AE=.故选:B.二、填空题(本题有6小题,每小题5分,共30分)11.(5分)因式分解:a2﹣3a=a(a﹣3).【解答】解:a2﹣3a=a(a﹣3).故答案为:a(a﹣3).12.(5分)不等式2x﹣1>3的解集是x>2.【解答】解:2x﹣1>3,移项得:2x>3+1,合并同类项得:2x>4,不等式的两边都除以2得:x>2,故答案为:x>2.13.(5分)已知圆的半径为2cm,90°圆心角所对的弧长为πcm.【解答】解:圆的半径为2cm,90°圆心角所对的弧长为:l==π(cm),故答案为:π.14.(5分)如图,点A(2,2)在反比例函数y=(x>0)的图象上,则△BCD的面积为.【解答】解:将点A(2,2)代入y=,得:2=,∴k=4,∴y=,∴B(1,4),C(3,),∵D(3,4),∴BD=2,CD=4﹣=,∴S△BCD=BD•CD=×2×=,故答案为:.15.(5分)如图,直线l1:y=x+3分别与x轴,y轴交于点A,B,直线l2:y=﹣x+m分别与x轴,y轴交于点C,D,直线l1,l2相交于点E,将△ABO向右平移5个单位得到△A′B'O',若点B′恰好落在直线l2上,则DE:B'C=20:21.【解答】解:因为y=x+3,所以B(0,3),将B向右平移5个单位后B′(5,3),因为B′在直线l2:y=﹣x+m上,所以m=8,所以l2:y=﹣x+8,所以D(0,8),C(8,0),因为直线l1,l2相交于点E,所以x+3=﹣x+8得x=,所以y=,所以E(),作EH⊥y轴于H,由△DHE∽△COB′得,,所以DE:B'C=20:21,故答案为:20:21.16.(5分)某厂家设计一种双层长方体垃圾桶,AB=70cm,BC=25cm,CP=30cm,侧面如图1所示,EG为隔板,等分上下两层.下方内桶BCGH绕底部轴(CP)旋转打开,若点H恰好能卡在原来点G的位置,则内桶边BH的长度应设计为10cm;现将BH调整为25cm,打开最大角度时,点H卡在隔板上,如图2所示,可完全放入下方内桶的球体的直径不大于21cm.【解答】解:如图1中,连接CH,过点H作HT⊥CG于T,z则四边形BCTH是矩形.∵CG=CH=CD=35cm,HT=BC=25cm,∴BH=CT===10(cm),如图2中,连接CH,过点G作GJ⊥CG′于J,过点B′作B′M⊥GH于M交BC于N.∵∠HMB′=∠B′NC=∠CB′H=90°,∴∠B′HM+∠HB′M=90°,∠HB′M+∠CB′N=90°,∴∠B′HM=∠CB′N,在△B′MH和△CNB′中,,∴△B′MH≌△CNB′(AAS),∴MH=NB′,MB′=CN,∵CH=25cm,CG=35,∴HG===5,设HM=x,则CN=MB′=x+5,在Rt△MHB′中,则有x2+(x+5)2=252,∴x=15,∴CN=20(cm),NB′=15(cm),∴sin∠BCB′==,∵∠B′CG′=∠BCG=90°,∴∠GCG′=∠BCB′,∴sin∠GCG′=,∴GJ=C•sin∠GCG′=35×=21(cm),∴可完全放入下方内桶的球体的直径不大于21cm,故答案为:10,21.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(5分)计算:2sin30°+﹣20210.【解答】解:原式=2×+3﹣1=1+3﹣1=3.18.(5分)化简:(a﹣1)2﹣a(a+2).【解答】解:(a﹣1)2﹣a(a+2)=a2﹣2a+1﹣a2﹣2a=1﹣4a.19.(8分)如图,在△ABC中,AB=AC,点D,E在BC上(BD<BE),BD=CE.(1)求证:△ABD≌△ACE.(2)若∠ADE=2∠B,BD=2,求AE的长.【解答】(1)证明:∵AB=AC,∴∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)解:∵∠ADE=2∠B,∴∠B=∠BAD,∴BD=AD=2,∵△ABD≌△ACE,∴AE=AD=2.20.(8分)某学校在一次广播操比赛中,901班,902班,903班的各项得分如表:班级服装统一动作整齐动作标准901班857085902班758580903班908595(1)若取三个项目的得分平均分作为该班成绩,分别求各班的成绩.(2)若学校认为三个项目的重要程度各不相同,从低到高依次为“服装统一”“动作整齐”“动作准确”,它们在总分中所占的比例分别为10%,a%,b%.请你设计一组符合要求的a,b值,并直接给出三个班级的排名顺序.【解答】解:(1)901班平均成绩为(85+70+85)÷3=80(分),902班平均成绩为(75+85+80)÷3=80(分),903班平均成绩为(90+85+95)÷3=90(分);(2)取a=40,b=50,901班平均成绩为85×10%+70×40%+85×50%=79(分),902班平均成绩为75×10%+85×40%+80×50%=81.5(分),903班平均成绩为90×10%+85×40%+95×50%=90.5(分),所以903第一名,902第二名,901第三名.21.(8分)如图,将一个长为8,宽为6的大矩形分割成如图所示24个全等的小长方形,它们的顶点称为格点.请按下列要求分别作出格点三角形和格点四边形.(1)在图1中画出一个等腰△PCD,使点A,B在△PCD内部(不包括在△PCD边上).(2)在图2中画出一个矩形QEFG,使点A,B在矩形QEFG内部(不包括在矩形QEFG 边上).【解答】解:(1)如图,△PCD即为所求作(答案不唯一).(2)如图,矩形QEFG即为所求作(答案不唯一).22.(10分)如图,抛物线y=﹣(x﹣m)2+9交x轴于A,B两点,点A在点B左侧,点C 的坐标为(6,0),AC<BC,过点C作CD⊥x轴交抛物线于点D,过点D作DE⊥CD 交抛物线于点E.(1)若点A的坐标为(4,0),求DE的长.(2)当DE=AB时,求m的值.【解答】解:(1)把A(4,0)代入y=﹣(x﹣m)2+9得﹣(4﹣m)2+9=0,解得m=1或m=7,∵点A在点B左侧,∴m=7,即抛物线的对称轴为直线x=7,∵CD⊥x轴,DE⊥CD,∴点E与点D关于直线x=7对称,而D点的横坐标为6,∴DE=2×(7﹣6)=2;(2)当y=0时,﹣(x﹣m)2+9=0,解得x1=m﹣3,x2=m+3,∴A(m﹣3,0),B(m+3,0),∴AB=m+3﹣(m﹣3)=6,∴DE=AB=3,∵D点的横坐标为6,∴2(m﹣6)=3,∴m=.23.(10分)如图,AB是⊙O的直径,点C为圆上一点,点D为的中点,连接AD,作DE⊥AB交BC的延长线于点E.(1)求证:DE=EB.(2)连接DO并延长交BC于点F.若CF=2CE,BD=5,求⊙O的半径.【解答】(1)证明:∵点D为的中点,∴=,∴∠DBC=∠A,∵AB为直径,∴∠ADB=90°,∵DE⊥AB,∴∠A+∠DBA=∠EDB+∠DBA=90°,∴∠A=∠EDB,∴∠DBC=∠EDB,∴DE=EB;(2)如图:∵D为的中点,∴DF⊥BC,CF=BF,∵CF=2CE,设CE=x,CF=BF=2x,则DE=EB=5x,DF=4x,在Rt△DFB中,DF2+BF2=BD2,即4x2+2x2=52,解得:x=,∴BF=,DF=2,,∵∠A=∠EDB=∠DBF,∴sin A=sin,∴,∴.答:半径是.24.(12分)下表是某奶茶店的一款奶茶近两天的销售情况.销售情况销售数量(单位:杯)销售收入(单位:元)小杯大杯第一天2030460第二天2525450(1)问这款奶茶小杯和大杯的销售单价各是多少元?(2)已知这款奶茶小杯成本4元/杯,大杯成本5元/杯,奶茶店每天只能供应80杯该款奶茶,其中小杯不少于10杯,求该款奶茶一天的最大利润.(销售利润=销售收入﹣成本)(3)为了满足市场的需求,奶茶店推出每杯2元的加料服务,顾客在选完杯型后可以自主选择加料或者不加料.小明恰好用了208元购买该款奶茶,其中小杯不加料的数量是总杯数的,则小明这款奶茶大杯加料的买了6杯.【解答】解:(1)设小杯奶茶销售单价为a元,大杯奶茶销售单价为b元,根据题意,得,解得,答:小杯奶茶销售单价为8元,大杯奶茶销售单价为10元;(2)设售出小杯奶茶m杯,总利润为w元,则w=4m+5(80﹣m)=﹣m+400,∵m≥10,k=﹣1<0,∴w随m的增大而减小,∴当m=10时,w的最小值为390元;(3)设小杯不加料奶茶为p杯,其中小杯加料和大杯不加料共q杯,则大杯加料奶茶为(2p﹣q)杯,根据题意,得:8p+10q+12(2p﹣q)=208,整理,得:16p﹣q=104,解得,∴2p﹣q=6,即小明这款奶茶大杯加料的买了6杯.故答案为:6.25.(14分)如图,在矩形ABCD中,BC=1,AB=2,过对角线BD上一点P作AB的垂线交AB于点F,交CD于点E,过点E作EG∥BD交BC于点G,连接FG交BD于点H,连接DF.(1)求的值.(2)当四边形DFGE有一组邻边相等时,求BG的长.(3)点B关于FG的对称点记为B',若B'落在△EFG内部(不包含边界),求DP长度的取值范围.【解答】解:(1)如图1,∵四边形ABCD是矩形,∴∠ABC=90°,∵EF⊥AB,∴∠AFE=90°,∴∠ABC=∠AFE,∴EF∥BC,∵EG∥BD,∴四边形EPBG是平行四边形,∴EP=BG,∴tan∠EDP===,∴=2;(2)①如图1,当DE=EG时,设BG=x,则DE=EG=2x,CE=2﹣2x,CG=1﹣x,在Rt△CEG中,CE2+CG2=EG2,∴(2﹣2x)2+(1﹣x)2=(2x)2,解得:x=5﹣2,∴BG=5﹣2;②如图1,当EG=GF时,∵CE=BF,∠C=∠ABC=90°,∴Rt△ECG≌Rt△FBG(HL),∴BG=CG=CB=,③如图1,当DF=GF时,设BG=x,则AF=DE=2x,∵DF2=GF2,∴DA2+AF2+BG2+BF2,∴12+(2x)2=(2﹣2x)2+x2,解得:x=4±,∵BG<1,∴BG=4﹣;④∵∠DEF=90°,∴DF>DE,即DF=DE不存在;综上所述,BG的长为:5﹣2或或4﹣;(3)当点B′落在边EG上时,如图2,设BG=x,B′F=BF=CE=2﹣2x,∵∠FB′G=∠FBG=90°,∴∠EFB′=∠CEG=∠CDB,∠C=∠EB′F=90°,∴△EFB′∽△BDC,∴=,∴=,解得:x=1﹣,∴DP=EP=﹣1;当点B′落在边EF上,如图3,∵BG=B′G=CE,∴x=2﹣2x,解得:x=,∴DP=x=,综上所述,﹣1<DP<.。
2020年浙江省温州市中考数学一模试卷一.选择题(共10小题)1.我国是较早认识负数的国家,南宋数学家李冶在算筹的个位数上用斜画一杠表示负数,如“﹣32”写成“”,下列算筹表示负数的是()A.B.C.D.2.“浮云游子意,明月故乡情”,4月疫情期间温州支援意大利口罩达2700000只,其中2700000用科学记数法表示为()A.2.7×106B.27×105C.2.7×105D.0.27×1073.小明家购买了一款新型吹风机.如图所示,吹风机的主体是由一个空心圆柱体构成,手柄可近似看作一个圆柱体,这个几何体的主视图为()A.B.C.D.4.计算x3+x3的结果是()A.x6B.x9 C.2x6 D.2x35.甲、乙、丙、丁四名射击运动员参加射击预选赛,他们射击成绩的平均数及方差如表所示,要选一个成绩较好且稳定的运动员去参赛,应选运动员()甲乙丙丁(环)8998 S2(环2)1 1.21 1.2 A.甲B.乙C.丙D.丁6.不等式﹣2x≤﹣x+2的解在数轴上的表示正确的是()A.B.C.D.7.一款便携式音箱以锂电池作为电源,该电池的电压为定值,工作时电流I(单位:A)与电阻R(单位:Ω)之间的函数关系如图所示,则当电阻R为4Ω时,电流I为()A.6A B.A C.1A D.A8.为美化校园,学校计划购买甲、乙两种花木,其中甲种花木每棵100元,乙种花木每棵80元,若甲种花木的数量是乙种花木的3倍,且两种花木共花费19000元.设购买甲种花木x棵,乙种花木y棵,根据题意,可列方程组()A.B.C.D.9.在△ABC中,BC=5,AC=12,∠C=90°,以点B为圆心,BC为半径作圆弧,与AB 交于D,再分别以A,D为圆心,大于AD的长为半径作圆弧交于点M,N,作直线MN,交AC于E,则AE的长度为()A.4B.4C.D.510.已知函数y1=ax2﹣2ax+c(a>0),y2=﹣ax2+2ax+c,当0≤x≤2时,2≤y1≤3,则当0≤x≤2时,y2的最大值是()A.﹣3B.2C.3D.4二.填空题(共6小题)11.因式分解:m2﹣25=.12.在不透明的袋子里装入3个红球和2个白球(除颜色不同外其余均相同),从中随机摸出一个球为白球的概率是.13.如图,四边形ABCD内接于⊙O,若∠AOC=∠B,则∠D的度数为°.14.如图,在矩形ABCD中,BC=8,E为BC中点,将△ABE沿AE翻折后,得到△AEF,再将CE折向FE,使点C与点F重合,折痕为EG.若CG=3,则AG=.15.如图,已知点A(5,0),在直线y=x+上取点B,过点B作x轴的平行线,交直线y=﹣x+b于点C.若四边形OACB为菱形,则b=.16.将折叠书架画出侧面示意图,AB为面板架,CD为支撑架,EF为锁定杆,F可在CD 上移动或固定.已知BC=CE=8cm.如图甲,将面板AB竖直固定时(AB⊥BD),点F 恰为CD的中点.如图乙,当CF=17cm时,EF⊥AB,则支撑架CD的长度为cm.三.解答题(共8小题)17.(1)计算:2sin30°+(﹣1)0+;(2)解方程:(x﹣1)2=2x+1.18.如图,在△ABC中,AB=AC,点D在BC边上,点E在AC边上,连结AD,DE.已知∠1=∠2,AD=DE.(1)求证:△ABD≌△DCE.(2)若BD=2,CD=5,求AE的长.19.某学校为了解疫情期间学生在家体育锻炼情况,从全体学生中随机抽取若干学生进行调查,以下是根据调查数据绘制的统计图表的一部分,根据信息回答下列问题,(1)本次调查共抽取名学生.(2)抽查结果中,B组有人.(3)在抽查得到的数据中,中位数位于组(填组别).(4)若这所学校共有学生1200人,则估计平均每日锻炼超过20分钟有多少人?组别平均每日体育锻炼时间(分)人数A0≤x≤1018B10<x≤20C20<x≤3042D x>302420.如图,在5×5的方格纸中,点A,B均在格点上,请按要求画图.(1)在图1中画个面积为2的格点△ABC.(2)在图2中画一个格点Rt△ADE,使AB是△ADE的中线.21.在平面直角坐标系中,抛物线的表达式为y=ax2+2bx+2b﹣a(a≠0).(1)当x=﹣1时,求y的值.(2)将抛物线向左平移2个单位后,恰经过点(﹣1,0),求b的值.22.如图,四边形ABCD中,∠B=90°,以AD为直径的⊙O交AB于点E,与BC相切于点C,连结CE.(1)求证:CD=CE.(2)若AE=3,tan∠D=,求⊙O的半径.23.某商店准备采购甲、乙两种消毒水进行售卖,每瓶的进价与利润如表:甲乙每瓶进价(元)a a+20每瓶利润(元)2030已知进货成本1500元采购甲种消毒水的数量和2500元买乙种消毒水的数量相等.(1)求a的值.(2)若该商店准备拿出12000元全部用来进货,由于仓库存放限制,总数量不多于300瓶,问如何进货能使消毒水全部售出后利润最大,最大利润是多少元?(3)在(2)获得最大利润的进货方案下,该商店预留了甲、乙两种消毒水各若干瓶供店内消毒使用,剩余的消毒水被抢购一空,共获得利润7350元,求商店共预留了多少瓶?24.如图,在正方形ABCD中,E,F分别是AD,CD上的点,且AE=CF,M,N分别是EF,EB的中点,延长AN交BF于点K.(1)①小明通过画图探究得到以下数据,根据题意,将表格补充完整.∠FBC10°20°40°∠EBF70°∠BNK20°②写出∠EBF与∠BNK的数量关系,并给出证明.(2)当四边形MNKF中有一条边是NK的2倍时,求cos∠EBF的值.(3)直线MN分别交AB,CD于点P,Q,延长EF交射线BC于点G,当点G关于直线BF的对称点落在直线MN上时,直接写出的值.参考答案与试题解析一.选择题(共10小题)1.我国是较早认识负数的国家,南宋数学家李冶在算筹的个位数上用斜画一杠表示负数,如“﹣32”写成“”,下列算筹表示负数的是()A.B.C.D.【分析】根据正数和负数表示相反意义的量,可得答案.【解答】解:在算筹的个位数上用斜画一杠表示负数,如“﹣32”写成“”,算筹表示负数的是选项B:故选:B.2.“浮云游子意,明月故乡情”,4月疫情期间温州支援意大利口罩达2700000只,其中2700000用科学记数法表示为()A.2.7×106B.27×105C.2.7×105D.0.27×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2700000=2.7×106.故选:A.3.小明家购买了一款新型吹风机.如图所示,吹风机的主体是由一个空心圆柱体构成,手柄可近似看作一个圆柱体,这个几何体的主视图为()A.B.C.D.【分析】根据主视图是从物体正面看所得到的图形即可解答.【解答】解:根据主视图的概念可知,从物体的正面看得到的视图是选项C.故选:C.4.计算x3+x3的结果是()A.x6B.x9 C.2x6 D.2x3【分析】根据合并同类项法则计算即可得出正确选项.【解答】解:x3+x3=2x3.故选:D.5.甲、乙、丙、丁四名射击运动员参加射击预选赛,他们射击成绩的平均数及方差如表所示,要选一个成绩较好且稳定的运动员去参赛,应选运动员()甲乙丙丁(环)8998 S2(环2)1 1.21 1.2 A.甲B.乙C.丙D.丁【分析】先比较平均数,乙丙的平均成绩好且相等,再比较方差即可解答.【解答】解:由图可知,乙、丙的平均成绩好,由于S2乙>S2丙,故乙的方差大,波动大.故选:C.6.不等式﹣2x≤﹣x+2的解在数轴上的表示正确的是()A.B.C.D.【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【解答】解:∵﹣2x≤﹣x+2,∴﹣2x+x≤2,则﹣x≤2,∴x≥﹣2,将不等式解集表示在数轴上如下:故选:B.7.一款便携式音箱以锂电池作为电源,该电池的电压为定值,工作时电流I(单位:A)与电阻R(单位:Ω)之间的函数关系如图所示,则当电阻R为4Ω时,电流I为()A.6A B.A C.1A D.A【分析】根据函数图象可用电阻R表示电流I的函数解析式为I=,再把(2,3)代入可得k的值,进而可得函数解析式,然后代入R=4Ω求得电流I即可.【解答】解:设用电阻R表示电流I的函数解析式为I=,∵反比例函数图象过(2,3),∴k=3×2=6,∴I=,当R=4Ω时,I==,故选:B.8.为美化校园,学校计划购买甲、乙两种花木,其中甲种花木每棵100元,乙种花木每棵80元,若甲种花木的数量是乙种花木的3倍,且两种花木共花费19000元.设购买甲种花木x棵,乙种花木y棵,根据题意,可列方程组()A.B.C.D.【分析】根据题意,可以列出相应的二元一次方程组,从而可以解答本题.【解答】解:由题意可得,,故选:A.9.在△ABC中,BC=5,AC=12,∠C=90°,以点B为圆心,BC为半径作圆弧,与AB交于D,再分别以A,D为圆心,大于AD的长为半径作圆弧交于点M,N,作直线MN,交AC于E,则AE的长度为()A.4B.4C.D.5【分析】由作图可得,BD=BC=5,AD=13﹣5=8,MN垂直平分AD,依据勾股定理即可得到AB的长,再根据相似三角形的性质,即可得到AE的长.【解答】解:由作图可得,BD=BC=5,AD=13﹣5=8,MN垂直平分AD,∴AF=AD=4,∵BC=5,AC=12,∠C=90°,∴AB=13,∵∠AFE=∠ACB=90°,∠A=∠A,∴△AFE∽△ACB,∴=,即=,解得AE=,故选:C.10.已知函数y1=ax2﹣2ax+c(a>0),y2=﹣ax2+2ax+c,当0≤x≤2时,2≤y1≤3,则当0≤x≤2时,y2的最大值是()A.﹣3B.2C.3D.4【分析】由0≤x≤2时,2≤y1≤3,求出a、c的值,即可求解.【解答】解:由题意得:当0≤x≤2时,函数y1在对称轴x=1时取得最小值,即y1=a ﹣2a+c=2①,函数y1在x=2时,取得最大值,即y1=4a﹣4a+c=3②,联立①②并解得:,故y2=﹣ax2+2ax+c=﹣x2+2x+3,当0≤x≤2时,y2在对称轴处取得最大值,∴当x=1时,y=4,故最大值是4,故选:D.二.填空题(共6小题)11.因式分解:m2﹣25=(m+5)(m﹣5).【分析】原式利用平方差公式分解即可.【解答】解:原式=(m+5)(m﹣5),故答案为:(m+5)(m﹣5)12.在不透明的袋子里装入3个红球和2个白球(除颜色不同外其余均相同),从中随机摸出一个球为白球的概率是.【分析】用白球的个数除以球的总个数即可得.【解答】解:从中随机摸出一个球共有5种等可能结果,其中摸出一个球为白球的有2种结果,所以摸出一个球为白球的概率为,故答案为:.13.如图,四边形ABCD内接于⊙O,若∠AOC=∠B,则∠D的度数为60°.【分析】根据圆周角定理得到∠AOC=2∠D,根据题意得到∠B=2∠D,根据圆内接四边形的对角互补列式计算,得到答案.【解答】解:由圆周角定理得,∠AOC=2∠D,∵∠AOC=∠B,∴∠B=2∠D,∵四边形ABCD内接于⊙O,∴∠D+∠B=180°,∴∠D+2∠D=180°,解得,∠D=60°,故答案为:60.14.如图,在矩形ABCD中,BC=8,E为BC中点,将△ABE沿AE翻折后,得到△AEF,再将CE折向FE,使点C与点F重合,折痕为EG.若CG=3,则AG=.【分析】由折叠的性质可得AB=AF,∠B=∠AFE=90°,FG=CG=3,∠C=∠EFG =90°,可证点A,点F,点G三点共线,由勾股定理可求AB的长,即可求解.【解答】解:∵将△ABE沿AE翻折后,得到△AEF,再将CE折向FE,使点C与点F 重合,∴AB=AF,∠B=∠AFE=90°,FG=CG=3,∠C=∠EFG=90°,∴∠AFE+∠GFE=180°,∴点A,点F,点G三点共线,∵AD2+DG2=AG2,∴64+(AB﹣3)2=(AB+3)2,∴AB=,∴AG=AF+FG=,故答案为:.15.如图,已知点A(5,0),在直线y=x+上取点B,过点B作x轴的平行线,交直线y=﹣x+b于点C.若四边形OACB为菱形,则b=12.【分析】由题意设B(a,a+),根据勾股定理得出a2+(a+)2=52,解方程求得a=3,即可求得C的坐标,根据图象上点的坐标特征,代入y=﹣x+b中,即可求得b的值.【解答】解:∵点A(5,0),∴OA=5,∵四边形OACB为菱形,∴OB=OA=5,根据题意设B(a,a+),∴a2+(a+)2=52,整理得a2+2a﹣15=0,解得a=3或a=﹣5(不合题意,舍去),∴B(3,4),∴C(8,4),∵直线y=﹣x+b经过点C,∴4=﹣8+b,解得b=12,故答案为12.16.将折叠书架画出侧面示意图,AB为面板架,CD为支撑架,EF为锁定杆,F可在CD 上移动或固定.已知BC=CE=8cm.如图甲,将面板AB竖直固定时(AB⊥BD),点F 恰为CD的中点.如图乙,当CF=17cm时,EF⊥AB,则支撑架CD的长度为2cm.【分析】根据勾股定理得出EF的长,进而利用勾股定理得出CF,进而得出CD的长即可.【解答】解:∵EF⊥AB,CF=17cm,BC=CE=8cm,∴EF=cm,过F作FG⊥AB,∵AB⊥BD,∴FG∥BD,∵点F恰为CD的中点,∴CG=BC=4cm,∴EG=8+4=12cm,∵EF=15cm,∴CG=cm,∴BD=2CG=18cm,∴CD=,故答案为:2.三.解答题(共8小题)17.(1)计算:2sin30°+(﹣1)0+;(2)解方程:(x﹣1)2=2x+1.【分析】(1)根据零指数幂和特殊角的三角函数值计算;(2)先把方程变形为一般式,然后利用因式分解法解方程.【解答】解:(1)原式=2×+1+3=1+1+3=5;(2)x2﹣4x=0,x(x﹣4)=0,x=0或x﹣4=0,所以x1=0,x2=4.18.如图,在△ABC中,AB=AC,点D在BC边上,点E在AC边上,连结AD,DE.已知∠1=∠2,AD=DE.(1)求证:△ABD≌△DCE.(2)若BD=2,CD=5,求AE的长.【分析】(1)根据AAS可证明△ABD≌△DCE;(2)得出AB=DC=5,CE=BD=2,求出AC=5,则AE可求出.【解答】(1)证明:∵AB=AC,∴∠B=∠C,又∠1=∠2,AD=DE,∴△ABD≌△DCE(AAS);(2)解:∵△ABD≌△DCE,∴AB=DC=5,CE=BD=2,∵AC=AB,∴AC=5,∴AE=AB﹣EC=5﹣2=3.19.某学校为了解疫情期间学生在家体育锻炼情况,从全体学生中随机抽取若干学生进行调查,以下是根据调查数据绘制的统计图表的一部分,根据信息回答下列问题,(1)本次调查共抽取120名学生.(2)抽查结果中,B组有36人.(3)在抽查得到的数据中,中位数位于C组(填组别).(4)若这所学校共有学生1200人,则估计平均每日锻炼超过20分钟有多少人?组别平均每日体育锻炼时间(分)人数A0≤x≤1018B10<x≤2036C20<x≤3042D x>3024【分析】(1)用D组的人数除以其所占百分比可得;(2)总人数减去其他类别人数即可求得B组的人数;(3)根据中位数的多余即可求解;(4)用总人数乘样本中平均每日锻炼超过20分钟的人数所占比例即可求解.【解答】解:(1)24÷20=120(名).故本次调查共抽取120名学生.(2)120﹣18﹣42﹣24=36(人).故B组有36人.(3)在抽查得到的数据中,第60个和第61个数据都在C组,故中位数位于C组.(4)1200×=660(人).答:这所学校平均每日锻炼超过20分钟大约有660人.故答案为:120;36;C;36.20.如图,在5×5的方格纸中,点A,B均在格点上,请按要求画图.(1)在图1中画个面积为2的格点△ABC.(2)在图2中画一个格点Rt△ADE,使AB是△ADE的中线.【分析】(1)利用数形结合的思想解决问题即可.(2)根据三角形的中线的定义画出图形即可.【解答】解:(1)如图1中,△ABC即为所求(答案不唯一).(2)如图2中,△ADE即为所求(答案不唯一).21.在平面直角坐标系中,抛物线的表达式为y=ax2+2bx+2b﹣a(a≠0).(1)当x=﹣1时,求y的值.(2)将抛物线向左平移2个单位后,恰经过点(﹣1,0),求b的值.【分析】(1)把x=﹣1代入y=ax2+2bx+2b﹣a,即可求得;(2)根据题意原抛物线经过(1,0),代入解析式解方程即可求得.【解答】解:(1)当x=﹣1时,y=a﹣2b+2b﹣a=0;(2)∵将抛物线向左平移2个单位后,恰经过点(﹣1,0)∴原抛物线经过(1,0),把(1,0)代入解析式可得:0=a+2b+2b﹣a,∴b=0.22.如图,四边形ABCD中,∠B=90°,以AD为直径的⊙O交AB于点E,与BC相切于点C,连结CE.(1)求证:CD=CE.(2)若AE=3,tan∠D=,求⊙O的半径.【分析】(1)如图,连结DE,OC交于点F,若证明CD=CE,则可转化为证明=即可;(2)连结AC,设BE=3x,则BC=4x,CE=5x,由圆周角定理和圆的内接四边形定理可得tan∠ACB=tan∠CBE=tan∠ADC,再利用勾股定理可求出AD的长,进而可求出⊙O 的半径.【解答】解:(1)证明:如图,连结DE,OC交于点F.∵BC切⊙O于点C,∴∠OCB=90°,∵∠B=90°,∴OC∥AB,∵AD是圆的直径,∴∠DEA=∠FEB=90°,∴OC⊥DE,∴=,∴CD=CE;(2)如图,连结AC,∵四边形ABCD内接于圆,∴∠CEB=∠ADC,∵=,∴∠DAC=∠CAB,∴∠ADC=∠ACB∴tan∠ACB=tan∠CBE=tan∠ADC,设BE=3x,则BC=4x,CE=5x,∴=,解得:x=,∴CD=,∴AD==,∴OA=.23.某商店准备采购甲、乙两种消毒水进行售卖,每瓶的进价与利润如表:甲乙每瓶进价(元)a a+20每瓶利润(元)2030已知进货成本1500元采购甲种消毒水的数量和2500元买乙种消毒水的数量相等.(1)求a的值.(2)若该商店准备拿出12000元全部用来进货,由于仓库存放限制,总数量不多于300瓶,问如何进货能使消毒水全部售出后利润最大,最大利润是多少元?(3)在(2)获得最大利润的进货方案下,该商店预留了甲、乙两种消毒水各若干瓶供店内消毒使用,剩余的消毒水被抢购一空,共获得利润7350元,求商店共预留了多少瓶?【分析】(1)根据表格提供的有效信息和题干中的条件:进货成本1500元采购甲种消毒水的数量和2500元买乙种消毒水的数量相等,可建立关于a的分式方程,解方程求出a 的值即可;(2)设甲种买了x瓶,则乙种买了瓶,由题意可求出x的取值范围,再设设利润为y,可得y与x的一次函数关系式,利用一次函数的增减性即可求出最大利润;(3)设甲种保留了a瓶,乙种保留了b瓶,则20a+30b=150,求出二元一次方程的所有正整数解即可得到该商店共预留了多少瓶.【解答】解:(1)由题可得:=,解得a=30,经检验a=30是方程的解,所以a的值为30;(2)设甲种买了x瓶,则乙种买了瓶,由题意可得:x+≤300,解得x≤150,设利润为y,可得y=20x+30×,即y=2x+7200,∵k=2>0,∴y随x增大而增大.当x=150 y有最大值为7500,答:最大利润为7500元;(3)7500﹣7350=150(元)设甲种保留了a瓶,乙种保留了b瓶,20a+30b=150,该方程的正整数解为或,答:商家共预留了6瓶或7瓶.24.如图,在正方形ABCD中,E,F分别是AD,CD上的点,且AE=CF,M,N分别是EF,EB的中点,延长AN交BF于点K.(1)①小明通过画图探究得到以下数据,根据题意,将表格补充完整.∠FBC10°20°40°∠EBF70°50°10°∠BNK20°40°80°②写出∠EBF与∠BNK的数量关系,并给出证明.(2)当四边形MNKF中有一条边是NK的2倍时,求cos∠EBF的值.(3)直线MN分别交AB,CD于点P,Q,延长EF交射线BC于点G,当点G关于直线BF的对称点落在直线MN上时,直接写出的值.【分析】(1)①利用直角三角形斜边中线的性质,全等三角形的性质解决问题即可.②证明△ABE≌△BCF(SAS)可得结论.(2)分三种情形:①当MN=2NK时.②当KF=2NK时.③当MF=2NK时,分别求解即可解决问题.(3)如图2中,连接BG′,GG′,延长GE交BA的延长线于H,过点E作EJ∥PQ 交AB于J.利用三角形的中位线定理证明EJ=2PN,再利用全等三角形的性质证明EJ =MQ即可解决问题.【解答】解:(1)①根据∠CBF=∠ABE,直角三角形斜边中线的性质可知:当∠FBC =20°时,∠EBF=50°,∠BNK=40°,当∠FBC=40°时,∠EBF=10°,∠BNK=80°,故答案为50°,10°,40°,80°.②结论:∠EBF+∠BNK=90°.理由:在正方形ABCD中,AB=BC,∠BAD=∠C=90°,∵AE=CF,∴△ABE≌△BCF(SAS),∴∠CBF=∠ABE,BE=BF,∴∠EBF=90°﹣2∠ABN,∵N是BE的中点,∴AN=BN,∴∠BNK=2∠ABN,(2)①当MN=2NK时,∵MN=BF=BE=BN,∴BN=2NK,∴∠EBF=30°,∴cos∠EBF=.②当KF=2NK时,∵BN=BE=(BK+KF),NK=KF,∵BN2=BK2+NK2,∴3BK=2KF=4NK,设BK=4m,则NK=3m,BN=5m,∴cos∠EBF==.③当MF=2NK时,过点M作MG⊥BF于点G(如图1中).∵MN∥BF,∴∠MGK=∠GMN=∠NKG=90°,∴四边形MNKG是矩形,∴MG=NK,∴MF=2MG,∴∠MFB=∠BEF=30°,∴此情况不存在.(3)如图2中,连接BG′,GG′,延长GE交BA的延长线于H,过点E作EJ∥PQ 交AB于J.∵BN=NE,PN∥EJ,∴BP=PJ,∴EJ=2PN,∵G,G′关于BP对称,∴BF垂直平分线段GG′,∵BF∥PG′,∴FG=FM,∵BE=BF,∴∠BEF=∠BFE,∴∠BEH=∠BFG,∵BE=BF,∠HBE=∠GBF,∴△HBE≌△GBF(AAS),∴EH=FG,BH=BG,∴EH=FM,∵∠H=∠G=45°,∵∠FCG=90°,∴∠CFG=∠MFQ=45°,∵EJ∥PM,∴∠EEJ=∠HMP=∠FMQ,∴△HEJ≌△FMQ(ASA),∴EJ=MQ,∵EJ=2PN,∴MQ=2PN.。
2021年浙江省温州中考数学一模试卷一、选择题(本大题共10小题,共40.0分)1.数1,0,−12,−2中最大的是()A. −2B. −12C. 0D. 12.如图所示的几何体,它的俯视图是()A.B.C.D.3.下列计算正确的是()A. 2a+3a=6aB. 3a−a=3C. a3+2a3=3a3D. a3−a2=a4.从分别写有1,2,3,4,5的五张卡片中任抽一张,卡片上的数是奇数的概率是()A. 15B. 25C. 35D. 455.如图,△A′B′C′和△ABC是位似三角形,位似中心为点O,AA′=2A′O,则△A′B′C′和△ABC的位似比为()A. 12B. 13C. 14D. 196.某停车场入口的栏杆如图所示,栏杆从水平位置AB绕点O旋转到CD的位置.已知AO=4米,若栏杆的旋转角∠AOD=31°,则栏杆端点A上升的垂直距离为()A. 4sin31°米B. 4cos31°米C. 4tan31°米D. 4sin31∘米7.如图,⊙O的两条弦AB⊥CD,已知∠ADC=35°,则∠BAD的度数为()A. 55°B. 70°C. 110°D. 130°8.某汽车的油箱一次加满汽油50升,可行驶y千米(假设汽油能行驶至油用完),设该汽车行驶每100千米耗油x升,则y关于x的函数表达式为()A. y=2xB. y=2x C. y=5000x D. y=5000x9.二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)对应值如表所示,点A(−4,y1),B(−2,y2),C(4,y3)在该抛物线上,则y1,y2,y3的大小关系为() x…−3−2−101…y…−3−2−3−6−11…A. y1=y3<y2B. y3<y1<y2C. y1<y2<y3D. y1<y3<y210.在欧几里得时代,人们就已经知道了勾股定理的一些拓展.小博在学习完勾股定理后,根据课本上的阅读材料进行改编与研究.如图,在Rt△ABC中,∠BAC=90°,tan∠ABC=12,现分别以AB,AC,BC为直角边作三个等腰直角三角形:△ABD,△ACE,△BCF,其中∠DBA=∠BCF=∠ACE=90°,BF与AD交于点G,CF与AE交于点H,记△DBG的面积为S1,△CEH的面积为S2,则S1:S2为()A. 9:1B. 9:2C. 9:4D. 4:1二、填空题(本大题共6小题,共30.0分)11.分解因式:3x2−6x=______ .12.不等式组{2x<3−xx+13≤1的解为______ .13.若扇形圆心角为36°,半径为3,则该扇形的弧长为______ .14.某校抽查部分九年级学生1分钟垫球测试成绩(单位:个),将测试成绩分成4组,得到如图不完整的频数直方图(每一组含前一个边界值,不含后一个边界值),已知在120−150组别的人数占抽测总人数的40%,则1分钟垫球少于90个的有______ 人.15.如图,半圆的直径AB=6,C为半圆上一点,连接AC,BC,D为BC上一点,连接OD,交BC于点E,连接AE,若四边形ACDE为平行四边形,则AE的长为______ .16.某游乐园有一圆形喷水池(如图),中心立柱AM上有一喷水头A,其喷出的水柱距池中心3米处达到最高,最远落点到中心M的距离为9米,距立柱4米处地面上有一射灯C,现将喷水头A向上移动1.5米至点B(其余条件均不变),若此时水柱最高处D与A,C在同一直线上,则水柱最远落点到中心M的距离增加了______ 米.三、解答题(本大题共8小题,共80.0分)17.(1)计算:2×(−4)+(−1)2−√9+20210;(2)化简:(3+x)(3−x)+3(x−3).18.如图,在正方形ABCD中,AC,BD相交于点O,E,F分别在OA,OD上,∠ABE=∠DCF.(1)求证:△ABE≌△DCF.(2)若BC=4√2,AE=3,求BE的长.19.在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的四边形为整点四边形.如图,已知整点A(1,2),B(5,2),请在所给网格区域(不含边界)上按要求画整点四边形.(1)在图1中画一个以A,B,C,D为顶点的平行四边形,使AO=CO.(2)在图2中画一个以A,B,C,D为顶点的平行四边形,使点C的横坐标与纵坐标的和等于点A的纵坐标的3倍.20.温州市初中毕业生体育学业考试在即,某校体育老师对91班30名学生的体育学业模拟考试成绩统计如下,39分及以上属于优秀.成绩(分)4039383736353491班人数(10575201人)(1)求91班学生体育学业模拟考试成绩的平均数、中位数和优秀率.(2)92班30名学生的体育学业模拟考试成绩的平均数为38分,中位数为38.5分,优秀率为60%,请结合平均数、中位数、优秀率等统计量进行分析,并衡量两个班级的体育学业模拟考试成绩的水平.21.已知抛物线y=ax2−6ax+1(a>0).(1)若抛物线顶点在x轴上,求该抛物线的表达式.(2)若点A(m,y1),B(m+4,y2)在抛物线上,且y1<y2,求m的取值范围.22.AB是⊙O的直径,弦CD⊥AB于点E,连接AC,过点D作DF//AC交⊙O于点F,连接AF,CF,过点A作AG⊥DF延长线于点G.(1)求证:CA=CF.(2)若tan∠ACF=2,CF−GF=9,求△ACF的面积.323.在新冠肺炎疫情发生后,某企业引进A,B两条生产线生产防护服.已知A生产线比B生产线每小时多生产4套防护服,且A生产线生产160套防护服和B生产线生产120套防护服所用时间相等.(1)求两条生产线每小时各生产防护服多少套?(2)因疫情期间,防护服的需求量急增,企业又引进C生产线.已知C生产线每小时生产24套防护服,三条生产线一天共运行了25小时,设A生产线运行a小时,B 生产线运行b小时,a,b为正整数且不超过12.①该企业防护服的日产量(用a,b的代数式表示).②若该企业防护服日产量不少于440套,求C生产线运行时间的最小值.24.如图1,在菱形ABCD中,∠A为锐角,点P,H分别在边AD,CB上,且AP=CH.在CD边上取点M,N(点M在CM之间),使DM=4CN.当P从点A匀速运动到点D时,点Q恰好从点M匀速运动到点N.连接PQ,PH分别交对角线BD于点E,F,记QN=x,AP=y,已知y=−2x+10.(1)①请判断FP与FH的大小关系,并说明理由.②求AD,CN的长.(2)如图2,连接QH,QF.当四边形BFQH中有两边平行时,求DE:EF的值.(3)若tanA=4,则△PFQ面积的最小值为______ .(直接写出答案)3答案和解析1.【答案】D【解析】解:因为|−12|=12,|−2|=2,而12<2,所以−2<−12<0<1,所以数1,0,−12,−2中最大的是1.故选:D.根据有理数大小比较的方法即可得出答案.本题考查了有理数大小比较的方法.(1)在数轴上表示的两点,右边的点表示的数比左边的点表示的数大.(2)正数大于0,负数小于0,正数大于负数.(3)两个正数中绝对值大的数大.(4)两个负数中绝对值大的反而小.2.【答案】A【解析】解:从上面可看到从左往右二列小正方形的个数为:1,2,左面的小正方形在上面.故选:A.根据俯视图的确定方法,找到从上面看所得到的图形即是所求图形.此题主要考查了三视图的知识,根据俯视图是从物体的上面看得到的视图是解题关键.3.【答案】C【解析】解:A、2a+3a=5a,故本选项不合题意;B、3a−a=2a,故本选项不合题意;C、a3+2a3=3a3,故本选项符合题意;D、a3与−a2不是同类项,所以不能合并,故本选项不合题意;故选:C.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,据此逐一判断即可.本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.4.【答案】C【解析】解:∵5张大小相同的卡片上分别标有数字1,2,3,4,5,其中有1、3、5共3张是奇数,∴从中随机抽取一张,卡片上的数字是奇数的概率为3,5故选:C.根据概率的求法,让是奇数的卡片数除以总卡片数即为所求的概率.本题考查随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=m.n5.【答案】B【解析】解:∵AA′=2A′O,∴OA′:OA=1:3,∵△A′B′C′和△ABC是位似三角形,位似中心为点O,∴△A′B′C′和△ABC的位似比为OA′:OA=1:3.故选:B.根据位似比的定义,计算出OA′:OA即可.本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.位似图形必须是相似形,对应点的连线都经过同一点;对应边平行或共线.6.【答案】A【解析】解:过点D作DF⊥AB于点F,则∠DFO=90°,由题意可知:DO=AO=4米,∠AOD=31°,∵sin∠AOD=DF,DO∴DF=4sin31°(米),故选:A.过点D作DF⊥AB于点F,根据锐角三角函数的定义即可求出答案.本题考查了解直角三角形,解题的关键是熟练运用锐角三角函数的定义,属于基础题型.7.【答案】A【解析】解:如图,设AB交CD于K.∵AB⊥CD,∴∠AKD=90°,∵∠ADC=35°,∴∠BAD=90°−35°=55°,故选:A.利用三角形内角和定理求解即可.本题考查三角形内角和定理,垂线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.【答案】D【解析】解:∵该汽车行驶每100千米耗油x升,∴1升汽油可走100x千米,∴y=50×100x =5000x,∴y关于x的函数表达式为y=5000x,故选:D.行驶千米数=汽油升数×每升汽油可行驶千米数,把相关值代入即可求解.本题考查了函数关系式,解决本题的关键是找到行驶的千米数的等量关系.9.【答案】B【解析】解:由表格可得,该函数的对称轴是直线x=−3+(−1)2=−2,当x>−2时,y随x的增大而减小,当x<−2时,y随x的增大而增大,∵点A(−4,y1),B(−2,y2),C(4,y3)在该抛物线上,−2−(−4)=2,4−(−2)=6,∴y3<y1<y2,故选:B.根据表格中的数据和二次函数的性质,可以判断y1,y2,y3的大小关系,本题得以解决.本题考查二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.10.【答案】B【解析】解:如图,连接EF,∵△ACE,△BCF都是等腰直角三角形,∴CA=CE,CB=CF,∠FCB=∠ACE=90°,∴∠BCA+∠ACF=∠ACF+∠FCE,∴∠BCA=∠FCE,在△BCA和△FCE中,{CB=CF∠BCA=∠FCE CA=CE,∴△BCA≌△FCE(SAS),∴FE=BA,∠FEC=∠BAC=90°,∵∠ACE=∠BAC=90°,∴AB//CE,∵BD⊥BA,FE⊥CE,AB//CE,∴BD//EF,∴∠BDG=∠FEG,∠DBG=∠EFG,∵FE=BA,BA=BD,∴FE=BD,在△BDG和△FEG中,{∠BDG=∠FEG BD=FE∠DBG=∠EFG,∴△BDG≌△FEG(ASA),∴DG=EG,设AC=a,∵∠BAC=90°,tan∠ABC=12,∴AB=atan∠ABC=2a,∴BD=2a,CE=a,AD=√2AB=2√2a,AE=√2AC=√2a,∴DG=12DE=12(DA+AE)=3√22a,∵∠BDG=∠GFA=45°,∠DGB=∠FGH,∴△BDG∽△HFG,∵∠GFH=∠HEC=45°,∠FHG=∠EHC,∴△HFG∽△HEC,∴△BDG∽△HEC,∴S1:S2=(DGEC )2=(3√22)2=92.故选:B.如图,连接EF,证明△BCA≌△FCE(SAS)、△BDG≌△FEG(ASA);设AC=a,用a表示出相关线段;判定△BDG∽△HFG、△HFG∽△HEC、△BDG∽△HEC,从而根据相似三角形的面积比等于相似比的平方,可得答案.本题考查了等腰直角三角形的性质、全等三角形的判定与性质、锐角三角函数的定义及相似三角形的判定与性质等知识点,数形结合、熟练掌握相关性质及定理是解题的关键.11.【答案】3x(x−2)【解析】解:3x2−6x=3x(x−2).故答案为:3x(x−2).首先确定公因式为3x,然后提取公因式3x,进行分解.此题考查的是因式分解−提公因式法,解答此题的关键是先确定公因式3x.12.【答案】x<1【解析】解:解不等式2x<3−x,得:x<1,解不等式x+13≤1,得:x≤2,则不等式组的解集为x<1,故答案为:x<1.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.【答案】3π5【解析】解:该扇形的弧长=36⋅π⋅3180=3π5.故答案为:3π5.直接利用弧长公式计算即可.本题考查弧长公式,解题的关键是记住弧长公式l=nπr180.14.【答案】15【解析】解:由题意可得,本次抽取的学生有:40÷40%=100(人),故1分钟垫球少于90个的有:100−20−40−25=15(人),故答案为:15.根据在120−150组别的人数和所占抽测总人数的百分比,可以计算出本次抽取的学生数,然后再根据频数分布直方图中的数据,即可计算出1分钟垫球少于90个的人数.本题考查频数分布直方图,解答本题的关键是明确题意,利用数形结合的思想解答.15.【答案】2√3【解析】解:如图,连接OC.∵AB是直径,∴∠ACB=90°,∵四边形ACDE是平行四边形,∴AC=DE,CD=AE,AC//DE,∴∠ACE=∠DEC=90°,∴OD⊥BC,∴EC=EB,∵OA=OB,∴AC=2OE=DE,∵OD=OC=3,∴OE=1,DE=2,∴CE2=OC2−OE2=CD2−DE2,∴32−12=CD2−22,∴CD=2√3或−2√3(舍弃).故答案为:2√3.如图,连接OC.证明AC=DE=2OE,利用勾股定理构建关系式,可得结论.本题考查圆周角定理,垂径定理,勾股定理,平行四边形的性质,三角形中位线定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.【答案】(3√212−6)【解析】解:如图,过点D作DF⊥x轴,交移动前水柱于点E,交x轴与点F,∵AM⊥x轴,∴AM//DF,∴△ACM∽△DCF,∴CMCF =AMDF,其中CM=4,CF=CM+MF=4+3=7,设当x>0时,抛物线解析式为:y=a(x−3)2+ℎ,当x=0时,y=9a+ℎ,∴点A的坐标为(0,9a+ℎ),∴AM=9a+ℎ当x=3时,y=ℎ,∴点E(3,ℎ),∴EF=ℎ,DF=ℎ+1.5,∴47=9a+ℎℎ+1.5∴21a+ℎ=2①,又最远落点到中心M的距离为9米,∴x=9时,y=0,即36a+ℎ=0②,联立①和②,可得:a=−215,ℎ=245,∴当x>0时,抛物线解析式为:y=−215(x−3)2+245,将抛物线向上平移1.5m,∴当x>0时,新的抛物线解析式y′=−215(x−3)2+6.3,此时当y=0时,x=3+3√212(已舍弃负值),则水柱水柱最远落点到中心M的距离增加了(3√212−6)米,故答案为:(3√212−6).过点D作DF⊥x轴,交移动前水柱于点E,交x轴与点F,设当x>0时,抛物线解析式为:y=a(x−3)2+ℎ,然后分别表示出点A和点E的坐标,利用图形相似,求出a 和h的值,最后求出x>0时向上平移后图象解析式,进而得到M的最远距离,再减去原来的9米,即为增加的距离.此题主要考查了二次函数的应用,正确得出抛物线解析式是解题关键.17.【答案】解:(1)原式=−8+1−3+1=−9;(2)原式=9−x2+3x−9=−x2+3x.【解析】(1)原式利用乘法法则,乘方的意义,算术平方根定义,以及零指数幂法则计算即可求出值;(2)原式利用平方差公式计算,去括号合并即可得到结果.此题考查了平方差公式,零指数幂,以及实数的运算,熟练掌握运算法则及公式是解本题的关键.18.【答案】证明:(1)∵四边形ABCD是正方形,∴AB=CD,∠BAE=∠CDF=45°,∵∠ABE=∠DCF,在△ABE与△DCF中,{∠ABE=∠DCF AB=CD∠BAE=∠CDF,∴△ABE≌△DCF(ASA);(2)∵四边形ABCD是正方形,∴AB=BC,OA=OB=OC=OD,∠ABC=∠AOB=90°,∵BC=4√2,∴AB=4√2,∴AC=√AB2+BC2=√(4√2)2+(4√2)2=8,∴OA=OB=4,∵AE=3,∴OE=OA−AE=4−3=1,在Rt△BOE中,BE=√OB2+OE2=√42+12=√17.【解析】(1)根据正方形的性质和全等三角形的判定解答即可;(2)根据正方形的性质和勾股定理解答即可.此题考查正方形的性质,关键是根据正方形的性质和全等三角形的判定以及勾股定理解答.19.【答案】解:(1)如图,四边形ACBD或四边形ABD′C即为所求作.(2)如图,四边形ACBD或四边形ABC′D′即为所求作.【解析】(1)由题意C(2,1),根据要求作出图形即可.(2)由题意C(3,3)或(5,1),根据题意作出图形即可.本题考查作图−复杂作图,解题的关键是理解题意,灵活运用所学知识解决问题.20.【答案】解:(1)91班学生平均数为(40×10+39×5+38×7+37×5+36×2+ 34)÷30=38.4(分),中位数为39+382=38.5(分),优秀率(10+5)÷30×100%=50%;(2)从平均数、中位数、优秀率进行分析,91班学生平均数高于92班学生平均数,中位数相等,91班学生优秀率低于92班学生优秀率,可知91班学生体育学业模拟考试成绩整体情况较好,92班学生体育学业模拟考试成绩优秀的较多.【解析】(1)根据平均数、中位数和优秀率的定义即可求解;(2)结合平均数、中位数、优秀率等统计量进行分析,并衡量两个班级的体育学业模拟考试成绩的水平.本题考查频数分布表、中位数、平均数、优秀率,解答本题的关键是明确题意,利用数形结合的思想解答.21.【答案】解:(1)根据题意得△=(−6a)2−4a=0,解得a1=0,a2=19,∵a>0,∴a=19,∴抛物线解析式为y=19x2−23x+1;(2)抛物线开口向上,抛物线的对称轴为直线x=−−6a2a=3,当点A、点B都在对称轴的右边时,y1<y2,此时m≥3;当点A、点B在对称轴的两侧时,即m<3<m+4,y1<y2,则3−m<m+4−3,解得m>1,此时m的范围为1<m<3,综上所述,m的范围为m>1.【解析】(1)根据判别式的意义得到△=(−6a)2−4a=0,然后解方程得到满足条件的a的值,从而确定抛物线解析式;(2)先求出抛物线的对称轴为直线x=3,利用二次函数的性质:当点A、点B都在对称轴的右边时,有y1<y2,则m≥3;当点A、点B在对称轴的两侧时,即m<3<m+4,利用点A到直线x=3的距离小于B点到直线x=3的距离得到3−m<m+4−3,从而确定此时m的范围,然后综合两种情况得到m的范围.本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.也考查了二次函数的性质.22.【答案】(1)证明:连接AD.∵AB是直径,AB⊥CD,∴EC=ED,∴AC=AD,∵AC//DF,∴∠ACF=∠FCD,∴AF⏜=CD⏜,∴AD⏜=CF⏜,∴AD=CF,∴AC=CF.(2)解:过点A作AH⊥CF于H.∵∠AFG+∠AFD=180°,∠AFD+∠ACD=180°,∴∠AFG=∠ACD,∵AC=AD,∴∠ACD=∠ADC,∵∠ADC=∠AFC,∴∠AFG=∠AFH,∵AG⊥FG,AH⊥FH,∴∠G=∠AHF=90°,∵AF=AF,∴△AFG≌△AFH(AAS),∴FG=FH,∵CF−FG=CF−FH=CH=9,tan∠ACH=AHCH =23,∴AH=6,∴AC=AF=√AH2+CH2=√62+92=3√13,∴S△ACF=12⋅CF⋅AH=12×3√13×6=9√13.【解析】(1)连接AD.想办法证明AC=AD,AD=CF,可得结论.(2)过点A作AH⊥CF于H.证明△AFG≌△AFH(AAS),推出FG=FH,因为CF−FG=CF−FH=CH=9,求出AH,AC可得结论.本题属于圆综合题,考查了圆周角定理,垂径定理,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.23.【答案】解:(1)设B生产线每小时生产防护服x套,则A生产线每小时生产防护服(x+4)套,依题意得:160x+4=120x,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴x+4=16.答:A生产线每小时生产防护服16套,B生产线每小时生产防护服12套.(2)①设A生产线运行a小时,B生产线运行b小时,则C生产线运行(25−a−b)小时,依题意得:该企业防护服的日产量=16a+12b+24(25−a−b)=(600−8a−12b)套.②∵该企业防护服日产量不少于440套,∴600−8a−12b≥440,∴2a+3b≤40.设k=a+b,则2k+b≤40,∴b值越小,k值越大.∵a,b为正整数且不超过12,∴当a=12时,b≤163,b可取的最大值为5,此时k的最大值为17,25−a−b=25−k= 8;当a=11时,b≤6,b可取的最大值为6,此时k的最大值为17,25−a−b=25−k=8;当a=10时,b≤203,b可取的最大值为6,此时k的最大值为16,25−a−b=25−k=9;当a=9时,b≤223,b可取的最大值为7,此时k的最大值为16,25−a−b=25−k=9.∴C生产线运行时间的最小值为8小时.【解析】(1)设B生产线每小时生产防护服x套,则A生产线每小时生产防护服(x+4)套,利用工作时间=工作总量÷工作效率,结合A生产线生产160套防护服和B生产线生产120套防护服所用时间相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)①设A生产线运行a小时,B生产线运行b小时,则C生产线运行(25−a−b)小时,利用工作总量=工作效率×工作时间,即可用含a,b的代数式表示出该企业防护服的日产量;②由①的结论及该企业防护服日产量不少于440套,即可得出2a+3b≤40,设k=a+ b,则2k+b≤40,进而可得出b值越小,k值越大,结合a,b为正整数且不超过12,可找出k的最大值,将其代入25−a−b=25−k中可求出C生产线运行时间的最小值.本题考查了分式方程的应用、列代数式以及不等式的解集,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)①根据各数量之间的关系,用含a,b的代数式表示出该企业防护服的日产量;②根据2a+3b≤40结合a,b的取值范围,找出(a+b)的最大值.24.【答案】11920【解析】解:(1)①FP=FH,理由如下:∵四边形ABCD是菱形,AD=DC,∴AD//BC,AD=BC,∵AP=CH,∴∠PDF=∠HBF,∠DPF=∠BHF,PD=BH,在△PDF和△HBF中,{∠PDF=∠HBF PD=BH∠DPF=∠BHF,∴△PDF≌△HBF(ASA),∴FP=FH;②当x=0时,y=10,则AD=10,即CD=10,当y=0时,0=−2x+10,得x=5,则QN=5,∴DM+CN=DC−QN=10−5=5,∵DM=4CN,∴CN=1,即AD=10,CN=1;(2)当四边形BFQH中有两边平行时,分两种情况:①当BF//QH时,∵BF//QH,∴△CQH∽△CDB,∵CD=BC,∴CQ=CH,DQ=BH,∵CQ=1+x,CH=AP=y,∴1+x=−2x+10,解得:x=3,y=4,即QN=3,AP=4,∴DP=DQ=6,由(1)中△PDF≌△HBF,∴BF=DF,∴点F为对角线BD的中点,∵平行四边形ABCD的对角线互相平分,∴点F为AC的中点,即A、F、C共线,连接AC,∵四边形ABCD是菱形,∴∠PDF=QDF,AC⊥BD,AD//BC,∴PE⊥BD,∴PE//AC,即PE//AF,∴DE:EF=DP:AP=6:4=3:2;②当FQ//BH时,∵BF=DF,∴QF=DQ=CQ=5,即QN=x=4,∴AP=y=2,PD=8,∵AD//BC,即PD//QF,∴DE:EF=PD:QF=8:5;综上,DE:EF=3:2或8:5;(3)在图2中,过点B作BT⊥AD于T,延长PQ交BC延长线于K,∵tanA=43,∴sinA=45,∵AB=10,∴BT=AB⋅sinA=8,设△PDQ的底边的高为a,∵PD//CK,∴△PDQ∽△KCQ,∴DQQC =a8−a=10−x−11+x,∴a=365−45x,则S△PFQ=S△ACD−S△PDQ−S△FAP−S△CQF=12×10×8−12×(10−y)×(365−45x)−12×4y−12×4(1+x)=45x2−265+18=45(x−134)+11920,∴当x=134时,S△PFQ有最小值,最小值为11920.故答案为:11920.(1)①根据菱形的性质和全等三角形的判定证得△PDF≌△HBF,再根据全等三角形的性质即可解答;②根据题意,分别令x=0,y=0即可求解;(2)分BF//QH和FQ//BH两种情况讨论解答即可;(3)过点B作BT⊥AD于T,延长PQ交BC延长线于K,根据tanA=43可得BT=8,设△PDQ的底边的高为a,证明△PDQ∽△KCQ,根据相似三角形高的比等于相似比可证得a=365−45x,则S△PFQ=S△ACD−S△PDQ−S△FAP−S△CQF=45x2−265+18,由二次函数求最值的方法求解即可.本题是四边形综合题,主要考查了菱形的性质,平行四边形的判定与性质、平行线的判定与性质、相似三角形的判定与性质等知识;本题综合性强,难度较大,熟练掌握相似三角形的判定与性质是解题的关键.。
浙江省温州市六校九年级下学期3月第一次联合模拟数学试卷一.选择题(本题有10个小题,每小题4分,共40分,每个小题只有一个是正确的,不选、多选、多选、错选,均不给分)1.2的相反数为( ▲)A.-2 B.2 C.12D.12-2.为缓解中低收入人群和新参加工作的大学生住房的需求,某市将新建保障住房4800000平方米,把4800000用科学记数法表示应是(▲)A.0.48×107B.4.8×106C.4.8×107D.48×1053.从甲,乙,丙三人中任选一名代表,甲被选中的可能性是(▲)A.12B.1 C.23D.134.与如图所示的三视图对应的几何体是(▲)5.不等式-2x+1<0的解集是(▲)A.x>﹣2 B.x>12-C.x<﹣2 D.x<12-6.一次函数y1=x+1与y2=-2x+4图像交点的横坐标是(▲)A.4 B.2 C.1 D.07.“五一”前夕,某校社团进行爱心义卖活动,先用800元购进第一批康乃馨,包装后售完,接着又用400元购进第二批康乃馨,已知第二批所购数量是第一批所购数量的31,且康乃馨的单价比第一批的单价多1元,设第一批康乃馨的单价是x元,则下列方程正确的是(▲)A.x800+1=x400B.x800=1400+xC.31×x800=1400+xD.800x=3×400(x+1)8.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为4,∠B=135°,则»AC的长( ▲)A. 4πB. 2πC. πD. 23π9.如图,正方形ABCD中,内部有4个全等的正方形,小正方形的顶点E、F、G、H分别在边AB、BC、CD、AD上,则tan∠AEH=( ▲)A.31B.52C.72D.4110.如图,⊙O的半径为3,四边形,M为DC中点,E为⊙O上的一个动点,连结DE,作DF⊥DE交射线EA于F,连结MF,则MF的最大值为()A.3369+B.3357+C.2361+D.63A.B.C.D.8题二. 填空题(本题共6个小题,每小题5分,共30分) 11.分解因式:269a a -+= .12.已知22(2)0x y y -+-=,则y x = .13.今年3月份某周,我市每天的最高气温(单位:℃)12,11,10,15,16,15,12,若这组数据的中位数是 .14.如图,△ABC 的周长为26,点D ,E 都在边BC 上,∠ABC 的平分线垂直于AE ,垂足为Q ,∠ACB 的平分线垂直于AD ,垂足为P ,若BC =10,则PQ 的长为 ( ).15.如图,矩形OABC 的边OA ,OC 分别在x 轴、y 轴上,点B 在第一象限,点B 的坐标为(12,6),反比例函数(0)ky k x=>的图象分别交边BC 、AB 于点D 、E ,连结DE ,ΔDEF 与ΔDEB 关于直线DE 对称.当点F 正好落在边OA 上时,则k 的值为 .16.自行车车轮的辐条编制方式是多种多样的,同样大小的车轮,辐条编法不同,辐条的长度是不一样的,图2和图3是某种“24吋(指轮圈直径)”车轮一侧的辐条编法示意图,两个同心圆分别代表轮圈和花鼓,连接两圆的线段代表辐条,轮圈和花鼓上的穿辐条的孔都等分圆周,图2是直拉式编法,每根辐条的延长线都过圆心,优点是编法简单,缺点是轮强度较低,且力传递的效果较差,所以一般都采用如图3(两图中孔的位置一样)这样的错位式编法,若弧DC 的长度和弧AB 相等,则BE 的长度为 吋.三、解答题(本题共8个小题,共80分)17.(1)计算:3sin30°+0201932- (2)化简:2(21)(42)a a a +-+18.(本题8分)某校积极开展“阳光体育”活动,并开设了跳绳、足球、篮球、跑步四种运动项目,为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下的条形统计图和扇形统计图(部分信息未给出).(1)求本次被调查的学生人数; (2)补全条形统计图;(3)该校共有3000名学生,请估计全校最喜爱篮球的人数比最喜爱足球的人数多多少?.人数1015某校各校运动项目最喜爱的人数扇形统计图9121518某校各校运动项目最喜爱 的人数条形统计图跳绳25%足球30%第14题第15题9题10题16题图1 16题图2 16题图219.(本题8分)如图,在△ABC 中,点D 、E 、F 分别是边AB 、BC 、CA 的中点,AH 是边BC 上的高. (1)求证:四边形ADEF 是平行四边形;(2)若∠AHF=20°,∠AHD=50°,求∠DEF 的度数.20.(本题8分)如图,网格中有一条线段AB ,点A 、B 都在格点上,网格中的每个小正方形的边长为1. (1)在图①中画出格点△ABC ,使△ABC 是等腰三角形;(2)以AB 为斜边作Rt △ABC (见图②),在图②中找出格点D ,作锐角△ADC ,且使得∠ADC=∠B .21.(10分)如图,点P 是圆O 直径CA 延长线上的一点,PB 切圆O 于点B ,点D 是圆上的一点,连接AB ,AD ,BD ,CD ,∠P=30°. (1)求证:PB=BC ; (2)若AD=6,tan ∠DCA=43,求BD 的长. 22.(12分)已知如图,抛物线4516542++-=x x y 交x 轴于A 、C 两点,点D 是x 轴上方抛物线上的点,以A ,D 为顶点按逆时针方向作正方形ADEF.(1)求点A 的坐标和抛物线的对称轴的表达式; (2)当点F 落在对称轴上时,求出点D 的坐标;(3)连接OD 交EF 于点G ,记OA 和EF 交于点H ,当△AFH 的面积是四边形ADEH 面积的71时,则OADOGHS S △△= .(直接写出答案)23.(本题12分)一连锁店销售某品牌商品,该商品的进价是60元.因为是新店开业,所以连锁店决定当月前10天进行试营业活动,活动期间该商品的售价为每件80元,据调查研究发现:当天销售件数1y (件)图①图②19题21题和时间第x (天)的关系式为c bx x y ++=21(101≤≤x ),已知第4天销售件数是40件,第6天销售件数是44件.活动结束后,连锁店重新制定该商品的销售价格为每件100元,每天销售的件数也发生变化:当天销售数量2y (件)与时间第x (天)的关系为:822+=x y (3111≤≤x ). (1)求1y 关于x 的函数关系式;(2)若某天的日毛利润是1120元,求x 的值;(3)因为该连锁店是新店开业,所以试营业结束后,厂家给这个连锁店相应的优惠政策:当这个连锁店日销售量达到60件后(不含60),每多销售1件产品,当日销售的所有商品进价减少2元,设该店日销售量超过60件的毛利润总额为W ,请直接写出W 关于x 的函数解析式,及自变量x 的取值范围: .24.(本题14分)在矩形ABCD 中,AB=6,BC=8,BE ⊥AC 于点E ,点O 是线段AC 上的一点,以AO 为半径作圆O 交线段AC 于点G ,设AO=m . (1)直接写出AE 的长:AE= ;(2)取BC 中点P ,连接PE ,当圆O 与△BPE 一边所在的直线相切时,求出m 的长; (3)设圆O 交BE 于点F ,连接AF 并延长交BC 于点H .①连接GH ,当BF=BH 时,求△BFH 的面积;②连接DG ,当tan ∠HFB=3时,直接写出DG 的长,DG= .参考答案一、选择ABCDA CCBAB二、填空11、2)3(+a ;12、16;13、10;14、2;15、27;16、7 17.(本题8分)(1)2124-(4分); (2)2a+1 (4分) 18.(本题8分)(1)40人 (3分),(2)12人 (2分),(3)1125人 (3分) 19.(本题8分)(1)证明略(4分),(2)70° (4分) 20.(本题8分)答案略,每个小题4分 21.(本题10分)(1)证明略(4分),(2)334+ (6分) 22.(12分)(1)A (4,0) 2分,对称轴是直线x=1 (2分) (2)求出点D 的纵坐标是3 (2分),D (2214+,3)或D (2214-,3)(3分)写出1个给2分 (3)4009(3分) 23.(12分)(1)5682+-=x x y (5分) (2)第8天和第12天 (4分,第8天得3分,第10天舍去得1分);(3))3026(5129682≤<--=x x x w (3分)24.(本题14分)(1)AE=518(2分);(2)59=m (2分),415=m (2分),2027=m (3分) (3)518512(3分),(4)DG=(2分)5。
温州新希望联盟2020学年第二学期九年级第一次中考模拟测试数学学科试题卷I一、选择题(本题有10小题,每小题4分,共40分)1.-3的绝对值是()A.3B.3C.D.-2.预计到2025年,中国5G 用户将超过6400000000人.数据6400000000用科学记数法表示为()A.6.4×108B.6.4×109C.64×108D.0.64×10103.如图是由4个大小相同的立方块搭成的几何体,这个几何体的主视图是()A.B.C.D.4.某路口交通信号灯的时间设置为:红灯亮25秒,绿灯亮32秒,黄灯亮3秒.当人或车随机经过该路口时,遇到绿灯的概率为()A .B.C.D.5.疫情无情人有情,爱心捐款传真情.新型冠状病毒感染的疫情期间,某班同学参加献爱心活动,该班50名学生的捐款统计情况如下表:则他们捐款金额的众数是()A.10B.20C.50D.1006.如图,D 是等边△ABC 外接圆 AC 上的点,且∠CAD=20°,则∠ACD 的度数为()A.20°B.30°C.40°D.45°7.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是()A.B.C.D.8.如图,一棵珍贵的百年老树倾斜程度越来越厉害了.出于对它的保护,需要测量它的高度,现采取以下措施:在地面上选取一点C,测得∠BCA =37°,AC=28米,∠BAC=45°,则这棵树的高AB 约为()(参考数据:sin37°≈,tan37°≈,≈1.4)A.14米B.15米C.17米D.18米(第6题)(第6题)(第8题)(第3题))的值是(,则的最大值是时,函数值,当为常数已知二次函数m1y2≤x≤)(m2mx+-x=y9.2A.1± B.32 C.1 D.-110.如图,在正方形ABCD中,AD=2,动点E,F分别从D,C同时出发在线段DC,CB上匀速移动,当点E运动到C点时,点F恰好运动至B点.连接AE和DF交于点P,则CP的最小值为()A.2B.1C.52 D.51-卷II二、填空题(本题有6小题,每小题5分,共30分)11.分解因式:2a41-=.12.不等式组⎪⎩⎪⎨⎧≥+-2240<2xx的解为.13.圆锥的底面半径是3cm,高为4cm,那么圆锥的侧面积是cm2.(结果保留π)14.如图,菱形OABC的顶点A,B,C在⊙O上,过点B作⊙O的切线交OA的延长线于点D.若⊙O 的半径为2,则BD的长为.15.已知点A在反比例函数x4=y-的图像上,点B在一次函数y=x-3的图像上,且A、B两点关于y轴对称,设点A的坐标为(m,n),则mn+nm的值为.16.将一把等腰三角尺和一个重锤如图1所示放置,可以检查一根衡量是否水平.已知∠BAC=90°,AB=AC=53,重锤所在的直线AD始终与地面垂直,△ABC可以绕点A旋转,当旋转至如图2所示,设BC与AD交于点E,连接BD,测得BD=5分米,BC=3BE,继续旋转至如图3所示,当DE1的长为___________分米时,可判断BC与地面平行.三、解答题(本题有8小题,共80分.解答需写明必要的文字说明、演算步骤或证明过程)17.(本题10分)(1)计算:0|2|(21)9---+(2)化简:2(3)(1)(2)a a a----18.(本题8分)如图,在ΔABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:ΔACD≌ΔAED.(第14题)图3图2图1(第10题)(2)若∠B=30°,CD=2,求BD的长.19.(本题8分)开学初,信息技术老师对九(1)班,九(2)班同学上交的“新年祝福”动画设计作品进行打分,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为10分,8分,6分,4分.两班人数相同,两班班长分别将两班同学的成绩整理并绘制成如图的统计图.请你根据以上提供的信息解答下列问题:(1)求九(1)班和九(2)班的平均成绩.(2)从平均数、中位数、众数的角度进行分析,你将如何评价这两个班级的成绩?请简述理由.20.(本题8分)如图,在10×8的方格纸ABCD中,每个小正方形的顶点称为格点.请按要求画图.(1)在图1中画EG∥FH,使格点G,H分别在边AB,CD上,且均不与点A,B,C,D重合.(2)在图2中,在线段MN上找一格点P,使得∠MPE=∠MPF.图1图221.(本题10分)在平面直角坐标系中,已知抛物线与x轴交于点A(-1,0),点B(3,0),与y 轴交于点C(0,-3).(1)求抛物线的函数表达式.(2)若P为直线BC上一点,且PA=PB,将该抛物线向左平移m个单位(m>0),得到一条新抛物线,并且新抛物线经过点P,求m 的值.九(1)班九(2)班22.(本题10分)如图,已知MN,BD 分别为⊙O 的直径,AB 为⊙O 的一条弦,∠D=2∠M,(1)求证:MN∥AD.(2)连接BN,若AD=6,tanM=21.求⊙0的半径.23.(本题12分)榴莲上市的时候,某水果行以“线上”与“线下”相结合的方式一共销售了100箱榴莲.已知“线上”销售的每箱利润为100元.“线下”销售的每箱利润y (元)与销售量x (箱)(20≤x≤60)之间的函数关系如图中的线段AB.(1)求y 与x 之间的函数关系.(2)当“线下”的销售利润为4350元时,求x 的值.(3)实际“线下”销售时,每箱还要支出其它费用a 元(0<a<20),若“线上”与“线下”售完这100箱榴莲所获得的最大总利润为11250元,求a 的值.24.(本题14分)如图1,在平面直角坐标系中,正方形OABC 的边长为6,点A、C 分别在x、y 正半轴上,点B 在第一象限.点P 是x 正半轴上的一动点,且OP=t,连结PC,将线段PC 绕P 顺时针旋转90°至PQ,连结CQ,取CQ 中点M.(1)当t=2时,求Q 与M 的坐标.(2)如图2,连结AM,以AM、AP 为邻边构造□APNM.记□APNM 的面积为S.①用含t 的代数式表示S(0<t<6)②当N 落在△CPQ 的直角边上时,求∠CPA 的度数.(3)在(2)的条件下,连结AQ,记△AMQ 的面积为S’,若S=S’,则t=.(直接写出答案)图1图2温州新希望联盟2020学年第二学期九年级第一次中考模拟测试数学学科试题参考答案一、选择题(本题有10小题,每小题4分,共40分)12345678910ABADBCACCD二、填空题(本题有6小题,每小题5分,共30分)11.(1+2)(12)a a -2<x ≤0.12π15.1332.14417.15-1023-10.1617.(本题10分)(1)(2)三、解答题(本题有8小题,共80分)18.(本题8分)(1)证明:∵AD 平分∠CAB,DE⊥AB,∠C=90°∴CD=ED,∠DEA=∠C=90°,∵在RtΔACD 和Rt△AED 中AD=AD,CD=DE∴ΔACD≌ΔAED(HL);..................(4分)(2)∵DC=DE=2,DE⊥AB,∴∠DEB=90°∵∠B=30°∴BD=2DE=4................................(4分)19.(本题8分)解:(1)6.7=404×6+6×5+8×20+10×9=x 1(分)...........(2分)8.7=404×6+6×8+8×10+10×16=x 2(分)...........(2分)(2)从平均数看,2班成绩要比1班好;从中位数看1班和2班成绩是一样的,都是8分;从众数看,1班的众数是8分,2班的众数是10分,2班成绩较好,总体上看,2班要比1班好(合理即可)....(4分))2(4=)31(3+12=分分分,共每算对一个给-原式 2222=(43)(44)434411a a a a a a a a -+--+=-+-+-=- 原式(多项式乘法运算正确各得1分)(去括号正确2分)(分)(1)如图1,线段EG∥FH,EG′∥FH′,EG″∥FH″(答案不唯一).............(4分)(2)如图2中,点P即为所求..............................................(4分)21.(本题10分)解:(1)设抛物线的解析式为y=a(x+1)(x﹣3).∵将C(0,﹣3)代入得:3a=3,解得a=1,∴抛物线的解析式为y=(x+1)(x﹣3),即y=x2﹣2x﹣3......................(4分)(2)设直线BC的解析式为y=kx+b,∴直线BC的解析式为y=x﹣3,.....................(2分)∵PA=PB∴P为对称轴上一点,P(1,-2).......................(2分)设新函数的抛物线解析式为y=(x-1+m)2-4代入点P(1,-2)解得m=2.......................................(2分)22.(本题10分)证明:(1)(2)2,0,/2/D MNMN BDMN AB AD ABMNBABABDA N∴∠==∠∴∴⊥⊥∴为的中点 .........(2分)为的直径.........(2分)222122,252,2645.ABN MBC xtanMxMC x CNAB x AD MN xADRt BAD AD AB BANxBDN∴∠=∠==∴==∴====∴+=∴=∴=设在△中,圆的半径为.........(6分)(方法不唯一)解:(1)设y 与x 之间的函数关系式为y=kx+b,代入点A(20,150),B(60,130)得:,∴.∴y 与x 之间的函数关系式为y=﹣x+160........................(3分)(2)由题意得:x(﹣x+160)=4350,整理得:x 2﹣320x+8700=0,∴(x﹣30)(x﹣290)=0,∴x 1=30,x 2=290(舍).∴x 的值为30........................................(4分)(3)设总利润为P,则P=x(﹣x+160﹣a)+100(100﹣x)=﹣x 2+(60﹣a)x+10000,.......................(2分)对称轴为:x=﹣=60﹣a∵0<a<20,∴40<60﹣a<60,∴当x=60﹣a 时,﹣×(60﹣a)2+(60﹣a)(60﹣a)+10000=11250,(60﹣a)2=2500,∴60﹣a=±50,∴a 1=10,a 2=110(舍).∴a=10....................(3分)24.(本题14分)(1)过点Q 作QD⊥X 轴于点D,易证△COP≌△PDQ(AAS)OP=QD=2,OC=PD=6,OD=OP+PD=8,Q(8,2)∵C(0,6)∴M(4,4)................(3分)(2)∵C(0,6)Q(t+6,t)∴M )26,26(++t t ①当0<t<6时,23626)6(2t t t y AP S M-=+⨯-=⋅=.....(3分)②当N 在PC 上时,点M 的横纵坐标相等,∴点M 在对角线BO 上,连结AM,易证△COM≌△AOM,∴CM=AM 在Rt△CPQ 中,M 为CQ 的中点,∴PM⊥CQ,∠CPM=∠MPQ=45°,PM=CM=MQ ∴PM=AM∵点N 在PC 上,NP∥AM,∠CPQ=90°∴AM⊥PQ∴∠PMA=45°,又PM=AM ∴∠MPA=°5.67=2°45°180-∴∠CPA=45°+67.5°=112.5°..............(2分)当N 在PQ 上时,同理可证MA=MP,∠AMP=45°∴∠MPA=°5.67=2°45°180-∴∠CPA=67.5°-45°=22.5°..............(2分)综上所述,当点N 在△CPQ 的直角边上时,∠CPA 的度数为112.5°和22.5°(3)533+或533+-............(4分)。
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.2.若分式11xx-+的值为零,则x的值是( )A.1 B.1-C.1±D.2 【答案】A【解析】试题解析:∵分式11xx-+的值为零,∴|x|﹣1=0,x+1≠0,解得:x=1.故选A.3.如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示sinα的值,错误的是()A.CDBCB.ACABC.ADACD.CDAC【答案】D【解析】根据在直角三角形中,锐角的正弦为对边比斜边,可得答案.【详解】∵∠BDC=90°,∴∠B+∠BCD=90°,∵∠ACB=90°,即∠BCD+∠ACD=90°,∴∠ACD=∠B=α,A 、在Rt △BCD 中,sinα=CD BC,故A 正确,不符合题意; B 、在Rt △ABC 中,sinα=AC AB,故B 正确,不符合题意; C 、在Rt △ACD 中,sinα=AD AC ,故C 正确,不符合题意; D 、在Rt △ACD 中,cosα=CD AC ,故D 错误,符合题意, 故选D .【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.4.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )A .众数B .方差C .平均数D .中位数 【答案】D【解析】根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故本题选:D.【点睛】本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键.5.已知m =1n =1的值为 ( )A .±3B .3C .5D .9 【答案】B【解析】由已知可得:2,(11m n mn +==+=-【详解】由已知可得:2,(11m n mn +==+=-,原式3===故选:B考核知识点:二次根式运算.配方是关键.6.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15 B.13,15 C.13,20 D.15,15【答案】D【解析】将五个答题数,从小打到排列,5个数中间的就是中位数,出现次数最多的是众数.【详解】将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D. 【点睛】本题考查中位数和众数的概念,熟记概念即可快速解答.7.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE 的度数为()A.31°B.28°C.62°D.56°【答案】D【解析】先利用互余计算出∠FDB=28°,再根据平行线的性质得∠CBD=∠FDB=28°,接着根据折叠的性质得∠FBD=∠CBD=28°,然后利用三角形外角性质计算∠DFE的度数.【详解】解:∵四边形ABCD为矩形,∴AD∥BC,∠ADC=90°,∵∠FDB=90°-∠BDC=90°-62°=28°,∵AD∥BC,∴∠CBD=∠FDB=28°,∵矩形ABCD沿对角线BD折叠,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故选D.本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.8.如图,在矩形ABCD 中,P 、R 分别是BC 和DC 上的点,E 、F 分别是AP 和RP 的中点,当点P 在BC 上从点B 向点C 移动,而点R 不动时,下列结论正确的是( )A .线段EF 的长逐渐增长B .线段EF 的长逐渐减小C .线段EF 的长始终不变D .线段EF 的长与点P 的位置有关【答案】C 【解析】试题分析:连接AR ,根据勾股定理得出AR=22AD DR +的长不变,根据三角形的中位线定理得出EF=12AR ,即可得出线段EF 的长始终不变, 故选C .考点:1、矩形性质,2、勾股定理,3、三角形的中位线 9.如图,已知11(,)3A y ,2(3,)B y 为反比例函数1y x=图象上的两点,动点(,0)P x 在x 轴正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是( )A .1(,0)3B .4(,0)3C .8(,0)3D .10(,0)3【答案】D 【解析】求出AB 的坐标,设直线AB 的解析式是y=kx+b ,把A 、B 的坐标代入求出直线AB 的解析式,根据三角形的三边关系定理得出在△ABP 中,|AP-BP|<AB ,延长AB 交x 轴于P′,当P 在P′点时,PA-PB=AB ,此时线段AP 与线段BP 之差达到最大,求出直线AB 于x 轴的交点坐标即可.【详解】把11(,)3A y ,2(3,)B y 代入反比例函数1y x = ,得:13y =,213y =, 11(,3),(3,)33A B ∴,在ABP ∆中,由三角形的三边关系定理得:AP BP AB -<,∴延长AB 交x 轴于P',当P 在P'点时,PA PB AB -=,即此时线段AP 与线段BP 之差达到最大,设直线AB 的解析式是y kx b =+,把A ,B 的坐标代入得:133133k b k b ⎧=+⎪⎪⎨⎪=+⎪⎩, 解得:101,3k b =-=, 1215x ->∴直线AB 的解析式是103y x =-+, 当0y =时,103x =,即10(,0)3P , 故选D.【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P 点的位置,题目比较好,但有一定的难度.10.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( ) A . B . C . D .【答案】B【解析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A 、C 、D 都不是中心对称图形,只有B 是中心对称图形. 故选B.二、填空题(本题包括8个小题)11.如图,在直角三角形ABC 中,∠ACB=90°,CA=4,点P 是半圆弧AC 的中点,连接BP ,线段即把图形APCB (指半圆和三角形ABC 组成的图形)分成两部分,则这两部分面积之差的绝对值是_____.【答案】4【解析】连接OP OB 、,把两部分的面积均可转化为规则图形的面积,不难发现两部分面积之差的绝对值即为BOP △的面积的2倍.【详解】解:连接OP 、OB ,∵图形BAP 的面积=△AOB 的面积+△BOP 的面积+扇形OAP 的面积,图形BCP 的面积=△BOC 的面积+扇形OCP 的面积−△BOP 的面积,又∵点P 是半圆弧AC 的中点,OA=OC ,∴扇形OAP 的面积=扇形OCP 的面积,△AOB 的面积=△BOC 的面积,∴两部分面积之差的绝对值是2 4.BOP S OP OC =⋅=点睛:考查扇形面积和三角形的面积,把不规则图形的面积转化为规则图形的面积是解题的关键. 12.某校园学子餐厅把WIFI 密码做成了数学题,小亮在餐厅就餐时,思索了一会,输入密码,顺利地连接到了学子餐厅的网络,那么他输入的密码是______.【答案】143549【解析】根据题中密码规律确定所求即可.【详解】5⊗3⊗2=5×3×10000+5×2×100+5×(2+3)=1510259⊗2⊗4=9×2×10000+9×4×100+9×(2+4)=183654,8⊗6⊗3=8×6×10000+8×3×100+8×(3+6)=482472,∴7⊗2⊗5=7×2×10000+7×5×100+7×(2+5)=143549.故答案为:143549【点睛】本题考查有理数的混合运算,根据题意得出规律并熟练掌握运算法则是解题关键.13.分解因式:2x2﹣8=_____________【答案】2(x+2)(x﹣2)【解析】先提公因式,再运用平方差公式.【详解】2x2﹣8,=2(x2﹣4),=2(x+2)(x﹣2).【点睛】考核知识点:因式分解.掌握基本方法是关键.14.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=__________度.【答案】22.5°【解析】四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OA=OB═OC,∴∠OAD=∠ODA,∠OAB=∠OBA,∴∠AOE=∠OAD+∠ODA=2∠OAD,∠EAC=2∠CAD,∴∠EAO=∠AOE,AE⊥BD,∴∠AEO=90°,∴∠AOE=45°,∴∠OAB=∠OBA=67.5°,即∠BAE=∠OAB﹣∠OAE=22.5°.考点:矩形的性质;等腰三角形的性质.15.如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为_____.【答案】23 【解析】试题解析:∵共6个数,小于5的有4个,∴P (小于5)=46=23.故答案为23. 16.如图,把一个直角三角尺ACB 绕着30°角的顶点B 顺时针旋转,使得点A 与CB 的延长线上的点E 重合连接CD ,则∠BDC 的度数为_____度.【答案】1【解析】根据△EBD 由△ABC 旋转而成,得到△ABC ≌△EBD ,则BC =BD ,∠EBD =∠ABC =30°,则有∠BDC=∠BCD ,∠DBC =180﹣30°=10°,化简计算即可得出15BDC ∠=︒.【详解】解:∵△EBD 由△ABC 旋转而成,∴△ABC ≌△EBD ,∴BC =BD ,∠EBD =∠ABC =30°,∴∠BDC =∠BCD ,∠DBC =180﹣30°=10°,∴()1180150152BDC BCD ∠=∠=︒-︒=︒; 故答案为:1.【点睛】此题考查旋转的性质,即图形旋转后与原图形全等.17.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.【答案】12【解析】列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.【详解】列表如下:-2 -1 1 2由表可知,共有12种等可能结果,其中积为大于-4小于2的有6种结果,∴积为大于-4小于2的概率为612=12, 故答案为12. 【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.18.关于x 的方程2230mx x -+=有两个不相等的实数根,那么m 的取值范围是__________.【答案】13m <且0m ≠ 【解析】分析:根据一元二次方程的定义以及根的判别式的意义可得△=4-12m >1且m≠1,求出m 的取值范围即可.详解:∵一元二次方程mx 2-2x+3=1有两个不相等的实数根, ∴△>1且m≠1,∴4-12m >1且m≠1,∴m <13且m≠1, 故答案为:m <13且m≠1. 点睛:本题考查了一元二次方程ax 2+bx+c=1(a≠1,a ,b ,c 为常数)根的判别式△=b 2-4ac .当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.也考查了一元二次方程的定义.三、解答题(本题包括8个小题)19.关于x 的一元二次方程mx 2﹣(2m ﹣3)x+(m ﹣1)=0有两个实数根.求m 的取值范围;若m 为正整数,求此方程的根.【答案】(1)98m 且0m ≠;(2)10x =,21x =-. 【解析】(1)根据一元二次方程的定义和判别式的意义得到m≠0且()()22341m m m =----⎡⎤⎣⎦≥0,然后求出两个不等式的公共部分即可;(2)利用m 的范围可确定m=1,则原方程化为x 2+x=0,然后利用因式分解法解方程.【详解】(1)∵2=[(23)]4(1)m m m ∆---- =89m -+. 解得98m ≤且0m ≠. (2)∵m 为正整数, ∴1m =.∴原方程为20x x +=.解得10x =,21x =-.【点睛】考查一元二次方程()200ax bx c a ++=≠根的判别式24b ac ∆=-,当240b ac ∆=->时,方程有两个不相等的实数根.当240b ac ∆=-=时,方程有两个相等的实数根.当240b ac ∆=-<时,方程没有实数根.20.如图,已知AB 是⊙O 上的点,C 是⊙O 上的点,点D 在AB 的延长线上,∠BCD=∠BAC .求证:CD 是⊙O 的切线;若∠D=30°,BD=2,求图中阴影部分的面积.【答案】(1)证明见解析;(2)阴影部分面积为433π【解析】(1)连接OC ,易证∠BCD=∠OCA ,由于AB 是直径,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD 是⊙O 的切线;(2)设⊙O 的半径为r ,AB=2r ,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:3分别计算△OAC 的面积以及扇形OAC 的面积即可求出阴影部分面积.【详解】(1)如图,连接OC ,∵OA=OC ,∴∠BAC=∠OCA ,∵∠BCD=∠BAC ,∴∠BCD=∠OCA ,∵AB 是直径,∴∠ACB=90°,∴∠OCA+OCB=∠BCD+∠OCB=90°∴∠OCD=90°∵OC 是半径,∴CD 是⊙O 的切线(2)设⊙O 的半径为r ,∴AB=2r ,∵∠D=30°,∠OCD=90°,∴OD=2r ,∠COB=60°∴r+2=2r ,∴r=2,∠AOC=120°∴BC=2,∴由勾股定理可知:AC=23, 易求S △AOC =12×23×1=3 S 扇形OAC =120443603ππ⨯=, ∴阴影部分面积为433π-.【点睛】本题考查圆的综合问题,涉及圆的切线判定,勾股定理,含30度的直角三角形的性质,等边三角形的性质等知识,熟练掌握和灵活运用相关知识是解题的关键.21.为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,某市积极落实节能减排政策,推行绿色建筑,据统计,该市2014年的绿色建筑面积约为950万平方米,2016年达到了1862万平方米.若2015年、2016年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:求这两年该市推行绿色建筑面积的年平均增长率;2017年该市计划推行绿色建筑面积达到2400万平方米.如果2017年仍保持相同的年平均增长率,请你预测2017年该市能否完成计划目标.【答案】(1)这两年该市推行绿色建筑面积的年平均增长率为40%;(2)如果2017年仍保持相同的年平均增长率,2017年该市能完成计划目标.【解析】试题分析:(1)设这两年该市推行绿色建筑面积的年平均增长率x ,根据2014年的绿色建筑面积约为700万平方米和2016年达到了1183万平方米,列出方程求解即可;(2)根据(1)求出的增长率问题,先求出预测2017年绿色建筑面积,再与计划推行绿色建筑面积达到1500万平方米进行比较,即可得出答案.试题解析:(1)设这两年该市推行绿色建筑面积的年平均增长率为x ,根据题意得:700(1+x )2=1183,解得:x 1=0.3=30%,x 2=﹣2.3(舍去),答:这两年该市推行绿色建筑面积的年平均增长率为30%;(2)根据题意得:1183×(1+30%)=1537.9(万平方米),∵1537.9>1500,∴2017年该市能完成计划目标.【点睛】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件和增长率问题的数量关系,列出方程进行求解.22.科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C 游玩,到达A 地后,导航显示车辆应沿北偏西55°方向行驶4千米至B 地,再沿北偏东35°方向行驶一段距离到达古镇C ,小明发现古镇C 恰好在A 地的正北方向,求B 、C 两地的距离(结果保留整数)(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8)【答案】B 、C 两地的距离大约是6千米.【解析】过B 作BD ⊥AC 于点D ,在直角△ABD 中利用三角函数求得BD 的长,然后在直角△BCD 中利用三角函数求得BC 的长.【详解】解:过B 作BD AC ⊥于点D .在Rt ABD 中,BD AB sin BAD 40.8 3.2(∠=⋅=⨯=千米), BCD 中,CBD 903555∠=-=,CD BD tan CBD 4.48(∠∴=⋅=千米),BC CD sin CBD 6(∠∴=÷≈千米).答:B 、C 两地的距离大约是6千米.【点睛】此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.23.计算:|3-2|+2﹣1﹣cos61°﹣(1﹣2)1.【答案】1-3【解析】利用零指数幂和绝对值的性质、特殊角的三角函数值、负指数次幂的性质进行计算即可.【详解】解:原式=112311322-+--=-.【点睛】本题考查了零指数幂和绝对值的性质、特殊角的三角函数值、负指数次幂的性质,熟练掌握性质及定义是解题的关键.24.如图有A、B两个大小均匀的转盘,其中A转盘被分成3等份,B转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A转盘指针指向的数字记作一次函数表达式中的k,将B转盘指针指向的数字记作一次函数表达式中的b.请用列表或画树状图的方法写出所有的可能;求一次函数y=kx+b的图象经过一、二、四象限的概率.【答案】(1)答案见解析;(2)13.【解析】(1)k可能的取值为-1、-2、-3,b可能的取值为-1、-2、3、4,所以将所有等可能出现的情况用列表方式表示出来即可.(2)判断出一次函数y=kx+b经过一、二、四象限时k、b的正负,在列表中找出满足条件的情况,利用概率的基本概念即可求出一次函数y=kx+b经过一、二、四象限的概率.【详解】解:(1)列表如下:所有等可能的情况有12种;(2)一次函数y=kx+b 的图象经过一、二、四象限时,k <0,b >0,情况有4种,则P=412= 13. 25.为了响应“足球进校园”的目标,某校计划为学校足球队购买一批足球,已知购买2个A 品牌的足球和3个B 品牌的足球共需380元;购买4个A 品牌的足球和2个B 品牌的足球共需360元.求A ,B 两种品牌的足球的单价.求该校购买20个A 品牌的足球和2个B品牌的足球的总费用.【答案】(1)一个A 品牌的足球需90元,则一个B 品牌的足球需100元;(2)1.【解析】(1)设一个A 品牌的足球需x 元,则一个B 品牌的足球需y 元,根据“购买2个A 品牌的足球和3个B 品牌的足球共需380元;购买4个A 品牌的足球和2个B 品牌的足球共需360元”列出方程组并解答;(2)把(1)中的数据代入求值即可.【详解】(1)设一个A 品牌的足球需x 元,则一个B 品牌的足球需y 元,依题意得:23380{42360x y x y +=+=,解得:40{100x y ==.答:一个A 品牌的足球需40元,则一个B 品牌的足球需100元;(2)依题意得:20×40+2×100=1(元).答:该校购买20个A 品牌的足球和2个B 品牌的足球的总费用是1元.考点:二元一次方程组的应用.26.关于x 的一元二次方程x 2﹣x ﹣(m+2)=0有两个不相等的实数根.求m 的取值范围;若m 为符合条件的最小整数,求此方程的根.【答案】(1)m >94-;(2)x 1=0,x 2=1. 【解析】解答本题的关键是是掌握好一元二次方程的根的判别式.(1)求出△=5+4m >0即可求出m 的取值范围;(2)因为m=﹣1为符合条件的最小整数,把m=﹣1代入原方程求解即可.【详解】解:(1)△=1+4(m+2)=9+4m>0∴9m>-.4(2)∵m为符合条件的最小整数,∴m=﹣2.∴原方程变为2=0-x x∴x1=0,x2=1.考点:1.解一元二次方程;2.根的判别式.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125°B.135°C.145°D.155°【答案】A【解析】分析:如图求出∠5即可解决问题.详解:∵a∥b,∴∠1=∠4=35°,∵∠2=90°,∴∠4+∠5=90°,∴∠5=55°,∴∠3=180°-∠5=125°,故选:A.点睛:本题考查平行线的性质、三角形内角和定理,邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题.2.如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是()A.32OBCD=B.32αβ=C.1232SS=D.1232CC=【答案】D【解析】A 选项,在△OAB ∽△OCD 中,OB 和CD 不是对应边,因此它们的比值不一定等于相似比,所以A 选项不一定成立;B 选项,在△OAB ∽△OCD 中,∠A 和∠C 是对应角,因此αβ=,所以B 选项不成立;C 选项,因为相似三角形的面积比等于相似比的平方,所以C 选项不成立;D 选项,因为相似三角形的周长比等于相似比,所以D 选项一定成立.故选D.3.在下列二次函数中,其图象的对称轴为2x =-的是A .()22y x =+B .222y x =-C .222y x =--D .()222y x =- 【答案】A【解析】y=(x+2)2的对称轴为x=–2,A 正确;y=2x 2–2的对称轴为x=0,B 错误;y=–2x 2–2的对称轴为x=0,C 错误;y=2(x –2)2的对称轴为x=2,D 错误.故选A .1.4.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是( )A .10,15B .13,15C .13,20D .15,15【答案】D 【解析】将五个答题数,从小打到排列,5个数中间的就是中位数,出现次数最多的是众数.【详解】将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D.【点睛】本题考查中位数和众数的概念,熟记概念即可快速解答.5.如图,甲圆柱型容器的底面积为30cm 2,高为8cm ,乙圆柱型容器底面积为xcm 2,若将甲容器装满水,然后再将甲容器里的水全部倒入乙容器中(乙容器无水溢出),则乙容器水面高度y (cm )与x (cm 2)之间的大致图象是( )A.B.C.D.【答案】C【解析】根据题意可以写出y关于x的函数关系式,然后令x=40求出相应的y值,即可解答本题.【详解】解:由题意可得,y=308x⨯=240x,当x=40时,y=6,故选C.【点睛】本题考查了反比例函数的图象,根据题意列出函数解析式是解决此题的关键.6.如图是某公园的一角,∠AOB=90°,弧AB的半径OA长是6米,C是OA的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)的面积是()A.91032π⎛⎝米2B.932π⎛-⎝米2C.9632π⎛⎝米2D.(693π-米2【答案】C【解析】连接OD,∵弧AB的半径OA长是6米,C是OA的中点,∴OC=12OA=12×6=1.∵∠AOB=90°,CD∥OB,∴CD⊥OA.在Rt△OCD中,∵OD=6,OC=1,∴2222CD OD OC6333=-=-=.又∵CD333sin DOCOD∠===,∴∠DOC=60°.∴2606193336336022DOCAODS S Sππ∆⋅⋅=-=-⨯⨯=阴影扇形(米2).故选C.7.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.75°B.60°C.55°D.45°【答案】B【解析】由正方形的性质和等边三角形的性质得出∠BAE=150°,AB=AE,由等腰三角形的性质和内角和定理得出∠ABE=∠AEB=15°,再运用三角形的外角性质即可得出结果.【详解】解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∠BAF=45°,∵△ADE是等边三角形,∴∠DAE=60°,AD=AE,∴∠BAE=90°+60°=150°,AB=AE,∴∠ABE=∠AEB=12(180°﹣150°)=15°,∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故选:B.【点睛】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形的外角性质;熟练掌握正方形和等边三角形的性质,并能进行推理计算是解决问题的关键.8.如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是()A.AC=AB B.∠C=12∠BOD C.∠C=∠B D.∠A=∠B0D【答案】B【解析】先利用垂径定理得到弧AD=弧BD,然后根据圆周角定理得到∠C=12∠BOD,从而可对各选项进行判断.【详解】解:∵直径CD⊥弦AB,∴弧AD =弧BD,∴∠C=12∠BOD.故选B.【点睛】本题考查了垂径定理和圆周角定理,垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9.下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=0【答案】B【解析】分析:根据一元二次方程根的判别式判断即可.详解:A、x2+6x+9=0.△=62-4×9=36-36=0,方程有两个相等实数根;B、x2=x.x2-x=0.△=(-1)2-4×1×0=1>0.方程有两个不相等实数根;C、x2+3=2x.x2-2x+3=0.△=(-2)2-4×1×3=-8<0,方程无实根;D、(x-1)2+1=0.(x-1)2=-1,则方程无实根;故选B.点睛:本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.10.已知点P(a,m),Q(b,n)都在反比例函数y=2x的图象上,且a<0<b,则下列结论一定正确的是()A.m+n<0 B.m+n>0 C.m<n D.m>n 【答案】D【解析】根据反比例函数的性质,可得答案.【详解】∵y=−2x的k=-2<1,图象位于二四象限,a<1,∴P(a,m)在第二象限,∴m>1;∵b>1,∴Q(b,n)在第四象限,∴n<1.∴n<1<m,即m>n,故D正确;故选D.【点睛】本题考查了反比例函数的性质,利用反比例函数的性质:k<1时,图象位于二四象限是解题关键.二、填空题(本题包括8个小题)11.抛物线y=﹣x2+4x﹣1的顶点坐标为.【答案】(2,3)【解析】试题分析:利用配方法将抛物线的解析式y=﹣x2+4x﹣1转化为顶点式解析式y=﹣(x﹣2)2+3,然后求其顶点坐标为:(2,3).考点:二次函数的性质12.如图,PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P= 40°,则∠BAC= .【答案】20°【解析】根据切线的性质可知∠PAC=90°,由切线长定理得PA=PB,∠P=40°,求出∠PAB的度数,用∠PAC ﹣∠PAB得到∠BAC的度数.【详解】解:∵PA是⊙O的切线,AC是⊙O的直径,∴∠PAC=90°.∵PA,PB是⊙O的切线,∴PA=PB.∵∠P=40°,∴∠PAB=(180°﹣∠P)÷2=(180°﹣40°)÷2=70°,∴∠BAC=∠PAC﹣∠PAB=90°﹣70°=20°.故答案为20°.【点睛】本题考查了切线的性质,根据切线的性质和切线长定理进行计算求出角的度数.13.在△ABC中,∠C=90°,若tanA=12,则sinB=______.【答案】25 5【解析】分析:直接根据题意表示出三角形的各边,进而利用锐角三角函数关系得出答案.详解:如图所示:∵∠C=90°,tanA=12,∴设BC=x,则AC=2x,故AB=5x,则sinB=255ACAB x==.故答案为:25.点睛:此题主要考查了锐角三角函数关系,正确表示各边长是解题关键.14.我们知道:1+3=4,1+3+5=9,1+3+5+7=16,…,观察下面的一列数:-1,2,,-3,4,-5,6…,将这些数排列成如图的形式,根据其规律猜想,第20行从左到右第3个数是.【答案】2【解析】先求出19行有多少个数,再加3就等于第20行第三个数是多少.然后根据奇偶性来决定负正.【详解】∵1行1个数,2行3个数,3行5个数,4行7个数,…19行应有2×19-1=37个数∴到第19行一共有1+3+5+7+9+…+37=19×19=1.第20行第3个数的绝对值是1+3=2.又2是偶数,故第20行第3个数是2.15.已知:如图,在△AOB中,∠AOB=90°,AO=3 cm,BO=4 cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D=__________cm.【答案】1.1【解析】试题解析:∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB=22OA OB=1cm,∵点D为AB的中点,∴OD=12AB=2.1cm.∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.1cm.故答案为1.1.16.如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为_______.【答案】5.【解析】试题解析:过E作EM⊥AB于M,∵四边形ABCD 是正方形, ∴AD=BC=CD=AB , ∴EM=AD ,BM=CE , ∵△ABE 的面积为8, ∴12×AB×EM=8, 解得:EM=4, 即AD=DC=BC=AB=4, ∵CE=3,由勾股定理得:BE=222243BC CE +=+=5. 考点:1.正方形的性质;2.三角形的面积;3.勾股定理. 17.正六边形的每个内角等于______________°. 【答案】120【解析】试题解析:六边形的内角和为:(6-2)×180°=720°, ∴正六边形的每个内角为:=120°.考点:多边形的内角与外角.18.2018年5月13日,中国首艘国产航空母舰首次执行海上试航任务,其排水量超过6万吨,将数60000用科学记数法表示应为_______________.【答案】4610⨯【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】60000小数点向左移动4位得到6,所以60000用科学记数法表示为:6×1, 故答案为:6×1.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.三、解答题(本题包括8个小题)19.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.求出y与x的函数关系式;当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?【答案】(1)y=﹣2x+80(20≤x≤28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.【解析】(1)待定系数法列方程组求一次函数解析式.(2)列一元二次方程求解.(3)总利润=单件利润⨯销售量:w=(x-20)(-2x+80),得到二次函数,先配方,在定义域上求最值.【详解】(1)设y与x的函数关系式为y=kx+b.把(22,36)与(24,32)代入,得2236 2432.k bk b+=⎧⎨+=⎩解得280. kb=-⎧⎨=⎩∴y=-2x+80(20≤x≤28).(2)设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是x元,根据题意,得(x-20)y=150,即(x-20)(-2x+80)=150.解得x1=25,x2=35(舍去).答:每本纪念册的销售单价是25元.(3)由题意,可得w=(x-20)(-2x+80)=-2(x-30)2+200.∵售价不低于20元且不高于28元,当x<30时,y随x的增大而增大,∴当x=28时,w最大=-2×(28-30)2+200=192(元).答:该纪念册销售单价定为28元时,能使文具店销售该纪念册所获利润最大,最大利润是192元.20.如图,一只蚂蚁从点A沿数轴向右直爬2个单位到达点B,点A表示﹣,设点B所表示的数为m.求m的值;求|m﹣1|+(m+6)0的值.。
2020-2021学年中考数学模拟试卷一、选择题1.某工厂第二季度的产值比第一季度的产值增长了x%,第三季度的产值又比第二季度的产值增长了x%,则第三季度的产值比第一季度的产值增长了( ) A .2x% B .1+2x% C .(1+x%)x% D .(2+x%)x%【答案】D【解析】设第一季度的原产值为a ,则第二季度的产值为(1%)a x + ,第三季度的产值为2(1%)a x + ,则则第三季度的产值比第一季度的产值增长了2(1%)(2%)%a x ax x a+-=+故选D.2.如图,AB ∥CD ,点E 在CA 的延长线上.若∠BAE=40°,则∠ACD 的大小为( )A .150°B .140°C .130°D .120°【答案】B【解析】试题分析:如图,延长DC 到F ,则 ∵AB ∥CD ,∠BAE=40°,∴∠ECF=∠BAE=40°. ∴∠ACD=180°-∠ECF=140°. 故选B .考点:1.平行线的性质;2.平角性质.3.等腰三角形两边长分别是2 cm 和5 cm ,则这个三角形周长是( ) A .9 cm B .12 cm C .9 cm 或12 cm D .14 cm 【答案】B【解析】当腰长是2 cm 时,因为2+2<5,不符合三角形的三边关系,排除;当腰长是5 cm 时,因为5+5>2,符合三角形三边关系,此时周长是12 cm .故选B .4.如图,在网格中,小正方形的边长均为1,点A,B,C 都在格点上,则∠ABC 的正切值是( )A .12B .2C .55D .255【答案】A【解析】分析:连接AC ,根据勾股定理求出AC 、BC 、AB 的长,根据勾股定理的逆定理得到△ABC 是直角三角形,根据正切的定义计算即可. 详解: 连接AC ,由网格特点和勾股定理可知, AC=2,22,10AB BC ==, AC 2+AB 2=10,BC 2=10, ∴AC 2+AB 2=BC 2, ∴△ABC 是直角三角形, ∴tan ∠ABC=21222AC AB ==. 点睛:考查的是锐角三角函数的定义、勾股定理及其逆定理的应用,熟记锐角三角函数的定义、掌握如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形是解题的关键.5.如图,已知AC 是⊙O 的直径,点B 在圆周上(不与A 、C 重合),点D 在AC 的延长线上,连接BD 交⊙O 于点E ,若∠AOB=3∠ADB ,则( )A .DE=EB B 2DE=EBC 3D .DE=OB【答案】D【解析】解:连接EO.∴∠B=∠OEB,∵∠OEB=∠D+∠DOE,∠AOB=3∠D,∴∠B+∠D=3∠D,∴∠D+∠DOE+∠D=3∠D,∴∠DOE=∠D,∴ED=EO=OB,故选D.6.如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是()A.32OBCD=B.32αβ=C .1232SS=D.1232CC=【答案】D【解析】A选项,在△OAB∽△OCD中,OB和CD不是对应边,因此它们的比值不一定等于相似比,所以A选项不一定成立;B选项,在△OAB∽△OCD中,∠A和∠C是对应角,因此αβ=,所以B选项不成立;C选项,因为相似三角形的面积比等于相似比的平方,所以C选项不成立;D选项,因为相似三角形的周长比等于相似比,所以D选项一定成立.故选D.7.不等式组12342xx+>⎧⎨-≤⎩的解集表示在数轴上正确的是()A.B.C.D.【答案】C【解析】根据题意先解出12342xx+>⎧⎨-≤⎩的解集是,把此解集表示在数轴上要注意表示时要注意起始标记为空心圆圈,方向向右;表示时要注意方向向左,起始的标记为实心圆点,综上所述C的表示符合这些条件.故应选C.8.如图,线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,则端点C的坐标分别为()A.(4,4)B.(3,3)C.(3,1)D.(4,1)【答案】A【解析】利用位似图形的性质结合对应点坐标与位似比的关系得出C点坐标.【详解】∵以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,∴A点与C点是对应点,∵C点的对应点A的坐标为(2,2),位似比为1:2,∴点C的坐标为:(4,4)故选A.【点睛】本题考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.9.用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是()A2cm B.2C.2cm D.4cm【答案】C【解析】利用扇形的弧长公式可得扇形的弧长;让扇形的弧长除以2π即为圆锥的底面半径,利用勾股定理可得圆锥形筒的高.【详解】L=1206180π⨯=4π(cm);圆锥的底面半径为4π÷2π=2(cm),∴=cm ). 故选C . 【点睛】此题考查了圆锥的计算,用到的知识点为:圆锥侧面展开图的弧长=2n r 180π;圆锥的底面周长等于侧面展开图的弧长;圆锥的底面半径,母线长,高组成以母线长为斜边的直角三角形.10.甲、乙、丙三家超市为了促销同一种定价为m 元的商品,甲超市连续两次降价20%;乙超市一次性降价40%;丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品,最划算的超市是( ) A .甲 B .乙C .丙D .都一样【答案】B【解析】根据各超市降价的百分比分别计算出此商品降价后的价格,再进行比较即可得出结论. 【详解】解:降价后三家超市的售价是: 甲为(1-20%)2m=0.64m , 乙为(1-40%)m=0.6m ,丙为(1-30%)(1-10%)m=0.63m , ∵0.6m <0.63m <0.64m ,∴此时顾客要购买这种商品最划算应到的超市是乙. 故选:B . 【点睛】此题考查了列代数式,解题的关键是根据题目中的数量关系列出代数式,并对代数式比较大小. 11.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( ) A .有两个不相等实数根 B .有两个相等实数根 C .有且只有一个实数根 D .没有实数根【答案】A【解析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x 2+x ﹣3=0有两个不相等的实数根.【详解】∵a=1,b=1,c=﹣3,∴△=b 2﹣4ac=12﹣4×(1)×(﹣3)=13>0, ∴方程x 2+x ﹣3=0有两个不相等的实数根, 故选A .【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.12.如图,圆弧形拱桥的跨径12AB =米,拱高4CD =米,则拱桥的半径为( )米A .6.5B .9C .13D .15【答案】A【解析】试题分析:根据垂径定理的推论,知此圆的圆心在CD 所在的直线上,设圆心是O .连接OA .根据垂径定理和勾股定理求解.得AD=6设圆的半径是r , 根据勾股定理, 得r 2=36+(r ﹣4)2,解得r=6.5考点:垂径定理的应用. 二、填空题13.计算1x x +﹣11x +的结果为_____. 【答案】11x x -+.【解析】根据同分母分式加减运算法则化简即可. 【详解】原式=11x x -+, 故答案为11x x -+. 【点睛】本题考查了分式的加减运算,熟记运算法则是解题的关键.14.已知关于 x 的函数 y=(m ﹣1)x 2+2x+m 图象与坐标轴只有 2 个交点,则m=_______. 【答案】1 或 0 15± 【解析】分两种情况讨论:当函数为一次函数时,必与坐标轴有两个交点; 当函数为二次函数时,将(0,0)代入解析式即可求出m 的值.【详解】解:(1)当 m ﹣1=0 时,m=1,函数为一次函数,解析式为 y=2x+1,与 x 轴 交点坐标为(﹣12,0);与 y 轴交点坐标(0,1).符合题意. (2)当 m ﹣1≠0 时,m≠1,函数为二次函数,与坐标轴有两个交点,则过原点,且与 x 轴有两个不同的交点,于是△=4﹣4(m ﹣1)m >0, 解得,(m ﹣12)2<54,解得 m 1+5或 m 1-5.将(0,0)代入解析式得,m=0,符合题意.(3)函数为二次函数时,还有一种情况是:与x 轴只有一个交点,与Y 轴交于交于另一点,这时:△=4﹣4(m﹣1)m=0,解得:m=152±.故答案为1 或0 或152±.【点睛】此题考查一次函数和二次函数的性质,解题关键是必须分两种情况讨论,不可盲目求解.15.如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;A4A0间的距离是_____;…按此规律运动到点A2019处,则点A2019与点A0间的距离是_____.【答案】231.【解析】据题意求得A0A1=4,A0A1=23,A0A3=1,A0A4=23,A0A5=1,A0A6=0,A0A7=4,…于是得到A1019与A3重合,即可得到结论.【详解】解:如图,∵⊙O的半径=1,由题意得,A0A1=4,A0A1=3A0A3=1,A0A4=23A0A5=1,A0A6=0,A0A7=4,…∵1019÷6=336…3,∴按此规律A1019与A3重合,∴A0A1019=A0A3=1,故答案为23,1. 【点睛】本题考查了图形的变化类,等边三角形的性质,解直角三角形,正确的作出图形是解题的关键. 16.如图,长方形内有两个相邻的正方形,面积分别为3和9,那么阴影部分的面积为_____.【答案】13-1【解析】设两个正方形的边长是x 、y (x <y ),得出方程x 2=1,y 2=9,求出x =3,y =1,代入阴影部分的面积是(y ﹣x )x 求出即可.【详解】设两个正方形的边长是x 、y (x <y ),则x 2=1,y 2=9,x 3=,y =1,则阴影部分的面积是(y ﹣x )x =(13333-⨯=-)1. 故答案为13-1. 【点睛】本题考查了二次根式的应用,主要考查学生的计算能力.17.如图所示是一组有规律的图案,第l 个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中的基础图形个数为_______ (用含n 的式子表示).【答案】3n+1【解析】试题分析:由图可知每个图案一次增加3个基本图形,第一个图案有4个基本图形,则第n 个图案的基础图形有4+3(n-1)=3n+1个 考点:规律型18.在ABC 中,A ∠:B ∠:C ∠=1:2:3,CD AB ⊥于点D ,若AB 10=,则BD =______ 【答案】2.1【解析】先求出△ABC 是∠A 等于30°的直角三角形,再根据30°角所对的直角边等于斜边的一半求解. 【详解】解:根据题意,设∠A 、∠B 、∠C 为k 、2k 、3k , 则k+2k+3k=180°, 解得k=30°, 2k=60°,3k=90°,∵AB=10,∴BC=12AB=1,∵CD⊥AB,∴∠BCD=∠A=30°,∴BD=12BC=2.1.故答案为2.1.【点睛】本题主要考查含30度角的直角三角形的性质和三角形内角和定理,掌握30°角所对的直角边等于斜边的一半、求出△ABC是直角三角形是解本题的关键.三、解答题19.某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A,B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:注:载客量指的是每辆客车最多可载该校师生的人数设学校租用A型号客车x辆,租车总费用为y元.求y与x的函数解析式,请直接写出x的取值范围;若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案总费用最省?最省的总费用是多少?【答案】(1) 21≤x≤62且x为整数;(2)共有25种租车方案,当租用A型号客车21辆,B型号客车41辆时,租金最少,为19460元.【解析】(1)根据租车总费用=A、B两种车的费用之和,列出函数关系式,再根据AB两种车至少要能坐1441人即可得取x的取值范围;(2)由总费用不超过21940元可得关于x的不等式,解不等式后再利用函数的性质即可解决问题.【详解】(1)由题意得y=380x+280(62-x)=100x+17360,∵30x+20(62-x)≥1441,∴x≥20.1,∴21≤x≤62且x为整数;(2)由题意得100x+17360≤21940,解得x≤45.8,∴21≤x≤45且x为整数,∴共有25种租车方案,∵k =100>0,∴y 随x 的增大而增大,当x =21时,y 有最小值, y 最小=100×21+17360=19460,故共有25种租车方案,当租用A 型号客车21辆,B 型号客车41辆时,租金最少,为19460元. 【点睛】本题考查了一次函数的应用、一元一次不等式的应用等,解题的关键是理解题意,正确列出函数关系式,会利用函数的性质解决最值问题.20.随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注,某校计划将这种学习方式应用到教育学中,从全校1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备的情况进行调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:本次接受随机抽样调查的学生人数为 ,图①中m 的值为 ;求本次调查获取的样本数据的众数、中位数和平均数;根据样本数据,估计该校1500名学生家庭中拥有3台移动设备的学生人数.【答案】(Ⅰ)50、31;(Ⅱ)4;3;3.1;(Ⅲ)410人.【解析】(Ⅰ)利用家庭中拥有1台移动设备的人数除以其所占百分比即可得调查的学生人数,将拥有4台移动设备的人数除以总人数即可求得m 的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)将样本中拥有3台移动设备的学生人数所占比例乘以总人数1500即可求解. 【详解】解:(Ⅰ)本次接受随机抽样调查的学生人数为: 48%=50(人), ∵1650×100=31%, ∴图①中m 的值为31. 故答案为50、31;(Ⅱ)∵这组样本数据中,4出现了16次,出现次数最多, ∴这组数据的众数为4;∵将这组数据从小到大排列,其中处于中间的两个数均为3,有332+=3, ∴这组数据的中位数是3; 由条形统计图可得142103144165650x ⨯+⨯+⨯+⨯+⨯==3.1,∴这组数据的平均数是3.1. (Ⅲ)1500×18%=410(人).答:估计该校学生家庭中;拥有3台移动设备的学生人数约为410人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.如图,△ABC三个定点坐标分别为A(﹣1,3),B(﹣1,1),C(﹣3,2).请画出△ABC关于y轴对称的△A1B1C1;以原点O为位似中心,将△A1B1C1放大为原来的2倍,得到△A2B2C2,请在第三象限内画出△A2B2C2,并求出S△A1B1C1:S△A2B2C2的值.【答案】(1)见解析;(2)图见解析;1 4 .【解析】(1)根据网格结构找出点A、B、C关于y轴的对称点A1、B1、C1的位置,然后顺次连接即可.(2)连接A1O并延长至A2,使A2O=2A1O,连接B1O并延长至B2,使B2O=2B1O,连接C1O并延长至C2,使C2O=2C1O,然后顺次连接即可,再根据相似三角形面积的比等于相似比的平方解答.【详解】解:(1)△A1B1C1如图所示.(2)△A2B2C2如图所示.∵△A1B1C1放大为原来的2倍得到△A2B2C2,∴△A1B1C1∽△A2B2C2,且相似比为12.∴S△A1B1C1:S△A2B2C2=(12)2=14.22.如图,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB 称为碟宽,顶点M 称为碟顶.由定义知,取AB 中点N ,连结MN ,MN 与AB 的关系是_____.抛物线y =212x 对应的准蝶形必经过B (m ,m ),则m =_____,对应的碟宽AB 是_____.抛物线y =ax 2﹣4a ﹣53(a >0)对应的碟宽在x 轴上,且AB =1. ①求抛物线的解析式;②在此抛物线的对称轴上是否有这样的点P (x p ,y p ),使得∠APB 为锐角,若有,请求出y p 的取值范围.若没有,请说明理由.【答案】(1)MN 与AB 的关系是:MN ⊥AB ,MN =12AB ,(2)2,4;(2)①y =13x 2﹣2;②在此抛物线的对称轴上有这样的点P ,使得∠APB 为锐角,y p 的取值范围是y p <﹣2或y p >2.【解析】(1)直接利用等腰直角三角形的性质分析得出答案;(2)利用已知点为B (m ,m ),代入抛物线解析式进而得出m 的值,即可得出AB 的值;(2)①根据题意得出抛物线必过(2,0),进而代入求出答案;②根据y =13x 2﹣2的对称轴上P (0,2),P (0,﹣2)时,∠APB 为直角,进而得出答案. 【详解】(1)MN 与AB 的关系是:MN ⊥AB ,MN =12AB , 如图1,∵△AMB 是等腰直角三角形,且N 为AB 的中点,∴MN ⊥AB ,MN =12AB , 故答案为MN ⊥AB ,MN =12AB ;(2)∵抛物线y =212x 对应的准蝶形必经过B (m ,m ), ∴m =12m 2, 解得:m =2或m =0(不合题意舍去), 当m =2则,2=12x 2, 解得:x =±2,则AB =2+2=4;故答案为2,4;(2)①由已知,抛物线对称轴为:y轴,∵抛物线y=ax2﹣4a﹣53(a>0)对应的碟宽在x 轴上,且AB=1.∴抛物线必过(2,0),代入y=ax2﹣4a﹣53(a>0),得,9a﹣4a﹣53=0,解得:a=13,∴抛物线的解析式是:y=13x2﹣2;②由①知,如图2,y=13x2﹣2的对称轴上P(0,2),P(0,﹣2)时,∠APB 为直角,∴在此抛物线的对称轴上有这样的点P,使得∠APB 为锐角,y p的取值范围是y p<﹣2或y p>2.【点睛】此题主要考查了二次函数综合以及等腰直角三角形的性质,正确应用等腰直角三角形的性质是解题关键.23.如图1在正方形ABCD的外侧作两个等边三角形ADE和DCF,连接AF,BE.请判断:AF与BE的数量关系是,位置关系;如图2,若将条件“两个等边三角形ADE和DCF”变为“两个等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)问中的结论是否仍然成立?请作出判断并给予证明;若三角形ADE和DCF为一般三角形,且AE=DF,ED=FC,第(1)问中的结论都能成立吗?请直接写出你的判断.【答案】(1)AF=BE,AF⊥BE;(2)证明见解析;(3)结论仍然成立【解析】试题分析:(1)根据正方形和等边三角形可证明△ABE≌△DAF,然后可得BE=AF,∠ABE=∠DAF,进而通过直角可证得BE⊥AF;(2)类似(1)的证法,证明△ABE≌△DAF,然后可得AF=BE,AF⊥BE,因此结论还成立;(3)类似(1)(2)证法,先证△AED≌△DFC,然后再证△ABE≌△DAF,因此可得证结论.试题解析:解:(1)AF=BE,AF⊥BE.(2)结论成立.证明:∵四边形ABCD 是正方形,∴BA="AD" =DC ,∠BAD =∠ADC = 90°.在△EAD 和△FDC 中,,{,,EA FD ED FC AD DC ===∴△EAD ≌△FDC .∴∠EAD=∠FDC .∴∠EAD+∠DAB=∠FDC+∠CDA ,即∠BAE=∠ADF .在△BAE 和△ADF 中,,{,,BA AD BAE ADF AE DF =∠=∠=∴△BAE ≌△ADF .∴BE = AF ,∠ABE=∠DAF .∵∠DAF +∠BAF=90°,∴∠ABE +∠BAF=90°,∴AF ⊥BE .(3)结论都能成立.考点:正方形,等边三角形,三角形全等24.如图,直线y =2x +6与反比例函数y =k x(k >0)的图像交于点A(1,m),与x 轴交于点B ,平行于x 轴的直线y =n(0<n <6)交反比例函数的图像于点M ,交AB 于点N ,连接BM.求m 的值和反比例函数的表达式;直线y =n 沿y 轴方向平移,当n 为何值时,△BMN 的面积最大?【答案】(1)m =8,反比例函数的表达式为y =8x;(2)当n =3时,△BMN 的面积最大. 【解析】(1)求出点A 的坐标,利用待定系数法即可解决问题;(2)构造二次函数,利用二次函数的性质即可解决问题.【详解】解:(1)∵直线y=2x+6经过点A (1,m ),∴m=2×1+6=8,∴A (1,8),∵反比例函数经过点A (1,8),∴8=1k , ∴k=8,∴反比例函数的解析式为y=8x. (2)由题意,点M ,N 的坐标为M (8n ,n ),N (62n -,n ), ∵0<n <6, ∴62n -<0, ∴S △BMN =12×(|62n -|+|8n |)×n=12×(﹣62n -+8n)×n=﹣14(n ﹣3)2+254, ∴n=3时,△BMN 的面积最大.25.如果a 2+2a-1=0,求代数式24()2a a a a -⋅-的值. 【答案】1【解析】221a a +=2224422a a a a a a a a -⎛⎫-⋅= ⎪--⎝⎭=()()()()2222222a a a a a a a a a +-=+=+-=1. 故答案为1.26.如图,在平面直角坐标系中,OA ⊥OB ,AB ⊥x 轴于点C ,点A (3,1)在反比例函数k y x=的图象上. 求反比例函数k y x =的表达式;在x 轴的负半轴上存在一点P ,使得S △AOP =12S △AOB ,求点P 的坐标;若将△BOA 绕点B 按逆时针方向旋转60°得到△BDE ,直接写出点E 的坐标,并判断点E 是否在该反比例函数的图象上,说明理由.【答案】(1)3y x =;(2)P (3-,0);(3)E (31),在. 【解析】(1)将点A 31)代入k y x=,利用待定系数法即可求出反比例函数的表达式; (2)先由射影定理求出BC=3,那么B 3,﹣3),计算求出S △AOB =1233S △AOP =12S △AOB 3P 的坐标为(m ,0),列出方程求解即可; (3)先解△OAB ,得出∠ABO=30°,再根据旋转的性质求出E 31),即可求解.【详解】(1)∵点A 31)在反比例函数k y x =的图象上, ∴33∴反比例函数的表达式为3y =; (2)∵A 31),AB ⊥x 轴于点C ,∴3AC=1,由射影定理得2OC =AC•BC ,可得BC=3,B 3,﹣3),S △AOB =123×4=3 ∴S △AOP =12S △AOB 3 设点P 的坐标为(m ,0),∴12, ∴|m|=∵P 是x 轴的负半轴上的点,∴m=﹣∴点P 的坐标为(-0);(3)点E 在该反比例函数的图象上,理由如下:∵OA ⊥OB,OA=2,OB=AB=4,∴sin ∠ABO=OA AB =24=12, ∴∠ABO=30°,∵将△BOA 绕点B 按逆时针方向旋转60°得到△BDE ,∴△BOA ≌△BDE ,∠OBD=60°,∴BO=BD=OA=DE=2,∠BOA=∠BDE=90°,∠ABD=30°+60°=90°,而BD ﹣,BC ﹣DE=1,∴E(1), ∵×(﹣1),∴点E 在该反比例函数的图象上.考点:待定系数法求反比例函数解析式;反比例函数系数k 的几何意义;坐标与图形变化-旋转.27.计算:(﹣1)2018+(﹣12)﹣2﹣|2 |+4sin60°; 【答案】1.【解析】分析:本题涉及乘方、负指数幂、二次根式化简、绝对值和特殊角的三角函数5个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.详解:原式=1+4-(),=1.点睛:本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.2020-2021学年中考数学模拟试卷一、选择题1.在函数y =x 中,自变量x 的取值范围是( ) A .x≥1B .x≤1且x≠0C .x≥0且x≠1D .x≠0且x≠1 【答案】C【解析】根据分式和二次根式有意义的条件进行计算即可.【详解】由题意得:x≥2且x ﹣2≠2.解得:x≥2且x≠2.故x 的取值范围是x≥2且x≠2.故选C .【点睛】本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键. 2.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( )A .2B .3C .5D .7 【答案】C【解析】试题解析:∵这组数据的众数为7,∴x=7,则这组数据按照从小到大的顺序排列为:2,3,1,7,7,中位数为:1.故选C .考点:众数;中位数.3.已知关于x 的不等式3x ﹣m+1>0的最小整数解为2,则实数m 的取值范围是( )A .4≤m <7B .4<m <7C .4≤m≤7D .4<m≤7 【答案】A【解析】先解出不等式,然后根据最小整数解为2得出关于m 的不等式组,解之即可求得m 的取值范围.【详解】解:解不等式3x ﹣m+1>0,得:x >13m -, ∵不等式有最小整数解2,∴1≤13m -<2, 解得:4≤m <7,故选A .【点睛】本题考查了一元一次不等式的整数解,解一元一次不等式组,正确解不等式,熟练掌握一元一次不等式、一元一次不等式组的解法是解答本题的关键.4.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.10033100x yx y+=⎧⎨+=⎩B.1003100x yx y+=⎧⎨+=⎩C.100131003x yx y+=⎧⎪⎨+=⎪⎩D.1003100x yx y+=⎧⎨+=⎩【答案】C【解析】设大马有x匹,小马有y匹,根据题意可得等量关系:①大马数+小马数=100;②大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程组即可.【详解】解:设大马有x匹,小马有y匹,由题意得:100131003x yx y+=⎧⎪⎨+=⎪⎩,故选C.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.5.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数为()A.90°B.120°C.270°D.360°【答案】B【解析】先根据图中是三个等边三角形可知三角形各内角等于60°,用∠1,∠2,∠3表示出△ABC各角的度数,再根据三角形内角和定理即可得出结论.【详解】∵图中是三个等边三角形,∠3=60°,∴∠ABC=180°-60°-60°=60°,∠ACB=180°-60°-∠2=120°-∠2,∠BAC=180°-60°-∠1=120°-∠1,∵∠ABC+∠ACB+∠BAC=180°,∴60°+(120°-∠2)+(120°-∠1)=180°,∴∠1+∠2=120°.故选B.【点睛】考查的是等边三角形的性质,熟知等边三角形各内角均等于60°是解答此题的关键.6.如图,在△ABC 中,AC ⊥BC ,∠ABC=30°,点D 是CB 延长线上的一点,且BD=BA ,则tan ∠DAC 的值为( )A .2+3B .23C .3+3D .33【答案】A【解析】设AC=a ,由特殊角的三角函数值分别表示出BC 、AB 的长度,进而得出BD 、CD 的长度,由公式求出tan ∠DAC 的值即可. 【详解】设AC=a ,则BC=30AC tan ︒=3a ,AB=30ACsin ︒=2a ,∴BD=BA=2a , ∴CD=(2+3)a , ∴tan ∠DAC=2+3. 故选A. 【点睛】本题主要考查特殊角的三角函数值. 7.如图所示的几何体的主视图是( )A .B .C .D .【答案】A【解析】找到从正面看所得到的图形即可.【详解】解:从正面可看到从左往右2列一个长方形和一个小正方形, 故选A . 【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.8.如图,点A 、B 、C 都在⊙O 上,若∠AOC=140°,则∠B 的度数是( )A.70°B.80°C.110°D.140°【答案】C【解析】分析:作AC对的圆周角∠APC,如图,利用圆内接四边形的性质得到∠P=40°,然后根据圆周角定理求∠AOC的度数.详解:作AC对的圆周角∠APC,如图,∵∠P=12∠AOC=12×140°=70°∵∠P+∠B=180°,∴∠B=180°﹣70°=110°,故选:C.点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9.下列叙述,错误的是( )A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直平分的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线相等的四边形是矩形【答案】D【解析】根据正方形的判定、平行四边形的判定、菱形的判定和矩形的判定定理对选项逐一进行分析,即可判断出答案.【详解】A. 对角线互相垂直且相等的平行四边形是正方形,正确,不符合题意;B. 对角线互相垂直平分的四边形是菱形,正确,不符合题意;C. 对角线互相平分的四边形是平行四边形,正确,不符合题意;D. 对角线相等的平行四边形是矩形,故D选项错误,符合题意,故选D.【点睛】本题考查了正方形的判定、平行四边形的判定、菱形的判定和矩形的判定等,熟练掌握相关判定定理是解答此类问题的关键.10.4-的相反数是()A.4 B.4-C.14-D.14【答案】A【解析】直接利用相反数的定义结合绝对值的定义分析得出答案.【详解】-1的相反数为1,则1的绝对值是1.故选A.【点睛】本题考查了绝对值和相反数,正确把握相关定义是解题的关键.11.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M、N两点相距100海里,则∠NOF的度数为()A.50°B.60°C.70°D.80°【答案】C【解析】解:∵OM=60海里,ON=80海里,MN=100海里,∴OM2+ON2=MN2,∴∠MON=90°,∵∠EOM=20°,∴∠NOF=180°﹣20°﹣90°=70°.故选C.【点睛】本题考查直角三角形的判定,掌握方位角的定义及勾股定理逆定理是本题的解题关键.12.若ab<0,则正比例函数y=ax与反比例函数y=bx在同一坐标系中的大致图象可能是()A.B.C.D.【答案】D【解析】根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.【详解】解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项D符合.故选D【点睛】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.二、填空题13.观察下列图形:它们是按一定的规律排列的,依照此规律,第n个图形共有___个★.【答案】13n【解析】分别求出第1个、第2个、第3个、第4个图形中★的个数,得到第5个图形中★的个数,进而找到规律,得出第n个图形中★的个数,即可求解.【详解】第1个图形中有1+3×1=4个★,第2个图形中有1+3×2=7个★,第3个图形中有1+3×3=10个★,第4个图形中有1+3×4=13个★,第5个图形中有1+3×5=16个★,…第n个图形中有1+3×n=(3n+1)个★.故答案是:1+3n.【点睛】考查了规律型:图形的变化类;根据图形中变化的量和n的关系与不变的量得到图形中★的个数与n的关系是解决本题的关键.14.已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为.【答案】y=﹣1x+1.【解析】由对称得到P′(1,﹣2),再代入解析式得到k 的值,再根据平移得到新解析式. 【详解】∵点P (1,2)关于x 轴的对称点为P′, ∴P′(1,﹣2), ∵P′在直线y=kx+3上, ∴﹣2=k+3,解得:k=﹣1, 则y=﹣1x+3,∴把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为:y=﹣1x+1. 故答案为y=﹣1x+1.考点:一次函数图象与几何变换.15.有公共顶点A ,B 的正五边形和正六边形按如图所示位置摆放,连接AC 交正六边形于点D ,则∠ADE 的度数为( )A .144°B .84°C .74°D .54°【答案】B【解析】正五边形的内角是∠ABC=()521805-⨯=108°,∵AB=BC ,∴∠CAB=36°,正六边形的内角是∠ABE=∠E=()621806-⨯=120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°–120°–120°–36°=84°,故选B . 16.若分式15x -有意义,则实数x 的取值范围是_______. 【答案】【解析】由于分式的分母不能为2,x-1在分母上,因此x-1≠2,解得x . 解:∵分式15x -有意义, ∴x-1≠2,即x≠1. 故答案为x≠1.本题主要考查分式有意义的条件:分式有意义,分母不能为2.17.对于实数p q ,,我们用符号min{}p q ,表示p q ,两数中较小的数,如min{1,2}1=.因此,{}min 2,3--= ________;若{}22min (1)1x x -=,,则x =________.。
浙江省温州市中考数学一模试卷一.选择题(共10小题,满分40分,每小题4分)1.计算﹣6+1的结果为()A.﹣5B.5C.﹣7D.72.如图,几何体的左视图是()A.B.C.D.3.P1(2,y1),P2(﹣3,y2)是一次函数y=﹣3x﹣5图象上的两点,下列判断正确的是()A.y1>y2 B.y1<y2 C .y1=y 2 D.以上都不对4.一元一次不等式2(x﹣1)≥3x﹣3的解在数轴上表示为()A.B.C.D.5.某车间20名工人每天加工零件数如表所示:45678每天加工零件数人数36542这些工人每天加工零件数的众数、中位数分别是()A.5,5B.5,6C.6,6D.6,56.在下列命题中:①过一点有且只有一条直线与已知直线平行;②平方根与立方根相等的数有1和0;③在同一平面内,如果a⊥b,b⊥c,则a⊥c;④直线c外一点A与直线c上各点连接而成的所有线段中,最短线段的长是5cm,则点A到直线c的距离是5cm;⑤无理数包括正无理数、零和负无理数.其中真命题的个数是()A.1个B.2个C.3个D.4个7.如图,是某厂2018年各季度产值统计图(单位:万元),则下列说法中正确的是()A.四季度中,每季度生产总值有增有减B.四季度中,前三季度生产总值增长较快C.四季度中,各季度的生产总值变化一样D.第四季度生产总值增长最快8.如图是抛物线y=ax2+bx+c(a≠0)图象的一部分,已知抛物线的对称轴是直线x=2,与x轴的一个交点是(﹣1,0),那么抛物线与x轴的另一个交点是()A.(3,0)B.(4,0)C.(5,0)D.(6,0)9.半径为1的圆中,扇形AOB的圆心角为120°,则扇形AOB的面积为()A.B.C.D.π10.如图,点A在反比例函数y=的图象上,AB⊥x轴于点B,点C在x轴上,且CO:OB=2:1.△ABC的面积为6,则k的值为()A.2B.3C.4D.5二.填空题(共6小题,满分30分,每小题5分)11.分解因式:4m2﹣16n2=.12.如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N与点A 重合,射线CP从CA处出发沿顺时针方向以每秒1度的速度旋转,CP与量角器的半圆弧交于点E,第30秒时,点E在量角器上对应的读数是度.13.已知a是方程x2﹣2019x+1=0的一个根,则a2﹣2018a+的值为.14.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买个.15.如图,在△ABC中,∠ACB=90°,∠B=30°,AC=1,AC在直线l上,将△ABC绕点A顺时针旋转到位置①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+;…按此规律继续旋转,直到得到点P2017为止,则P1P2017=.16.如图,在△ABC中,AB=8,BC=10,BD、CD分别平分∠ABC、∠ACB,∠BDC=135°,过点D作DE∥AC交BC于点E,则DE=.三.解答题(共8小题,满分80分,每小题10分)17.(1)计算:(﹣)﹣2﹣23×0.125+20050+|﹣1|;(2)解方程:=.18.计算:(1)(x+y)2﹣2x(x+y);(2)(a+1)(a﹣1)﹣(a﹣1)2;(3)先化简,再求值:(x+2y)(x﹣2y)﹣(2x3y﹣4x2y2)÷2xy,其中x=﹣3,y=.19.图1,图2都是8×8的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1,在每个正方形网格中标注了6个格点,这6个格点简称为标注点.(1)请在图1,图2中,以4个标注点为顶点,各画一个平行四边形(两个平行四边形不全等);(2)图2中所画的平行四边形的面积为.20.漳州市教育局到某校抽查七年级学生“根据音标写单词”的水平,随机抽取若干名学生进行测试(成绩取整数,满分为100分).如下两幅是尚未绘制完整的统计图,请根据图中提供的信息,解答下列问题:(1)本次抽取的学生有人;(2)该年段有450名学生,若全部参加测试,请估计60分以上(含60分)有人;(3)甲、乙、丙是该校三名英语成绩优秀的学生,随机抽取其中两名学生介绍英语学习经验,请用树状图或列表法表示所有可能的结果,并求抽到甲、乙两名学生的概率.21.如图,矩形ABCD中,∠BAD的平分线AE与BC边交于点E,点P是线段AE上一定点(其中PA>PE),过点P作AE的垂线与AD边交于点F(不与D重合).一直角三角形的直角顶点落在P点处,两直角边分别交AB边,AD边于点M,N.(1)求证:△PAM≌△PFN;(2)若PA=3,求AM+AN的长.22.一个车间加工轴杆和轴承,每人每天平均可以加工轴杆12根或者轴承16个,1根轴杆与2个轴承为一套,该车间共有90人,应该怎样调配人力,才能使每天生产的轴承和轴杆正好配套?23.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM 周长的最小值;若不存在,请说明理由.24.已知,AB是⊙O的直径,点C在⊙O上,点P是AB延长线上一点,连接CP.(1)如图1,若∠PCB=∠A.①求证:直线PC是⊙O的切线;②若CP=CA,OA=2,求CP的长;(2)如图2,若点M是弧AB的中点,CM交AB于点N,MN•MC=9,求BM的值.浙江省温州市中考数学一模试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【分析】根据有理数的加法法则,|﹣6|>|1|,所以结果为负号,并把它们的绝对值相减即可.【解答】解:﹣6+1=﹣(6﹣1)=﹣5故选:A.【点评】本题考查的是有理数的加法,注意区别同号相加与异号相加,把握运算法则是关键.2.【分析】找到从几何体左面看得到的平面图形即可.【解答】解:从几何体左面看得到是矩形的组合体,且长方形靠左.故选:A.【点评】此题主要考查了三视图的相关知识;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.3.【分析】把点的坐标代入解析式,可分别求得y1和y2的值,比较大小即可.【解答】解:∵点P1(2,y1)和P2(﹣3,y2)是一次函数y=﹣3x﹣5图象上的两点,∴y1=﹣3×2﹣5=﹣11,y2=﹣3×(﹣3)﹣5=4,∵﹣11<4,∴y1<y2,故选:B.【点评】本题主要考查一次函数图象上点的坐标特征,掌握函数图象上点的坐标满足函数解析式是解题的关键.4.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:2(x﹣1)≥3x﹣3,2x﹣2≥3x﹣3,2x﹣3x≥﹣3+2,﹣x≥﹣1,x≤1,在数轴上表示为:,故选:B.【点评】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能根据不等式的性质求出不等式的解集是解此题的关键.5.【分析】根据众数、中位数的定义分别进行解答即可.【解答】解:由表知数据5出现次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选:B.【点评】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.【分析】利用平行公理、平方根与立方根的定义、两直线的位置关系等知识分别判断后即可确定正确的选项.【解答】解:①过直线外一点有且只有一条直线与已知直线平行,故错误;②平方根与立方根相等的数只有0,故错误;③在同一平面内,如果a⊥b,b⊥c,则a∥c,故错误;④直线c外一点A与直线c上各点连接而成的所有线段中,最短线段的长是5cm,则点A到直线c的距离是5cm,正确;⑤无理数包括正无理数和负无理数,错误.正确的只有1个,故选:A.【点评】本题考查了命题与定理的知识,解题的关键是能够了解平行公理、平方根与立方根的定义、两直线的位置关系等知识,难度不大.7.【分析】根据折线统计图可以判断各个选项中的结论是否成立,从而可以解答本题.【解答】解:图为增长率的折线图,分析可得:四季度中,每季度生产总值都持续增加,A错误;第四季度生产总值增长最快,D正确,而B、C错误.故选:D.【点评】本题考查折线统计图,解答本题的关键是明确题意,利用数形结合的思想解答. 8.【分析】直接利用抛物线的对称性进而得出另一个交点坐标.【解答】解:∵抛物线的对称轴是直线x =2,与x 轴的一个交点是(﹣1,0),∴抛物线与x 轴的另一个交点是:(5,0).故选:C .【点评】此题主要考查了抛物线与x 轴的交点,正确利用抛物线的对称性分析是解题关键. 9.【分析】根据扇形的面积公式计算即可.【解答】解:扇形AOB 的面积==,故选:B .【点评】本题考查扇形的面积,解得的关键是记住扇形的面积公式.10.【分析】首先确定三角形AOB 的面积,然后根据反比例函数的比例系数的几何意义确定k 的值即可.【解答】解:∵CO :OB =2:1, ∴S △AOB =S △ABC =×6=2,∴|k |=2S △ABC =4,∵反比例函数的图象位于第一象限,∴k =4,故选:C .【点评】本题考查了反比例函数的比例系数的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S =|k |.解题的关键是能够确定三角形AOB 的面积,难度不大.二.填空题(共6小题,满分30分,每小题5分)11.【分析】原式提取4后,利用平方差公式分解即可.【解答】解:原式=4(m +2n )(m ﹣2n ).故答案为:4(m +2n )(m ﹣2n )【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.【分析】首先连接OE ,由∠ACB =90°,根据圆周角定理,可得点C 在⊙O 上,即可得∠EOA=2∠ECA ,又由∠ECA 的度数,继而求得答案.【解答】解:连接OE ,∵∠ACB=90°,∴点C在以AB为直径的圆上,即点C在⊙O上,∴∠EOA=2∠ECA,∵∠ECA=1×30°=30°,∴∠AOE=2∠ECA=2×30°=60°.故答案为:60.【点评】此题考查了圆周角定理,此题难度适中,解题的关键是证得点C在⊙O上,注意辅助线的作法,注意数形结合思想的应用.13.【分析】先根据一元二次方程的定义得到a2=2019a﹣1,a2+1=2019a,再利用整体代入的方法变形原式得到a2﹣2018a+=a+﹣1,然后通分后再利用整体代入的方法计算即可.【解答】解:∵a是方程x2﹣2019x+1=0的一个根,∴a2﹣2019a+1=0,∴a2=2019a﹣1,a2+1=2019a,∴a2﹣2018a+=2019a﹣1﹣2018a+=a+﹣1=﹣1=﹣1=2019﹣1=2018.故答案为2018.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.14.【分析】设购买篮球x个,则购买足球(50﹣x)个,根据总价=单价×购买数量结合购买资金不超过3000元,即可得出关于x的一元一次不等式,解之取其中的最大整数即可.【解答】解:设购买篮球x个,则购买足球(50﹣x)个,根据题意得:80x+50(50﹣x)≤3000,解得:x≤.∵x为整数,∴x最大值为16.故答案为:16.【点评】本题考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.15.【分析】找出旋转的过程中AP n长度的规律,可P1P2017的值.【解答】解:根据题意可得:每三次旋转,向右平移3+∴从P1到P2017共旋转672次∴P1P2017=672(3+)=2016+672故答案为2016+672【点评】本题考查了旋转的性质,找出旋转的过程中AP n长度的规律是本题的关键.16.【分析】根据三角形的内角和和角平分线的定义得到∠A=90°,过D作DF⊥BC于F,DG⊥AB于G,DH⊥AC于H,推出四边形AHDG是正方形,连接AD,根据三角形的面积列方程得到DF=2,得到CH=4,根据勾股定理得到CD==2,CF==4,根据等腰三角形的性质得到CE=DE,设CE=DE=x,根据勾股定理列方程即可得到结论.【解答】解:∵∠BDC=135°,∴∠DCB+∠DBC=45°,∵BD、CD分别平分∠ABC、∠ACB,∴∠ACB+∠ABC=2∠DCB+2∠DBC=90°,∴∠A=90°,∵AB=8,BC=10,∴AC==6,过D作DF⊥BC于F,DG⊥AB于G,DH⊥AC于H,∴DH=DF=DG,∴四边形AHDG是正方形,连接AD,∵S△ABC =S△ADC+S△BCD+S△ABD=(AC+BC+AB)•DF=AC•AB,∴DF=2,∴AH=AG=2,∴CH=4,∴CD==2,∴CF==4,∵DE∥AC,∴∠ACD=∠CDE,∴∠DCE=∠CDE,∴CE=DE,设CE=DE=x,∴EF=4﹣x,∵DE2=EF2+DF2,∴x2=(4﹣x)2+22,解得:x=,∴DE=,故答案为:.【点评】本题考查了角平分线的性质,勾股定理等腰三角形的判定和性质,平行线的性质,正确的作出辅助线构造直角三角形是解题的关键.三.解答题(共8小题,满分80分,每小题10分)17.【分析】(1)根据实数的混合运算顺序和运算法则计算可得;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=4﹣8×0.125+1+1=4﹣1+1+1=5.(2)两边同乘以x(2x﹣1),得6(2x﹣1)=5x,解得x=.经检验,x=是原方程的解.【点评】此题考查了实数的运算与解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.【分析】(1)原式利用完全平方公式,以及单项式乘以多项式法则计算即可求出值;(2)原式利用平方差公式,以及完全平方公式化简,去括号合并即可得到结果;(3)原式利用平方差公式,多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.【解答】解:(1)(x+y)2﹣2x(x+y)=x2+2xy+y2﹣2x2﹣2xy=y2﹣x2;(2)(a+1)(a﹣1)﹣(a﹣1)2=a2﹣1﹣(a2﹣2a+1)=2a﹣2;(3)(x+2y)(x﹣2y)﹣(2x3y﹣4x2y2)÷2xy=x2﹣4y2﹣x2+2xy=﹣4y2+2xy,当x=﹣3,y=时,原式=﹣1﹣3=﹣4.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.19.【分析】(1)依据一组对边平行且相等的四边形是平行四边形,即可得到所求的平行四边形;(2)利用割补法,即可得到图2中平行四边形的面积.【解答】解:(1)如图所示,四边形ABCD和四边形EFGH均为平行四边形;(2)图2中所画的平行四边形的面积=×6×(1+1)=6,故答案为:6.【点评】本题考查作图﹣应用与设计,首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.20.【分析】(1)根据第三组的频数为8,所占百分比为16%,即可求出本次抽取的学生总数;(2)先求出60分以上(含60分)所占百分比,再利用样本估计总体的思想,用450乘以这个百分比即可;(3)首先根据题意列表,然后由表格求得所有等可能的结果与抽到甲、乙两名学生的情况,再利用概率公式求解即可求得答案.【解答】解:(1)8÷16%=50(人);(2)1﹣4%=96%,450×96%=432(人);(3)列表如下:共有6种情况,其中抽到甲、乙两名同学的是2种,所以P(抽到甲、乙两名同学)==.故答案为50;432.【点评】本题考查的是用列表法或画树状图法求概率与扇形统计图、用样本估计总体的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.21.【分析】(1)由题意可证AP=PF,∠MAP=∠PAF=∠PFA=45°,即可证△PAM≌△PFN;(2)由勾股定理可求AF=3,由△PAM≌△PFN,可得AM=NF,即可得AM+AN=AF=3.【解答】证明:(1)∵四边形ABCD是矩形∴∠BAD=90°∵∠BAD的平分线AE与BC边交于点E,∴∠BAE=∠EAD=45°∵PF⊥AP∴∠PAF=∠PFA=45°∴AP=PF∵∠MPN=90°,∠APF=90°∴∠MPN﹣∠APN=∠APF﹣∠APN∴∠MPA=∠FPN,且AP=PF,∠MAP=∠PFA=45°∴△PAM≌△PFN(ASA)(2)∵PA=3∴PA=PF=3,且∠APF=90°∴AF==3∵△PAM≌△PFN;∴AM=NF∴AM+AN=AN+NF=AF=3【点评】本题考查了矩形的性质,全等三角形的性质和判定,勾股定理,熟练运用这些性质解决问题是本题的关键.22.【分析】设x个人加工轴杆,(90﹣x)个人加工轴承,才能使每天生产的轴承和轴杆正好配套,根据1根轴杆与2个轴承为一套列出方程,求出方程的解即可得到结果.【解答】解:设x个人加工轴杆,(90﹣x)个人加工轴承,才能使每天生产的轴承和轴杆正好配套,根据题意得:12x×2=16(90﹣x),去括号得:24x=1440﹣16x,移项合并得:40x=1440,解得:x=36.则调配36个人加工轴杆,54个人加工轴承,才能使每天生产的轴承和轴杆正好配套.【点评】此题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.23.【分析】(1)根据点A,C的坐标,利用待定系数法即可求出抛物线及直线AC的函数关系式;(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),进而可得出PF的值,由点C的坐标可得出点Q的坐标,进而可得出AQ的值,利用=﹣x2﹣x+3,再利用二次函数的性质,即可解决最值问题;三角形的面积公式可得出S△APC(3)利用二次函数图象上点的坐标特征可得出点N的坐标,利用配方法可找出抛物线的对称轴,由点C,N的坐标可得出点C,N关于抛物线的对称轴对称,令直线AC与抛物线的对称轴的交点为点M,则此时△ANM周长取最小值,再利用一次函数图象上点的坐标特征求出点M的坐标,以及利用两点间的距离公式结合三角形的周长公式求出△ANM周长的最小值即可得出结论.【解答】解:(1)将A(1,0),C(﹣2,3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的函数关系式为y=﹣x2﹣2x+3;设直线AC的函数关系式为y=mx+n(m≠0),将A(1,0),C(﹣2,3)代入y=mx+n,得:,解得:,∴直线AC的函数关系式为y=﹣x+1.(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,如图1所示.设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),∴PE=﹣x2﹣2x+3,EF=﹣x+1,EF=PE﹣EF=﹣x2﹣2x+3﹣(﹣x+1)=﹣x2﹣x+2.∵点C的坐标为(﹣2,3),∴点Q的坐标为(﹣2,0),∴AQ=1﹣(﹣2)=3,=AQ•PF=﹣x2﹣x+3=﹣(x+)2+.∴S△APC∵﹣<0,∴当x=﹣时,△APC的面积取最大值,最大值为,此时点P的坐标为(﹣,).(3)当x=0时,y=﹣x2﹣2x+3=3,∴点N的坐标为(0,3).∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴抛物线的对称轴为直线x=﹣1.∵点C的坐标为(﹣2,3),∴点C,N关于抛物线的对称轴对称.令直线AC与抛物线的对称轴的交点为点M,如图2所示.∵点C,N关于抛物线的对称轴对称,∴MN=CM,∴AM+MN=AM+MC=AC,∴此时△ANM周长取最小值.当x=﹣1时,y=﹣x+1=2,∴此时点M的坐标为(﹣1,2).∵点A的坐标为(1,0),点C的坐标为(﹣2,3),点N的坐标为(0,3),∴AC==3,AN==,=AM+MN+AN=AC+AN=3+.∴C△ANM∴在对称轴上存在一点M(﹣1,2),使△ANM的周长最小,△ANM周长的最小值为3+.【点评】本题考查了待定系数法求一次函数解析式、待定系数法求二次函数解析式、二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、二次函数的性质、三角形的面积以及周长,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线及直线AC的函数关系式;(2)=﹣x2﹣x+3;(3)利用二次函数图象的对称性结合两点利用三角形的面积公式找出S△APC之间线段最短找出点M的位置.24.【分析】(1)①欲证明PC是⊙O的切线,只要证明OC⊥PC即可;②想办法证明∠P=30°即可解决问题;(2)如图2中,连接MA.由△AMC∽△NMA,可得,由此即可解决问题;【解答】(1)①证明:如图1中,∵OA=OC,∴∠A=∠ACO,∵∠PCB=∠A,∴∠ACO=∠PCB,∵AB是⊙O的直径,∴∠ACO+∠OCB=90°,∴∠PCB+∠OCB=90°,即OC⊥CP,∵OC是⊙O的半径,∴PC是⊙O的切线.②∵CP=CA,∴∠P=∠A,∴∠COB=2∠A=2∠P,∵∠OCP=90°,∴∠P=30°,∵OC=OA=2,∴OP=2OC=4,∴.(2)解:如图2中,连接MA.∵点M是弧AB的中点,∴=,∴∠ACM=∠BAM,∵∠AMC=∠AMN,∴△AMC∽△NMA,∴,∴AM2=MC•MN,∵MC•MN=9,∴AM=3,∴BM=AM=3.【点评】本题属于圆综合题,考查了切线的判定,解直角三角形,圆周角定理,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.。
浙江省温州市中考数学一模试卷一.选择题(共10小题,满分40分,每小题4分)1.﹣1+3的结果是()A.﹣4 B.4 C.﹣2 D.22.如图所示的几何体的左视图是()A.B.C.D.3.已知点(﹣1,y1),(﹣0.5,y2),(1.5,y3)是直线y=﹣2x+1上的三个点,则y1,y2,y3的大小关系是()A.y3>y2>y1B.y1>y2>y3C.y1>y3>y2D.y3>y1>y24.已知关于x的不等式4x﹣a>﹣5的解集如图所示,则a的值是()A.﹣3 B.﹣2 C.﹣1 D.05.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分6.下列命题中真命题是()A.若a2=b2,则a=bB.4的平方根是±2C.两个锐角之和一定是钝角D.相等的两个角是对顶角7.下面的统计图反映了我市2011﹣2016年气温变化情况,下列说法不合理的是()A.2011﹣2014年最高温度呈上升趋势B.2014年出现了这6年的最高温度C.2011﹣2015年的温差成下降趋势D.2016年的温差最大8.若抛物线y=ax2+bx+c与x轴的公共点的坐标是(﹣1,0),(5,0),则这条抛物线的对称轴是直线()A.x=1 B.x=2 C.x=3 D.x=﹣29.如图,由六段相等的圆弧组成的三叶花,每段圆弧都是四分之一圆周,OA=OB=OC=2,则这朵三叶花的面积为()A.3π﹣3 B.3π﹣6 C.6π﹣3 D.6π﹣610.如图,点A,B为反比例函数在第一象限上的两点,AC⊥y轴于点C,BD⊥x轴于点D,若B点的横坐标是A点横坐标的一半,且图中阴影部分的面积为k﹣2,则k的值为()A.B.C.D.二.填空题(共6小题,满分30分,每小题5分)11.分解因式:x3y﹣2x2y+xy=.12.如图,∠ADB=90°,∠DCB=30°,则∠ABD=.13.m是方程2x2+3x﹣1=0的根,则式子4m2+6m+2018的值为.14.在一次绿色环保知识竞赛中,共有20道题,对于每一道题,答对了得10分,答错了或不答扣5分,小明要想在竞赛中得分不少于100分,则他至少要答对道题.15.如图Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,且AC在直线l上,将△ABC绕点A顺时针旋转到①,可得到点P1;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,…按此规律继续旋转,直到点P2012为止,则AP2012等于.16.如图,在△ABC中,4AB=5AC,AD为△ABC的角平分线,点E在BC的延长线上,EF⊥AD于点F,点G 在AF上,FG=FD,连接EG交AC于点H.若点H是AC的中点,则的值为.三.解答题(共8小题,满分80分,每小题10分)17.解答下列各题:(1)计算:(2)计算:(3)解方程:18.先化简,再求值:(3x+2y)2﹣(3x+y)(3x﹣y),其中x=2,y=3.19.如图,▱ABCD的四个顶点都在小方格的顶点上,每个小正方形边长都是1,请画一个与▱ABCD的面积相等的特殊平行四边形,并且满足下列要求(1)在图甲中画一个矩形;(2)在图乙中画一个菱形.(注意:四边形的顶点均在方格的顶点上,四边形的边用实数表示,顶点写上字母)20.为了解某校2400名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调查得到的结果绘制成如图所示的频数分布直方图和扇形统计图(均不完整).(1)问:在这次调查中,一共抽取了多少名学生?(2)补全频数分布直方图;(3)估计全校所有学生中有多少人乘坐公交车上学;(4)为了鼓励“低碳生活”,学校为随机抽到的步行或骑自行车上学的学生设计了一个摸奖游戏,具体规则如下:一个不透明的袋子中装着标有数字1、2、3、4的四个完全相同的小球,随机地从四个小球中摸出一球然后放回,再随机地摸出一球,若第二次摸出的小球标有的数字比第一次摸出的小球标有的数字大,则有小礼物赠送,问获得小礼物的概率是多少(用树状图或列表说明)?21.在矩形ABCD中,AD=2AB,E是AD的中点,一块三角板的直角顶点与点E重合,两直角边与AB、BC 分别交于点M、N,求证:BM=CN.22.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.(1)这个班有多少学生?(2)这批图书共有多少本?23.如图所示,已知抛物线y=ax2(a≠0)与一次函数y=kx+b的图象相交于A(﹣1,﹣1),B(2,﹣4)两点,点P是抛物线上不与A,B重合的一个动点,点Q是y轴上的一个动点.(1)请直接写出a,k,b的值及关于x的不等式ax2<kx﹣2的解集;(2)当点P在直线AB上方时,请求出△PAB面积的最大值并求出此时点P的坐标;(3)是否存在以P,Q,A,B为顶点的四边形是平行四边形?若存在,请直接写出P,Q的坐标;若不存在,请说明理由.24.如图:AD是正△ABC的高,O是AD上一点,⊙O经过点D,分别交AB、AC于E、F (1)求∠EDF的度数;(2)若AD=6,求△AEF的周长;(3)设EF、AD相较于N,若AE=3,EF=7,求DN的长.浙江省温州市中考数学一模试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【分析】根据有理数的加法解答即可.【解答】解:﹣1+3=2,故选:D.【点评】此题考查有理数的加法,关键是根据法则计算.2.【分析】从左面观察几何体,能够看到的线用实线,看不到的线用虚线.【解答】解:图中几何体的左视图如图所示:故选:D.【点评】本题主要考查的是几何体的三视图,熟练掌握三视图的画法是解题的关键.3.【分析】根据一次函数图象的增减性,结合横坐标的大小,可判断纵坐标的大小关系,即可得到答案.【解答】解:∵一次函数y=﹣2x+1的图象y随着x的增大而较小,又∵﹣1<﹣0.5<1.5,∴y1>y2>y3,故选:B.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.4.【分析】先求出不等式的解集,根据数轴得出关于a的方程,求出方程的解即可.【解答】解:解不等式4x﹣a>﹣5得:x>,根据数轴可知:=﹣2,解得:a=﹣3,故选:A.【点评】本题考查了解一元一次方程、解一元一次不等式、在数轴上表示不等式的解集等知识点,能得出关于a的方程是解此题的关键.5.【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:将数据重新排列为17、18、18、20、20、20、23,所以这组数据的众数为20分、中位数为20分,故选:D.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两个数的平均数.6.【分析】利用平方根的定义对A、B进行判断;利用反例对C进行判断;根据对顶角的定义对D进行判断.【解答】解:A、若a2=b2,则a=b或a=﹣b,所以A选项错误;B、4的平方根是±2,所以B选项正确;C、两个锐角之和不一定是钝角,若30°与60°的和为直角;所以C选项错误;D、相等的两个角不一定为对顶角,所以D选项错误.故选:B.【点评】本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.7.【分析】利用折线统计图结合相应数据,分别分析得出符合题意的答案.【解答】解:A、2011﹣2014年最高温度呈上升趋势,正确;B、2014年出现了这6年的最高温度,正确;C、2011﹣2015年的温差成下降趋势,错误;D、2016年的温差最大,正确;故选:C.【点评】此题主要考查了折线统计图,利用折线统计图获取正确信息是解题关键.8.【分析】根据抛物线y=ax2+bx+c与x轴的公共点的坐标是(﹣1,0),(5,0),可以求得这条抛物线的对称轴,本题得以解决.【解答】解:∵抛物线y=ax2+bx+c与x轴的公共点的坐标是(﹣1,0),(5,0),∴这条抛物线的对称轴是直线x==2,故选:B.【点评】本题考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.9.【分析】先算出三叶花即一个小弓形的面积,再算三叶花的面积.一个小弓形的面积=扇形面积﹣三角形的面积.【解答】解:如图所示:弧OA是⊙M上满足条件的一段弧,连接AM、MO,由题意知:∠AMO=90°,AM=OM∵AO=2,∴AM=.∵S扇形AMO=×π×MA2=.S△AMO=AM•MO=1,∴S弓形AO=﹣1,∴S三叶花=6×(﹣1)=3π﹣6.故选:B.【点评】本题考查了扇形的面积、直角等腰三角形的面积、弓形的面积等知识点.解决本题的关键是根据弦长得到圆的半径.10.【分析】根据反比例函数图象上点的坐标特征,设B(),则AC=2CE=2t,于是可表示出A(),由点B和点A的纵坐标可知BD=2OC,然后根据三角形面积公式得到关于k的方程,解此方程即可.【解答】解:设B(),∵AC⊥y轴于点C,BD⊥x轴于点D,B点的横坐标是A点横坐标的一半,∴AC=2CE=2t,∴A(),∴BD=2OC=2DE,∴△OCM≌△BEM,∴CM=EM,同理EN=DN,∴阴影部分的面积=.解得,故选:B.【点评】本题考查了反比例函数系数k的几何意义:在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.由几何图形的性质将阴影部分的面积进行转化是解题的关键.二.填空题(共6小题,满分30分,每小题5分)11.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=xy(x2﹣2x+1)=xy(x﹣1)2.故答案为:xy(x﹣1)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.【分析】根据∠ABD=90°﹣∠A,求出∠A即可解决问题;【解答】解:∵∠A=∠DCB=30°,∠ADB=90°∴∠ABD=90°﹣∠A=60°,故答案为60°【点评】本题考查圆周角定理、三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考基础题.13.【分析】根据一元二次方程的解的定义,将x=m代入已知方程后即可求得所求代数式的值.【解答】解:把x=m代入2x2+3x﹣1=0,得2m2+3m﹣1=0,则2m2+3m=1.所以4m2+6m+2018=2(2m2+3m)+2018=2+2018=2020.故答案为:2020.【点评】本题考查了一元二次方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.14.【分析】设小明答对x道题,则答错或不答的题数为(20﹣x)道,根据“对于每一道题,答对了得10分,答错了或不答扣5分,小明要想在竞赛中得分不少于100分”,列出关于x的一元一次不等式,解之即可.【解答】解:设小明答对x道题,则答错或不答的题数为(20﹣x)道,根据题意得:10x﹣5(20﹣x)≥100,解得:x≥,∵x为整数,∴至少答对14道题,故答案为:14.【点评】本题考查了一元一次不等式的应用,正确找出等量关系,列出一元一次不等式是解题的关键.15.【分析】仔细审题,发现将Rt△ABC绕点A顺时针旋转,每旋转一次,AP的长度依次增加2,,1,且三次一循环,按此规律即可求解.【解答】解:∵Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,∴AB=2,BC=,∴将△ABC绕点A顺时针旋转到①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2++1=3+;又∵2012÷3=670…2,∴AP2012=670(3+)+2+=2012+671.故答案为2012+671.【点评】本题考查了旋转的性质及直角三角形的性质,得到AP的长度依次增加2,,1,且三次一循环是解题的关键.16.【分析】解题关键是作出辅助线,如解答图所示:第1步:利用角平分线的性质,得到BD=CD;第2步:延长AC,构造一对全等三角形△ABD≌△AMD;第3步:过点M作MN∥AD,构造平行四边形DMNG.由MD=BD=KD=CD,得到等腰△DMK;然后利用角之间关系证明DM∥GN,从而推出四边形DMNG为平行四边形;第4步:由MN∥AD,列出比例式,求出的值.【解答】解:已知AD为角平分线,则点D到AB、AC的距离相等,设为h.∵====,∴BD=CD.如右图,延长AC,在AC的延长线上截取AM=AB,则有AC=4CM.连接DM.在△ABD与△AMD中,∴△ABD≌△AMD(SAS),∴MD=BD=CD.过点M作MN∥AD,交EG于点N,交DE于点K.∵MN∥AD,∴==,∴CK=CD,∴KD=CD.∴MD=KD,即△DMK为等腰三角形,∴∠DMK=∠DKM.由题意,易知△EDG为等腰三角形,且∠1=∠2;∵MN∥AD,∴∠3=∠4=∠1=∠2,又∵∠DKM=∠3(对顶角)∴∠DMK=∠4,∴DM∥GN,∴四边形DMNG为平行四边形,∴MN=DG=2FD.∵点H为AC中点,AC=4CM,∴=.∵MN∥AD,∴=,即,∴=.故答案为:.方法二:如右图,有已知易证△DFE≌△GFE,故∠5=∠B+∠1=∠4=∠2+∠3,又∠1=∠2,所以∠3=∠B,则可证△AGH∽△ADB设AB=5a,则AC=4a,AH=2a,所以AG/AD=AH/AB=2/5,而AD=AG+GD,故GD/AD=3/5,所以AG:GD=2:3,F是GD的中点,所以AG:FD=4:3.【点评】本题是几何综合题,难度较大,正确作出辅助线是解题关键.在解题过程中,需要综合利用各种几何知识,例如相似、全等、平行四边形、等腰三角形、角平分线性质等,对考生能力要求较高.三.解答题(共8小题,满分80分,每小题10分)17.【分析】(1)根据同分母分式的加法计算后约分即可得;(2)先计算零指数幂、绝对值、算术平方根及负整数指数幂,再计算加减可得;(3)两边乘以2x(x+1),化分式方式方程为整式方程,解之求得x的值,检验即可得.【解答】解:(1)原式===2;(2)原式==3;(3)方程两边同时乘2x(x+1)得,3(x+1)=4x,解得:x=3,经检验x=3是原方程的解,∴原方程的解为x=3.【点评】本题主要考查分式和实数的运算及解分式方程,解题的关键是熟练掌握分式的运算法则、零指数幂、绝对值、算术平方根及负整数指数幂、解分式方程的步骤.18.【分析】原式利用完全平方公式,以及平方差公式化简,去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=9x2+12xy+4y2﹣9x2+y2=5y2+12xy,当x=2,y=3时,原式=5×32+12×2×3=45+72=117.【点评】本题考查的是整式的混合运算,掌握完全平方公式,平方差公式以及合并同类项的法则是解题的关键.19.【分析】(1)根据题意可知这个平行四边形面积=15,根据面积相等这个条件,可以设计矩形的长和宽.(2)根据菱形面积为15,可以确定菱形边长为5,高为3,画出图形即可.【解答】解:(1)如图甲所示,矩形EFGH即为所求.(2)如图乙所示,菱形PQMN即为所求.【点评】本题考查作图﹣应用与设计作图,掌握平行四边形、矩形、菱形的面积的求法是解题的关键,利用面积设计矩形边长、菱形的边长,是一个数形结合的好题目.20.【分析】(1)根据上学方式为“私家车”的学生数除以所占的百分比即可求出调查的学生总数;(2)根据总学生数求出上学方式为“公交车”的学生数,补全条形统计图即可;(3)求出上学方式为“公交车”的学生所占的百分比,乘以2400即可得到结果;(4)根据题意画出相应的树状图,得出所有等可能的情况数,找出第二次摸出的小球标有的数字比第一次摸出的小球标有的数字大的情况数,即可求出所求的概率.【解答】解:(1)32÷40%=80(名),则在这次调查中,一共抽取了80名学生;(2)上学方式为“公交车”的学生为80﹣(8+12+32+8)=20(名),补全频数分布直方图,如图所示;(3)根据题意得:2400×=600(名),则全校所有学生中有600名学生乘坐公交车上学;(4)根据题意画出树状图,如图所示:得到所有等可能的情况数有16种,其中第二次摸出的小球标有的数字比第一次摸出的小球标有的数字大,即有小礼物赠送的有6种,则P==,则获得小礼物的概率是.【点评】此题考查了频数(率)分布直方图,扇形统计图,用样本估计总体,以及列表法与树状图法,弄清题意是解本题的关键.21.【分析】由题意可得AE=DE=AB=CD,∠ABE=∠AEB=∠DEC=∠DCE=45°,可证△ABE≌△DCE,可得BE=CE,由“ASA”可证△BEM≌△CEN,可得BM=CN.【解答】证明:如图,连接BE,CE,∵四边形ABCD是矩形∴AB=CD,∠A=∠D=90°∵AD=2AB,E是AD的中点,∴AE=DE=AB=CD∴∠ABE=∠AEB=∠DEC=∠DCE=45°,∴∠BEC=180°﹣∠AEB﹣∠DEC=90°∵AB=CD,∠ABE=∠AEB=∠DEC=∠DCE=45°,∴△ABE≌△DCE(AAS)∴BE=CE,∵∠BEN+∠CEN=90°,∠BEM+∠BEN=90°,∴∠BEM=∠CEN,且BE=CE,∠ABE=∠ECN,∴△BEM≌△CEN(ASA)∴BM=CN【点评】本题考查了矩形的性质,全等三角形的判定和性质,熟练运用全等三角形的判定和性质是本题的关键.22.【分析】(1)设这个班有x名学生.根据这个班人数一定,可得:3x+20=4x﹣25,解方程即可;(2)代入方程的左边或右边的代数式即可.【解答】解:(1)设这个班有x名学生.依题意有:3x+20=4x﹣25解得:x=45(2)3x+20=3×45+20=155答:这个班有45名学生,这批图书共有155本.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.23.【分析】(1)根据待定系数法得出a,k,b的值,进而得出不等式的解集即可;(2)过点A作y轴的平行线,过点B作x轴的平行线,两者交于点C,连接PC.根据三角形的面积公式解答即可;(3)根据平行四边形的性质和坐标特点解答即可.【解答】解:(1)把A(﹣1,﹣1),代入y=ax2中,可得:a=﹣1,把A(﹣1,﹣1),B(2,﹣4)代入y=kx+b中,可得:,解得:,所以a=﹣1,k=﹣1,b=﹣2,关于x的不等式ax2<kx﹣2的解集是x<﹣1或x>2,(2)过点A作y轴的平行线,过点B作x轴的平行线,两者交于点C.∵A(﹣1,﹣1),B(2,﹣4),∴C(﹣1,﹣4),AC=BC=3,设点P的横坐标为m,则点P的纵坐标为﹣m2.过点P作PD⊥AC于D,作PE⊥BC于E.则D(﹣1,﹣m2),E(m,﹣4),∴PD=m+1,PE=﹣m2+4.∴S△APB=S△APC+S△BPC﹣S△ABC===.∵<0,,﹣1<m<2,∴当时,S△APB的值最大.∴当时,,S△APB=,即△PAB面积的最大值为,此时点P的坐标为(,)(3)存在三组符合条件的点,当以P,Q,A,B为顶点的四边形是平行四边形时,∵AP=BQ,AQ=BP,A(﹣1,﹣1),B(2,﹣4),可得坐标如下:①P′的横坐标为﹣3,代入二次函数表达式,解得:P'(﹣3,﹣9),Q'(0,﹣12);②P″的横坐标为3,代入二次函数表达式,解得:P″(3,﹣9),Q″(0,﹣6);③P的横坐标为1,代入二次函数表达式,解得:P(1,﹣1),Q(0,﹣4).故:P的坐标为(﹣3,﹣9)或(3,﹣9)或(1,﹣1),Q的坐标为:Q(0,﹣12)或(0,﹣6)或(0,﹣4).【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.24.【分析】(1)如图1中,作OI⊥AB于I,OJ⊥AC于J,连接OE,OF.想办法求出∠EOF的度数即可解决问题;(2)如图1中,作OI⊥AB于I,OJ⊥AC于J,连接OE,OF.利用全等三角形的性质证明EK=EM,FM =FL,即可推出△AEF的周长=2AL.即可解决问题;(3)如图3中,作FP⊥AB于P,作EM⊥AC于M,作NQ⊥AB于Q,DL⊥AC于L.想办法求出AD,AN 即可解决问题;【解答】解:(1)如图1中,作OI⊥AB于I,OJ⊥AC于J,连接OE,OF.∵AD是正△ABC的高,∴∠BAC=60°,AD平分∠BAC,∴∠BAD=∠CAD=30°,∵OI⊥AB于I,OJ⊥AC于J,∴∠AIO=∠AJO=90°,∴∠IOJ=360°﹣90°﹣90°=60°=120°,OI=OJ,∵OE=OF,∴Rt△OIE≌△Rt△OJF(HL),∴∠IOE=∠JOF,∴∠EOF=∠EOJ+∠FOJ=∠EOJ+∠IOE=∠IOJ=120°,∴∠EDF=∠EOF=60°.(2)如图1中,作DK⊥AB于K,DL⊥AC于L,DM⊥EF于M,连接FG.∵△ABC是等边三角形,AD⊥BC,∴∠B=60°,BD=CD,∵∠EDF=60°,∴∠EDF=∠B,∵∠EDC=∠EDF+∠CDF=∠B+∠BED,∴∠BED=∠CDF,∵GD是圆O的直径,∴∠ADC=90°,∠GFD=90°,∴∠FGD+∠FDG=90°,∠FDC+∠FDG=90°,∴∠FDC=∠FGD=∠DEF,∵DK⊥EB,DM⊥EF,∴∠EKD=∠EMD=90°,DK=DM,∴Rt△DEK≌Rt△DEM(HL),∴∴EK=EM,同法可证:DK=DL,∴DM=CL,∵DM⊥FE,DL⊥FC,∴∠FMD=∠FLD=90°,∴Rt△DFM≌Rt△DFL(HL),∴FM=FL,∵AD=AD,DK=DF,∴Rt△ADK≌Rt△ADL(HL),∴AK=AL,∴△AEF的周长=AE+EF+AF=AE+EK+AF+FL=2AL,∵AD=6,∴AL=AD•cos30°=9,∴△AEF的周长=18.(3)如图3中,作FP⊥AB于P,作EM⊥AC于M,作NQ⊥AB于Q,DL⊥AC于L.在Rt△AEM中,∵AE=3,∠EAM=60°,∴AM=AE=,EM=,在Rt△EFM中,EF===,∴AF=AM+MF=8,∵△AEF的周长=18,由(2)可知2AL=18,∴AJ=9,AD==6,∴AP=AF=4,FP=4,∵NQ∥FP,∵△EQN∽△EPF,∴==,∵∠BAD=30°,∴AQ=√3NQ,设EQ=x,则QN=4x,AQ=12x,∴AE=11x=3,∴x=,∴AN=2NQ=,∴DN=AD﹣AN=.【点评】本题属于圆综合题,考查了等边三角形的性质,锐角三角函数,全等三角形的判定和性质,相似三角形的判定和性质,角平分线的性质定理,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.。