华师版,九年级上25.2.1 概率及其意义 (1)
- 格式:ppt
- 大小:2.29 MB
- 文档页数:22
华东师范大学出版社九年义务教育数学课本九年级上册《25.2.1 概率及其意义》第一课时教学设计海南省儋州市民族中学刘洋洋一、教学内容分析1.课标内容课标内容:了解事件的概率;知道通过大量的重复试验,可以用频率估计概率。
2.教材内容分析传统的概率教学常常重在概率的计算,修订后的教材试图通过从定性到定量,从试验观察到理论分析,逐步达到提高学生对概率理解水平的目的。
所以结合教材和课标内容,设定本节的教学重点是:在具体情景中理解概率及它的意义。
知道获得概率的方法有两种:大量重复试验,用频率的稳定值估计概率,和分析的方法;理解运用分析方法获得概率的公式。
3.教材地位分析本节是对上一节不确定事件发生可能性大小的探索,是后面研究简单及复杂问题情景下事件发生概率的基础。
二、教学目标分析1. 教学目标设置根据教材和课标内容,我认为本节课应完成的教学目标有:1.理解概率的含义,让学生知道获得概率的方法有两种:大量重复试验,用频率的稳定值估计概率和分析的方法。
2.发现、归纳并理解用分析方法预测概率的公式。
3.在具体情景中理解概率的意义。
4.通过动手实验与合作交流,进一步提高学生收集、整理、描述数据的技能,培养学生分析数据的素养。
2.教学目标分析本节课在知识与方法上侧重的是学生的理解,在技能上培养的是学生分析数据的素养。
三、学生学情分析1. 知识基础分析根据《课程标准》,学生在小学阶段已经通过实例感受简单的随机现象,并能对一些简单的随机现象发生的可能性大小作出定性的描述。
所以学生对于事件发生概率的含义是可以理解的。
学生在上一节《25.1在重复试验中观察不确定现象》已通过试验观察体会到,随机事件在每一次试验中是否发生是不可预言的,但在大量重复试验后,随机事件发生的频率会逐渐稳定在某一数值附件。
2. 技能分析学生在八年级已学习了数据的收集与表示、数据的整理与初步处理,已有关于频率、平均数的知识基础,和收集、描述、分析数据的技能。
华师大版初中数学重点知识精选掌握知识点,多做练习题,基础知识很重要!华师大初中数学和你一起共同进步学业有成!25.2 随机事件的概率1.概率及其意义【知识与技能】通过试验,理解事件发生的可能性问题,感受理论概率的意义.【过程与方法】经历试验等活动过程,学会用分析的方法在较为简单的问题情境下预测概率.【情感态度】发展学生合作交流的意识和能力.【教学重点】运用分析的方法在较为简单的问题情境下预测概率.【教学难点】对概率的理解.一、情境导入,初步认识教师活动:拿出一枚硬币抛掷,提问:结果有几种情况?学生活动:拿出一枚硬币抛掷,发现结果只有两种情况——“出现正面”和“出现反面”,而且发生的可能性均等,各占50%的机会.教师引入:一个事件发生的可能性就叫做该事件的概率. 学生联想:抛掷一枚硬币出现正面的概率是,出现反面的概率是. 1212教师引导:可记作P(出现正面)=,P(出现反面)=. 1212二、思考探究,获取新知抛掷一枚普通的六面体骰子,“出现数字为5”的概率为多少? 学生回答:,可记作P(出现数字5)=. 1616上述例子可以经过分析很快地得出概率,但是实际中,许多问题是要进行重复实验、观察频率值的办法来解决的,请看下面一个例子,见课本P 136表25.2.1.学生活动:对表25.2.1中的问题进行试验.思路点拨:(1)关注的是哪个或哪些结果;(2)注意所有机会均等.(1)、(2)这两种结果个数的比就是所关注的结果发生的概率.【教学说明】引导学生在实验中寻找方法.问题情境1:课本P 137问题1学生活动:分四人小组展开对“问题1”的试验,并从中得到规律:如果掷的次数很多,试验的频率渐趋稳定,平均每6次就有1次掷出“6”.【教学说明】通过试验,让学生逐步计算一个随机事件发生的试验频率,并观察其中的规律性,从而归纳出试验概率趋于理论概率这一规律.例1见课本P 139例1思路点拨:本题是简单的古典概率,理论上很容易求出其概率.P(抽到男同学名字)=; 12242112=P(抽到女同学名字)=,得出结论为抽到男同学名字的概率大 101121221204=<【教学说明】让学生感受到古典概率的内涵以及计算方式.拓展延伸:课本P 140“思考”【教学说明】分小组进行讨论,然后再在全班进行发言.例2 见课本P 140例2思路点拨:这是一个理论概率问题,袋中球的总数为8+16=24只,由于红球有8只,因此,P(取出红球)=,黑球16只,P(取出黑球)= .也81243=162243=可以这样计算黑球:P(取出黑球)=1-P(取出红球)=. 121-33=例3见课本P 140例3思路点拨:这是一道通过比较取出黑球的概率大小进行判断的题目,首先要计算从甲、乙两只口袋中取出黑球的概率,P 甲(取出黑球),P 乙(取出843015==黑球)=,所以选乙袋成功机会大. 80842902915=>三、运用新知,深化理解1.任意投掷均匀的骰子,4朝上的概率是______.2.袋中装有6个红球和7个白球,且除颜色外,这些球都相同,从袋中任意摸出红球的概率是______.3.一副扑克牌(去掉大王和小王),随机抽取一张,抽取红桃的概率是______.4.如图,有一个被等分为8个扇形的转盘,转动转盘,指针落在白色区域的概率是( )A.1B.1/3C.5/8D.3/85.袋子里有1个红球,3个白球,5个黄球,每个球除颜色外都相同,从中任意摸1个球:(1)摸到红球的概率是多少?(2)摸到白球的概率是多少?(3)摸到黄球的概率是多少?(4)哪一个概率最大?【答案】1.1/6 2.6/13 3.1/4 4.C5.(1)1/9 (2)1/3 (3)5/9 (4)摸到黄球的概率最大四、师生互动,课堂小结1.什么叫概率?2.本节中的试验结果所产生的趋势与理论概率之间有什么关系?3.试验次数的大小与所得的“估计值”有什么关系?4.谈谈你对概率的理解和体会.1.布置作业:从教材相应练习和“习题25.2”中选取.2.完成练习册中本课时练习.通过抛掷硬币,用学生喜欢的掷骰子和扑克牌试验导入新课,吸引学生迅速进入状态,让学生充分认识概率的意义;由学生自主探索,合作交流运用分析的方法预测概率,使学生掌握本节课的知识.学生在解决问题的过程中,提高了思维能力,增强思维的缜密性,并且培养了学生解决问题的能力和信心.相信自己,就能走向成功的第一步教师不光要传授知识,还要告诉学生学会生活。