算法题计算机算法设计与分析期末试题4套(含答案)
- 格式:docx
- 大小:36.25 KB
- 文档页数:13
《计算机算法设计与分析》习题及答案一.选择题1、二分搜索算法是利用( A )实现的算法。
A、分治策略B、动态规划法C、贪心法D、回溯法2、下列不是动态规划算法基本步骤的是( A )。
A、找出最优解的性质B、构造最优解C、算出最优解D、定义最优解3、最大效益优先是( A )的一搜索方式。
A、分支界限法B、动态规划法C、贪心法D、回溯法4. 回溯法解旅行售货员问题时的解空间树是( A )。
A、子集树B、排列树C、深度优先生成树D、广度优先生成树5.下列算法中通常以自底向上的方式求解最优解的是( B )。
A、备忘录法B、动态规划法C、贪心法D、回溯法6、衡量一个算法好坏的标准是( C )。
A 运行速度快B 占用空间少C 时间复杂度低D 代码短7、以下不可以使用分治法求解的是( D )。
A 棋盘覆盖问题B 选择问题C 归并排序D 0/1背包问题8. 实现循环赛日程表利用的算法是( A )。
A、分治策略B、动态规划法C、贪心法D、回溯法9.下面不是分支界限法搜索方式的是( D )。
A、广度优先B、最小耗费优先C、最大效益优先D、深度优先10.下列算法中通常以深度优先方式系统搜索问题解的是( D )。
A、备忘录法B、动态规划法C、贪心法D、回溯法11.备忘录方法是那种算法的变形。
( B )A、分治法B、动态规划法C、贪心法D、回溯法12.哈夫曼编码的贪心算法所需的计算时间为( B )。
A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)13.分支限界法解最大团问题时,活结点表的组织形式是( B )。
A、最小堆B、最大堆C、栈D、数组14.最长公共子序列算法利用的算法是( B )。
A、分支界限法B、动态规划法C、贪心法D、回溯法15.实现棋盘覆盖算法利用的算法是( A )。
A、分治法B、动态规划法C、贪心法D、回溯法16.下面是贪心算法的基本要素的是( C )。
A、重叠子问题B、构造最优解C、贪心选择性质D、定义最优解17.回溯法的效率不依赖于下列哪些因素( D )A.满足显约束的值的个数B. 计算约束函数的时间C.计算限界函数的时间D. 确定解空间的时间18.下面哪种函数是回溯法中为避免无效搜索采取的策略( B )A.递归函数 B.剪枝函数 C。
1、二分搜索算法是利用( A )实现的算法。
A、分治策略B、动态规划法C、贪心法D、回溯法2、下列不是动态规划算法基本步骤的是( A )。
A、找出最优解的性质B、构造最优解C、算出最优解D、定义最优解3、最大效益优先是( A )的一搜索方式.A、分支界限法B、动态规划法C、贪心法D、回溯法4、在下列算法中有时找不到问题解的是( B ).A、蒙特卡罗算法B、拉斯维加斯算法C、舍伍德算法D、数值概率算法5. 回溯法解旅行售货员问题时的解空间树是( A )。
A、子集树B、排列树C、深度优先生成树D、广度优先生成树6.下列算法中通常以自底向上的方式求解最优解的是( B )。
A、备忘录法B、动态规划法C、贪心法D、回溯法7、衡量一个算法好坏的标准是(C )。
A 运行速度快B 占用空间少C 时间复杂度低D 代码短8、以下不可以使用分治法求解的是(D )。
A 棋盘覆盖问题B 选择问题C 归并排序D 0/1背包问题9. 实现循环赛日程表利用的算法是( A )。
A、分治策略B、动态规划法C、贪心法D、回溯法10、下列随机算法中运行时有时候成功有时候失败的是(C )A 数值概率算法B 舍伍德算法C 拉斯维加斯算法D 蒙特卡罗算法11.下面不是分支界限法搜索方式的是( D )。
A、广度优先B、最小耗费优先C、最大效益优先D、深度优先12.下列算法中通常以深度优先方式系统搜索问题解的是( D )。
A、备忘录法B、动态规划法C、贪心法D、回溯法13。
备忘录方法是那种算法的变形。
( B )A、分治法B、动态规划法C、贪心法D、回溯法14.哈弗曼编码的贪心算法所需的计算时间为( B )。
A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)15.分支限界法解最大团问题时,活结点表的组织形式是( B )。
A、最小堆B、最大堆C、栈D、数组16.最长公共子序列算法利用的算法是( B ).A、分支界限法B、动态规划法C、贪心法D、回溯法17.实现棋盘覆盖算法利用的算法是( A )。
一、填空题(20分)1.一个算法就是一个有穷规则的集合,其中之规则规定了解决某一特殊类型问题的一系列运算,此外,算法还应具有以下五个重要特性:_________,________,________,__________,__________。
2.算法的复杂性有_____________和___________之分,衡量一个算法好坏的标准是______________________。
3.某一问题可用动态规划算法求解的显著特征是____________________________________。
4.若序列X={B,C,A,D,B,C,D},Y={A,C,B,A,B,D,C,D},请给出序列X 和Y的一个最长公共子序列_____________________________。
5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含___________。
6.动态规划算法的基本思想是将待求解问题分解成若干____________,先求解___________,然后从这些____________的解得到原问题的解。
7.以深度优先方式系统搜索问题解的算法称为_____________。
8.0-1背包问题的回溯算法所需的计算时间为_____________,用动态规划算法所需的计算时间为____________。
9.动态规划算法的两个基本要素是___________和___________。
10.二分搜索算法是利用_______________实现的算法。
二、综合题(50分)1.写出设计动态规划算法的主要步骤。
2.流水作业调度问题的johnson算法的思想。
3.若n=4,在机器M1和M2上加工作业i所需的时间分别为a i和b i,且(a1,a2,a3,a4)=(4,5,12,10),(b1,b2,b3,b4)=(8,2,15,9)求4个作业的最优调度方案,并计算最优值。
4.使用回溯法解0/1背包问题:n=3,C=9,V={6,10,3},W={3,4,4},其解空间有长度为3的0-1向量组成,要求用一棵完全二叉树表示其解空间(从根出发,左1右0),并画出其解空间树,计算其最优值及最优解。
(1)用计算机求解问题的步骤:1、问题分析2、数学模型建立3、算法设计与选择4、算法指标5、算法分析6、算法实现7、程序调试8、结果整理文档编制(2)算法定义:算法是指在解决问题时,按照某种机械步骤一定可以得到问题结果的处理过程(3)算法的三要素1、操作2、控制结构3、数据结构算法具有以下5个属性:有穷性:一个算法必须总是在执行有穷步之后结束,且每一步都在有穷时间内完成。
确定性:算法中每一条指令必须有确切的含义。
不存在二义性。
只有一个入口和一个出口可行性:一个算法是可行的就是算法描述的操作是可以通过已经实现的基本运算执行有限次来实现的。
输入:一个算法有零个或多个输入,这些输入取自于某个特定对象的集合。
输出:一个算法有一个或多个输出,这些输出同输入有着某些特定关系的量。
算法设计的质量指标:正确性:算法应满足具体问题的需求;可读性:算法应该好读,以有利于读者对程序的理解;健壮性:算法应具有容错处理,当输入为非法数据时,算法应对其作出反应,而不是产生莫名其妙的输出结果。
效率与存储量需求:效率指的是算法执行的时间;存储量需求指算法执行过程中所需要的最大存储空间。
一般这两者与问题的规模有关。
经常采用的算法主要有迭代法、分而治之法、贪婪法、动态规划法、回溯法、分支限界法迭代法也称“辗转法”,是一种不断用变量的旧值递推出新值的解决问题的方法。
利用迭代算法解决问题,需要做好以下三个方面的工作:一、确定迭代模型。
在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。
二、建立迭代关系式。
所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。
迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。
三、对迭代过程进行控制。
在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。
不能让迭代过程无休止地重复执行下去。
迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。
算法设计与分析复习题目及答案.docx一。
选择题1、二分搜索算法是利用(A)实现的算法。
A、分治策略B、动态规划法C、贪心法D、回溯法2、下列不是动态规划算法基本步骤的是(B)。
A、找出最优解的性质B、构造最优解C、算出最优解D、定义最优解3、最大效益优先是(A)的一搜索方式。
A、分支界限法B、动态规划法C、贪心法D、回溯法4、在下列算法中有时找不到问题解的是(B)。
A、蒙特卡罗算法B、拉斯维加斯算法C、舍伍德算法D、数值概率算法5. 回溯法解旅行售货员问题时的解空间树是(B)。
A、子集树B、排列树C、深度优先生成树D、广度优先生成树6.下列算法常以自底向上的方式求解最优解的是(B)。
A、备忘录法B、动态规划法C、贪心法D、回溯法7、衡量一个算法好坏的标准是( C )。
A 运行速度快B 占用空间少C 时间复杂度低D 代码短8、以下不可以使用分治法求解的是( D )。
A 棋盘覆盖问题B 选择问题C 归并排序D 0/1 背包问题9. 实现循环赛日程表利用的算法是(A)。
A、分治策略B、动态规划法C、贪心法D、回溯法10、下列随机算法中运行时有时候成功有时候失败的是( C )A 数值概率算法B 舍伍德算法C 拉斯维加斯算法D 蒙特卡罗算法11.下面不是分支界限法搜索方式的是(DA、广度优先B、最小耗费优先C、最大效益优先12.下列算法常以深度优先方式系统搜索问题解的是(A、备忘录法B、动态规划法C、贪心法13.备忘录方法是那种算法的变形。
( B )A、分治法B、动态规划法C、贪心法14.哈弗曼编码的贪心算法所需的计算时间为(BnB、 O(nlogn )n )A、O( n2 )C、O(215.分支限界法解最大团问题时,活结点表的组织形式是(A、最小堆B、最大堆C、栈组)。
D、深度优先D)。
D、回溯法D、回溯法)。
D、 O( n)B)。
D 、数16.最长公共子序列算法利用的算法是(B)。
A、分支界限法B、动态规划法C、贪心法D、回溯法17.实现棋盘覆盖算法利用的算法是(A)。
《算法分析与设计》期末试题及参考答案一、简要回答下列问题:1.算法重要特性是什么?1. 确定性、可行性、输入、输出、有穷性2.2.算法分析的目的是什么?2. 分析算法占用计算机资源的情况,对算法做出比较和评价,设计出额更好的算法。
3.3.算法的时间复杂性与问题的什么因素相关?3. 算法的时间复杂性与问题的规模相关,是问题大小n的函数。
4.算法的渐进时间复杂性的含义?4.当问题的规模n趋向无穷大时,影响算法效率的重要因素是T(n)的数量级,而其他因素仅是使时间复杂度相差常数倍,因此可以用T(n)的数量级(阶)评价算法。
时间复杂度T(n)的数量级(阶)称为渐进时间复杂性。
5.最坏情况下的时间复杂性和平均时间复杂性有什么不同?5. 最坏情况下的时间复杂性和平均时间复杂性考察的是n固定时,不同输入实例下的算法所耗时间。
最坏情况下的时间复杂性取的输入实例中最大的时间复杂度:W(n) = max{ T(n,I) } , I∈Dn平均时间复杂性是所有输入实例的处理时间与各自概率的乘积和:A(n) =∑P(I)T(n,I) I∈Dn6.简述二分检索(折半查找)算法的基本过程。
6. 设输入是一个按非降次序排列的元素表A[i:j] 和x,选取A[(i+j)/2]与x比较,如果A[(i+j)/2]=x,则返回(i+j)/2,如果A[(i+j)/2]<x,则A[i:(i+j)/2-1]找x,否则在A[ (i+j)/2+1:j] 找x。
上述过程被反复递归调用。
7.背包问题的目标函数和贪心算法最优化量度相同吗?7. 不相同。
目标函数:获得最大利润。
最优量度:最大利润/重量比。
8.采用回溯法求解的问题,其解如何表示?有什么规定?8. 问题的解可以表示为n元组:(x1,x2,……x n),x i∈S i, S i为有穷集合,x i∈S i, (x1,x2,……x n)具备完备性,即(x1,x2,……x n)是合理的,则(x1,x2,……x i)(i<n)一定合理。
湖南科技学院二○ 年 学期期末考试信息与计算科学专业 年级《算法设计与分析》 试题考试类型:开卷 试卷类型:C 卷 考试时量:120 分钟 一、填空题(每小题3 分,共计30 分)1. 用O 、Ω和θ表示函数f 与g 之间的关系______________________________。
()()log log f n n n g n n ==2. 算法的时间复杂性为1,1()8(3/7),2n f n f n n n =⎧=⎨+≥⎩,则算法的时间复杂性的阶为__________________________。
3. 快速排序算法的性能取决于______________________________。
4. 算法是_______________________________________________________。
5. 在对问题的解空间树进行搜索的方法中,一个活结点最多有一次机会成为活结点的是_________________________。
6. 在算法的三种情况下的复杂性中,可操作性最好且最有实际价值的是_____情况下的时间复杂性。
7. 大Ω符号用来描述增长率的下限,这个下限的阶越___________,结果就越有价值。
8. ____________________________是问题能用动态规划算法求解的前提。
9. 贪心选择性质是指________________________________________________________ ____________________________________________________________。
10. 回溯法在问题的解空间树中,按______________策略,从根结点出发搜索解空间树。
二、简答题(每小题10分,共计30分)1. 试述回溯法的基本思想及用回溯法解题的步骤。
2. 有8个作业{1,2,…,8}要在由2台机器M1和M2组成的流水线上完成加工。
(1)用计算机求解问题的步骤:1、问题分析2、数学模型建立3、算法设计与选择4、算法指标5、算法分析6、算法实现7、程序调试8、结果整理文档编制(2)算法定义:算法是指在解决问题时,按照某种机械步骤一定可以得到问题结果的处理过程(3)算法的三要素1、操作2、控制结构3、数据结构算法具有以下 5 个属性:有穷性:一个算法必须总是在执行有穷步之后结束,且每一步都在有穷时间完成。
确定性:算法中每一条指令必须有确切的含义。
不存在二义性。
只有一个入口和一个出口可行性:一个算法是可行的就是算法描述的操作是可以通过已经实现的基本运算执行有限次来实现的。
输入:一个算法有零个或多个输入,这些输入取自于某个特定对象的集合。
输出:一个算法有一个或多个输出,这些输出同输入有着某些特定关系的量。
算法设计的质量指标:正确性:算法应满足具体问题的需求;可读性:算法应该好读,以有利于读者对程序的理解;健壮性:算法应具有容错处理,当输入为非法数据时,算法应对其作出反应,而不是产生莫名其妙的输出结果。
效率与存储量需求:效率指的是算法执行的时间;存储量需求指算法执行过程中所需要的最大存储空间。
一般这两者与问题的规模有关。
经常采用的算法主要有迭代法、分而治之法、贪婪法、动态规划法、回溯法、分支限界法迭代法也称“辗转法”,是一种不断用变量的旧值递推出新值的解决问题的方法。
利用迭代算法解决问题,需要做好以下三个方面的工作:一、确定迭代模型。
在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。
二、建立迭代关系式。
所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。
迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。
三、对迭代过程进行控制。
在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。
不能让迭代过程无休止地重复执行下去。
迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。
对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件。
编写计算斐波那契( Fibonacci )数列的第 n 项函数 fib (n)斐波那契数列为:0、1、1、2、3、……,即: fib(0)=0;fib(1)=1;fib(n)=fib(n-1)+fib(n-2) (当n>1 时)。
写成递归函数有:int fib(int n){ if (n==0) return 0;if (n==1) return 1;if (n>1) return fib(n-1)+fib(n-2);}一个饲养场引进一只刚出生的新品种兔子,这种兔子从出生的下一个月开始,每月新生一只兔子,新生的兔子也如此繁殖。
如果所有的兔子都不死去,问到第12 个月时,该饲养场共有兔子多少只?分析:这是一个典型的递推问题。
我们不妨假设第 1 个月时兔子的只数为u 1 ,第2个月时兔子的只数为u 2 ,第3个月时兔子的只数为u 3 , ••…根据题意,“这种兔子从出生的下一个月开始,每月新生一只兔子”,则有u 1 = 1 , u2 = u 1 + u 1 X 1 = 2 , u3 = u 2 + u 2 X 1 4 ,……根据这个规律,可以归纳出下面的递x=1推公式:for i=2 to 12u n= u n — 1 X 2 (n > 2) y=x*2对应u n 和u n - 1 ,定义两x=y个迭代变量y 和x ,可将上面的递next i推公式转换成如下迭代关系:print yy=x*2 endx=y让计算机对这个迭代关系重复执行11 次,就可以算出第12 个月时的兔子数。
参考程序如下:cls分而治之法1、分治法的基本思想任何一个可以用计算机求解的问题所需的计算时间都与其规模N有关。
问题的规模越小,越容易直接求解,解题所需的计算时间也越少。
例如,对于n 个元素的排序问题,当n=1 时,不需任何计算;n=2 时,只要作一次比较即可排好序;n=3 时只要作3次比较即可,…。
而当n较大时,问题就不那么容易处理了。
要想直接解决一个规模较大的问题,有时是相当困难的。
分治法的设计思想是,将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。
分治法所能解决的问题一般具有以下几个特征:(1)该问题的规模缩小到一定的程度就可以容易地解决;(2)该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质;( 3 )利用该问题分解出的子问题的解可以合并为该问题的解;( 4 )该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。
3 、分治法的基本步骤分治法在每一层递归上都有三个步骤:( 1 )分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;(2)解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题;(3)合并:将各个子问题的解合并为原问题的解。
快速排序在这种方法中,n 个元素被分成三段(组):左段l e f t ,右段r i g h t 和中段m i d d le 。
中段仅包含一个元素。
左段中各元素都小于等于中段元素,右段中各元素都大于等于中段元素。
因此l ef t 和r igh t 中的元素可以独立排序,并且不必对l e f t 和r ig h t 的排序结果进行合并。
m i d d l e 中的元素被称为支点( p i v o t )。
图 1 4 - 9 中给出了快速排序的伪代码。
/ / 使用快速排序方法对a[ 0 :n- 1 ] 排序从a[ 0 :n- 1 ] 中选择一个元素作为m i d d l e ,该元素为支点把余下的元素分割为两段left 和r i g h t ,使得l e f t 中的元素都小于等于支点,而right 中的元素都大于等于支点递归地使用快速排序方法对left 进行排序递归地使用快速排序方法对right 进行排序所得结果为l e f t + m i d d l e + r i g h t考察元素序列[ 4 , 8 , 3 , 7 , 1 , 5 , 6 , 2 ] 。
假设选择元素 6 作为支点,则 6位于m i d d l e ;4,3,1,5,2 位于l e f t ;8,7位于r i g h t 。
当left 排好序后,所得结果为1,2,3,4,5;当r i g h t 排好序后,所得结果为7,8。
把right 中的元素放在支点元素之后,l e f t 中的元素放在支点元素之前,即可得到最终的结果[ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ] 。
把元素序列划分为I e f t、m i d d l e和r i g h t 可以就地进行(见程序 1 4 - 6 )。
在程序 1 4 - 6 中,支点总是取位置 1 中的元素。
也可以采用其他选择方式来提高排序性能,本章稍后部分将给出这样一种选择。
程序14-6 快速排序template<class T>void QuickSort(T*a, int n) {// 对a[0:n-1] 进行快速排序{// 要求a[n] 必需有最大关键值quickSort(a, 0, n-1);template<class T>void quickSort(T a[], int l, int r) {//排序 a [ l : r ] ,a[r+1] 有大值if (l >= r) return;int i = l, // 从左至右的游标j = r + 1; // 从右到左的游标T pivot =a[l];// 把左侧>= pivot 的元素与右侧<= pivot 的元素进行交换while (true) {do {// 在左侧寻找>= pivot 的元素i = i + 1;} while (a < pivot);do {// 在右侧寻找<= pivot 的元素j = j - 1;} while (a[j] > pivot);if (i >= j) break; // 未发现交换对a[j] = pivot;象quickSort(a, l, j-1); // 对左段排Swap(a, a[j]); 序对右段排}quickSort(a, j+1, r); //// 设置p i v o t 序a[l] = a[j]; }贪婪法它采用逐步构造最优解的思想,在问题求解的每一个阶段,都作出一个在一定标准下看上去最优的决策;决策一旦作出,就不可再更改。
制定决策的依据称为贪婪准则。
贪婪法是一种不追求最优解,只希望得到较为满意解的方法。
贪婪法一般可以快速得到满意的解,因为它省去了为找最优解要穷尽所有可能而必须耗费的大量时间。
贪婪法常以当前情况为基础作最优选择,而不考虑各种可能的整体情况,所以贪婪法不要回溯。
【问题】背包问题问题描述:有不同价值、不同重量的物品n 件,求从这n 件物品中选取一部分物品的选择方案,使选中物品的总重量不超过指定的限制重量,但选中物品的价值之和最大。
并不明显, 这时如果刻意地划分阶段法反而麻烦。
一般来说, 只要该问题可以划分成规模更 小的子问题,并且原问题的最优解中包含了子问题的最优解(即满足最优子化原理) ,则可 以考虑用动态规划解决。
动态规划的实质是 分治思想 和 解决冗余 ,因此, 动态规划 是一种将问题实例分解为更小的、 相似的子问题, 并存储子问题的解而避免计算重复的子问题, 以解决最优化问题的算法策略。
由此可知, 动态规划法与分治法和贪心法类似, 它们都是将问题实例归纳为更小的、 相似的 子问题,并通过求解子问题产生一个全局最优解。
贪心法的当前选择可能要依赖已经作出的所有选择,但不依赖于有待于做出的选择和子问 题。
因此贪心法自顶向下,一步一步地作出贪心选择; 而分治法中的各个子问题是独立的(即不包含公共的子问题) ,因此一旦递归地求出各子问 题的解后,便可自下而上地将子问题的解合并成问题的解。
不足之处: 如果当前选择可能要依赖子问题的解时, 则难以通过局部的贪心策略达到全局最 优解;如果各子问题是不独立的, 则分治法要做许多不必要的工作, 重复地解公共的子问题。
解决上述问题的办法是利用动态规划。
该方法主要应用于最优化问题, 这类问题会有多种可 能的解,每个解都有一个值,而动态规划找出其中最优(最大或最小)值的解。
若存在若干 个取最优值的解的话, 它只取其中的一个。
在求解过程中, 该方法也是通过求解局部子问题 的解达到全局最优解, 但与分治法和贪心法不同的是, 动态规划允许这些子问题不独立, (亦 即各子问题可包含公共的子问题) 也允许其通过自身子问题的解作出选择, 该方法对每一个 子问题只解一次,并将结果保存起来,避免每次碰到时都要重复计算。