机械基础第三章 机 构
- 格式:ppt
- 大小:9.48 MB
- 文档页数:41
第一篇:《机械基础》第三章轴系零部件《机械基础》教案第三章轴系零部件一、教案【教学要求】1、了解轴的分类、结构和用途;2、掌握轴上零件轴向固定与周向固定的目的及常用方法;3、了解转轴上常见的工艺结构;4、了解键连接的功用和分类;5、熟悉键连接、销连接的结构与分类;6、了解各种键与销的类型、特点及应用;7、了解轴承的结构、类型、特点、代号及应用,轴承的安装、密封和润滑;8、了解联轴器、离合器的功用、类型、特点及应用。
【教学目的】使学生知道什么是轴向和周向固定,掌握其目的和常用的方法,了解轴的分类、结构和用途;了解轴承的结构、类型、特点、代号及应用,轴承的安装、密封和润滑;熟悉键连接的结构与分类。
【学习概要】1、轴的用途和分类。
2、转轴的结构。
3、轴上零件的轴向固定与周向固定。
4、熟悉键连接、销连接的结构与分类。
5、了解轴承的结构、类型、特点、代号及应用,轴承的安装、密封和润滑。
6、了解联轴器、离合器的功用、类型、特点及应用。
第一节轴【教学重难点】1、掌握轴上零件轴向固定与周向固定的目的及常用方法。
2、了解轴的分类、结构和用途- 1《机械基础》教案4、结构工艺性——轴的结构形式应便于加工、便于轴上零件的装配和便于使用维修,并且能提高生产率,降低成本。
有关轴的工艺结构应注意问题:轴的结构和形状应便于加工、装配和维修。
阶梯轴的直径应该是中间大,两端小,以便于轴上零件的装拆。
轴端、轴颈与轴肩(或轴环)的过渡部位应有倒角或过渡圆角,并应尽可能使倒角大小一致和圆角半径相同,以便于加工。
轴上需要切制螺纹或进行磨削时,应有螺纹退刀槽或砂轮越程槽。
当轴上有两个以上键槽时,槽宽应尽可能统一,并布置在同一直线上,以利加工。
【小结】1.轴的用途和分类。
2.转轴的结构要求。
3.轴上零件的轴向固定与周向固定。
4.轴的结构工艺性。
- 3《机械基础》教案键长L根据轮毂长度按标准查取(比轮毂长度短5~10mm)C、普通平键的标记:键型键宽×键长标准号例:键16100 GB/T 1096-2003 表示键宽为16mm,键长为100mm的A型普通平键。
机械基础各章知识点总结第一章:机械基础概论机械基础是机械工程的基础学科之一,它研究机械运动的规律和机械运动部件的设计、计算、制造、安装、使用、维修和管理等问题。
机械基础知识包括:力的概念和分类、力的作用效果、力的合成和分解等。
力的概念和分类:力是一种物体之间相互作用的物理量,根据力的性质和作用方式不同,可以将力分为接触力和非接触力两大类。
接触力包括拉力、推力、支持力等,非接触力包括引力、斥力等。
力的作用效果:力的作用效果包括力的平衡和不平衡两种情况。
当多个力合成为零力或合力时,称为力的平衡;当多个力合成不为零力或合力时,称为力的不平衡。
力的合成和分解:力的合成是指将多个力合成为一个力的过程,力的合成可以采用平行四边形法则、三角形法则等方法。
力的分解是指将一个力分解为几个力的过程,力的分解可以采用三角形法则、垂直分解法、平行分解法等方法。
第二章:力学力学是研究物体受到力的作用而产生的运动状态和变形形态的学科,包括静力学、动力学、弹性力学、塑性力学等内容。
力学知识点包括:受力分析、受力平衡、弹簧力、弹簧的应用等。
受力分析:受力分析是指对物体受到的力进行分解、合成和求和的过程,通过受力分析可以确定物体所受外力的大小、方向和作用点等信息。
受力平衡:受力平衡是指物体受到外力作用时,力的合成为零力或合力的过程,力的平衡可以分为平衡力的分析和平衡力的判定两个阶段。
弹簧力:弹簧力是指当弹簧受到拉伸或压缩时所产生的力,弹簧力的大小与弹簧的变形量成正比,与弹簧的劲度系数成反比。
弹簧的应用:弹簧广泛应用于机械系统中,包括减震弹簧、拉簧、压簧等,弹簧的应用可以有效地调节机械系统的振动和变形。
第三章:运动学运动学是研究物体运动规律的学科,包括直线运动、曲线运动、圆周运动等内容。
运动学知识点包括:速度、加速度、运动规律等。
速度:速度是描述物体运动快慢的物理量,速度可以分为瞬时速度和平均速度两种,瞬时速度是物体在某一瞬间的速度,平均速度是物体在一段时间内的速度。
3-1试分别标出四种凸轮机构在图示位置的压力角α。
a)b)c)d)a)b)c)d)3-2图示尖底直动从动件盘形凸轮机构,C 点为从动件推程的起始点。
完成下列各题:(1)在图上标出凸轮的合理转向;(2)试在图上作出凸轮的基圆与偏心圆,并标注其半径r b 与e ;(3)在图上作出轮廓上D 点与从动杆尖顶接触时的位移s 和压力角α;(4)在原图上画出凸轮机构的推程运动角Φ。
题3-2图3-3由图所示直动盘形凸轮的轮廓曲线,在图上画出此凸轮的基圆半径r b、各运动角即推程运动角Φ、远休止角ΦS、回程运动角Φ′和近休止角Φ′S及从动件升程h。
题3-3图3-4图示的对心滚子从动件盘形凸轮机构中,凸轮的实际轮廓为一圆,圆心在A 点,半径R=40mm,凸轮转动方向如图所示,l OA=25mm,滚子半径r r=10mm,试问:(1)凸轮的理论曲线为何种曲线?(2)凸轮的基圆半径r b=?(3)在图上标出图示位置从动件的位移S,并计算从动件的升距h?(4)用反转法作出当凸轮沿ω方向从图示位置转过90°时凸轮机构的压力角。
题3-4图解:(1)理论轮廓曲线为:以A点为圆心,半径为R+r r的圆。
(2)此时所求的基圆半径为理论轮廓曲线的r b.r b=R-OA+r r=40-25+10=25mm(3)从动件的位移S如图所示。
升程h=R+OA+r r-r b=40+25+10-25=50mm(4)从动件导路沿-ω方向转过90°到B,压力角α'如图中所示。
3-5如图所示偏置移动滚子从动件盘形凸轮机构。
已知凸轮实际轮廓线为一圆心在O 点的偏心圆,其半径为R ,从动件的偏距为e ,试用图解法:(1)确定凸轮的合理转向;(2)画出凸轮的基圆;(3)标出当从动件从图示位置上升到位移s 时,对应凸轮机构的压力角α;(要求量出具体的数值)题3-5图3-8试以作图法设计一偏置直动滚子推杆盘形凸轮机构。
已知凸轮以等角速度逆时针回转,正偏距e =10mm ,基圆半径r 0=30mm ,滚子半径r r =10mm 。