无机化学 晶体结构
- 格式:ppt
- 大小:9.47 MB
- 文档页数:114
无机化学第二版课后练习题含答案
第一章晶体结构与晶体化学
练习题
1.什么是晶体结构?
2.描述组成配位数和形貌相同的正交晶系、四方晶系和六方晶系的特点。
3.TaCl5的结构类型是什么?给出TaCl5的点阵参数。
4.描述共价晶体和离子晶体的结构特点并给出两个例子。
答案
1.晶体结构是指对于一种给定的化学元素或化合物,其原子或离子分别
按一定的规律有序排列,形成具有规则重复的空间排列的结构。
–正交晶系:组成配位数为8,形貌倾向于长方体或正方体,一般相互垂直,如NaCl、MgO等。
–四方晶系:组成配位数为8,形貌为正方形或长方形板状,沿着一个轴和对角线对称。
如ZnS、TiO2、CaF2等。
–六方晶系:组成配位数为12,形貌为六边形柱状或针状,有沿着一个轴对称的等边六边形截面。
如α-石墨、SiC等。
2.TaCl5的结构类型是正交晶系。
TaCl5的点阵参数为a = 5.73 Å,b
= 5.28 Å,c = 11.85 Å,α = β = γ= 90°。
–共价晶体:由原子间较强的共价键构成,如金刚石、氧化硅(SiO2)。
–离子晶体:由阳离子和阴离子通过电滑移力相互结合而成,如NaCl、MgO。
1。
无机化合物的结构与性质无机化合物是由无机元素组成的化合物,在自然界和工业中都广泛存在。
无机化合物的结构与性质是化学领域的重要研究内容之一。
本文将介绍无机化合物的结构及其与性质之间的关系。
一、晶体结构无机化合物的晶体结构对其性质具有重要影响。
晶体是由粒子(原子、离子或分子)按照一定的规律排列而成的有序固体。
不同的无机化合物具有不同的晶体结构,一般可归为离子晶体、共价晶体和金属晶体三种类型。
离子晶体是由正负离子通过电荷相互吸引形成的晶体。
比如氯化钠(NaCl)晶体中,钠离子和氯离子以离子键相互连接,形成六方密堆积结构。
共价晶体是由共价键连接形成的晶体。
如硅酸盐矿物中的方解石(CaCO3),其中的碳酸根离子以碳氧共价键连接,钙离子通过离子键与其连接。
金属晶体是由金属原子通过金属键相互连接形成的晶体。
金属晶体的特点是金属原子之间没有明确的离子或共价键,而是形成了一个电子海,使金属具有良好的导电性和热传导性。
二、物理性质无机化合物的结构对其物理性质具有直接影响。
以下是几个例子:1. 熔点和沸点:晶体结构的稳定性直接影响了无机化合物的熔点和沸点。
离子晶体由于离子键的强烈吸引力,导致必须克服较大的能量才能使其熔化。
共价晶体通常具有较高的熔点,因为共价键需要较高的能量才能破坏。
而金属晶体由于金属键的弱相互作用力,熔点较低。
2. 导电性:离子晶体通常是电解质,因为其具有自由移动的离子。
在溶液中或熔化状态下,离子能够自由移动,形成电解质的现象。
而共价晶体和金属晶体通常是导体,共价晶体中的电荷通过电子在键中共享的方式传递,而金属晶体则通过电子海。
3. 硬度:晶体结构影响了无机化合物的硬度。
离子晶体中离子键的强烈吸引力使得其硬度较高。
共价晶体的硬度取决于共价键的强度,而金属晶体由于金属键较弱,硬度较低。
三、化学性质无机化合物的结构决定了它的化学性质。
以下是几个例子:1. 酸碱性:离子晶体中的阳离子和阴离子能够与水中的水分子发生反应,形成酸性或碱性溶液。
大学无机化学教案中的化学键与晶体结构分析无机化学是化学科学的重要分支之一,研究无机化合物的性质、结构以及它们之间的反应。
在大学的无机化学教学中,化学键与晶体结构分析是非常重要的内容。
本文将从化学键的类型和特点以及晶体结构的分析方法两个方面进行探讨。
一、化学键的类型和特点化学键是构成化合物的原子之间的相互作用力。
根据电子的共享情况,化学键可以分为离子键、共价键和金属键。
离子键是由正负电荷之间的静电力所形成的。
在离子键中,一方的原子失去电子,形成正离子;另一方的原子获得电子,形成负离子。
正负离子之间的相互吸引力就构成了离子键。
离子键通常存在于金属与非金属之间,如氯化钠(NaCl)中的钠离子和氯离子之间的离子键。
共价键是由两个原子共享电子而形成的。
共价键通常存在于非金属之间,如氧气(O2)中的两个氧原子之间的共价键。
共价键分为单键、双键和三键,根据共享电子对的数量而定。
单键是两个原子共享一个电子对,双键是两个原子共享两个电子对,三键是两个原子共享三个电子对。
共价键的特点是强度较高,通常需要较大的能量才能破坏。
金属键是金属原子之间的相互作用力。
金属原子的外层电子形成电子海,形成了金属键。
金属键的特点是导电性和延展性较好,金属物质通常具有良好的导电性和延展性。
二、晶体结构的分析方法晶体是由原子、离子或分子按照一定的规则排列而成的固体。
晶体结构的分析是无机化学研究的重要内容之一。
晶体结构的分析常用的方法有X射线衍射、电子显微镜和核磁共振等。
其中,X射线衍射是最常用的方法之一。
通过将X射线照射到晶体上,晶体中的原子会对X射线产生散射,形成衍射图样。
根据衍射图样的特点,可以确定晶体的晶格常数和晶体结构。
电子显微镜可以观察到晶体的表面形貌和晶体中的原子排列情况。
核磁共振则可以通过核磁共振信号来分析晶体中的原子种类和原子之间的相互作用。
晶体结构的分析不仅可以帮助我们了解晶体的性质,还可以为无机化学的研究提供重要的依据。
无机化合物的结构特点无机化合物是由无机元素组成的化合物,其结构特点主要包括离子晶体结构、共价分子结构和金属结构三种类型。
下面将分别介绍这三种结构类型的特点。
1. 离子晶体结构离子晶体结构是由正负离子通过离子键结合而成的晶体结构。
在离子晶体中,正负离子按照一定的比例排列成晶体结构,形成离子晶体的特有结构特点。
离子晶体结构的特点包括:(1)离子间的静电作用:离子晶体结构中正负离子之间通过静电作用相互吸引,形成离子键,使得晶体结构稳定。
(2)高熔点和硬度:由于离子晶体结构中正负离子之间的强烈吸引力,使得离子晶体具有较高的熔点和硬度。
(3)晶体结构规则:离子晶体结构中正负离子按照一定的比例和排列方式排列成晶体结构,具有一定的规则性和周期性。
(4)易溶于水:离子晶体通常易溶于水,因为水分子能够与离子之间的静电作用相互作用,使得离子晶体在水中溶解。
2. 共价分子结构共价分子结构是由共价键连接的原子或分子组成的结构。
在共价分子结构中,原子或分子通过共价键共享电子,形成共价分子的特有结构特点。
共价分子结构的特点包括:(1)共价键的形成:共价分子结构中原子或分子通过共价键共享电子,使得分子结构稳定。
(2)分子间的范德华力:共价分子结构中分子之间通过范德华力相互作用,使得分子结构保持一定的稳定性。
(3)低熔点和挥发性:由于共价分子结构中分子之间的相互作用较弱,使得共价分子通常具有较低的熔点和挥发性。
(4)不导电:共价分子通常不导电,因为共价键中电子是局域化的,不具有自由移动的特性。
3. 金属结构金属结构是由金属原子通过金属键连接而成的结构。
在金属结构中,金属原子通过金属键形成金属晶体的特有结构特点。
金属结构的特点包括:(1)金属键的形成:金属结构中金属原子通过金属键共享电子形成金属键,使得金属结构具有一定的稳定性。
(2)电子海模型:金属结构中金属原子释放出自由电子形成电子海,使得金属具有良好的导电性和热导性。
(3)金属结构的变形性:金属结构中金属原子之间通过金属键连接,使得金属具有较好的变形性和延展性。
无机化学《晶体结构》教案[ 教学要求]1 .了解晶体与非晶体的区别,掌握晶体的基本类型及其性质特点。
2 .了解离子极化的基本观点及其对离子化合物的结构和性质变化的解释。
3 .了解晶体的缺陷和非整比化合物。
[ 教学重点]1 .晶胞2 .各种类型晶体的结构特征3 .离子极化[ 教学难点]晶胞的概念[ 教学时数] 4 学时[ 主要内容]1 .晶体的基本知识2 .离子键和离子晶体3 .原子晶体和分子晶体4 .金属键和金属晶体5 .晶体的缺陷和非整比化合物6 .离子极化[ 教学内容]3-1 晶体3-1-1 晶体的宏观特征晶体有一定规则的几何外形。
不论在何种条件下结晶,所得的晶体表面夹角(晶角)是一定的。
晶体有一定的熔点。
晶体在熔化时,在未熔化完之前,其体系温度不会上升。
只有熔化后温度才上升。
3-1-2 晶体的微观特征晶体有各向异性。
有些晶体,因在各个方向上排列的差异而导致各向异性。
各向异性只有在单晶中才能表现出来。
晶体的这三大特性是由晶体内部结构决定的。
晶体内部的质点以确定的位置在空间作有规则的排列,这些点本身有一定的几何形状,称结晶格子或晶格。
每个质点在晶格中所占的位置称晶体的结点。
每种晶体都可找出其具有代表性的最小重复单位,称为单元晶胞简称晶胞。
晶胞在三维空间无限重复就产生晶体。
故晶体的性质是由晶胞的大小、形状和质点的种类以及质点间的作用力所决定的。
3-2 晶胞3-2-1 晶胞的基本特征平移性3-2-2 布拉维系十四种不拉维格子类 型 说 明单斜底心格子( N ) 单位平行六面体的三对面中 有两对是矩形,另一对是非矩形 。
两对矩形平面都垂直于非矩形 平面,而它们之间的夹角为β, 但∠β≠ 90°。
a 0≠ b 0 ≠ c 0 ,α = γ =90°, β≠ 90°正交原始格子( O ) 属于正交晶系,单位平 行六面体为长、宽、高都不 等的长方体,单位平行六面 体参数为: a 0 ≠ b 0 ≠ c 0 α = β = γ =90 °正交体心格子( P ) 属于正交晶系,单位平行六 面体为长、宽、高都不等的长方 体,单位平行六面体参数为: a 0 ≠ b 0 ≠ c 0 α = β = γ =90 °正交底心格子( Q ) 属于正交晶系,单位平 行六面体为长、宽、高都不 等的长方体,单位平行六面 体参数为: a 0 ≠ b 0 ≠ c 0 α = β = γ =90 °正交面心格子( S ) 属于正交晶系,单位平 行六面体为长、宽、高都不 等的长方体,单位平行六面 体参数为: a 0 ≠ b 0 ≠ c 0 α = β = γ =90 °立方体心格子( B ) 属于等轴晶系,单位平行六 面体是一个立方体。
晶体结构总结简介无机化学中,晶体结构是研究物质的有序排列方式和性质的重要方面。
晶体结构的研究对于理解和预测物质的物理、化学性质具有重要意义。
本文将对晶体结构的基本概念、分类和研究方法进行总结。
晶体结构的基本概念晶体是由原子、离子或分子等构成的周期性有序排列的固体。
晶体结构是指晶体中原子或离子的有序排列方式,决定了物质的物理、化学性质。
晶体结构的基本概念包括晶胞、晶格和晶体面。
晶胞是指晶体中最小的重复单元,可以看作是一个几何体,它的外形和大小由晶体的结构决定。
晶格是晶体中原子或离子的有序排列方式,可以看作是晶体中的虚拟网格。
晶格中的点被称为胞内原子或离子。
晶体面则是晶胞的界面,由一组晶胞面构成。
晶体结构的分类根据晶胞的对称性,晶体结构可以分为离散晶体和连续晶体。
离散晶体是指晶胞中只有少数几个原子或离子,它们之间通过化学键或相互作用力保持结合。
离散晶体常见的结构类型包括离子晶体、共价晶体和金属晶体。
连续晶体是指晶胞中包含大量的原子、离子或分子,它们之间通过一系列规则的对称操作排列。
连续晶体常见的结构类型包括简单晶格、面心立方晶格和体心立方晶格等。
晶体结构的研究方法研究晶体结构的方法主要包括晶体衍射和晶体结构分析。
晶体衍射是通过将射线照射到晶体上,测量从晶体中射出的衍射波的方向和强度来研究晶体结构。
常用的晶体衍射方法包括X射线衍射、中子衍射和电子衍射等。
晶体结构分析是利用实验数据和计算方法确定晶体的原子或离子排列方式。
常用的晶体结构分析方法包括X射线单晶衍射、粉末衍射和电子显微镜等。
结论晶体结构是无机化学中的重要研究领域,对于理解和预测物质的性质至关重要。
通过研究晶体结构,人们可以深入揭示物质中原子、离子或分子的排列方式,从而为材料科学、催化剂设计等领域提供基础的理论支持。
参考文献1. 王道,无机化学基础,化学工业出版社,2010。
2. 高清榜,晶体学导论,科学出版社,2012。
3. 晶体结构与理论组,无机化学实验,化学工业出版社,2015。